JPH0611884B2 - Smelting reduction ironmaking method - Google Patents

Smelting reduction ironmaking method

Info

Publication number
JPH0611884B2
JPH0611884B2 JP32936288A JP32936288A JPH0611884B2 JP H0611884 B2 JPH0611884 B2 JP H0611884B2 JP 32936288 A JP32936288 A JP 32936288A JP 32936288 A JP32936288 A JP 32936288A JP H0611884 B2 JPH0611884 B2 JP H0611884B2
Authority
JP
Japan
Prior art keywords
furnace
smelting reduction
reduction furnace
ore
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32936288A
Other languages
Japanese (ja)
Other versions
JPH02175809A (en
Inventor
達郎 有山
進市 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP32936288A priority Critical patent/JPH0611884B2/en
Publication of JPH02175809A publication Critical patent/JPH02175809A/en
Publication of JPH0611884B2 publication Critical patent/JPH0611884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄鉱石の予備還元を行なう溶融還元製鉄法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a smelting reduction iron manufacturing method for performing preliminary reduction of iron ore.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

鉄鉱石の溶融還元では、溶融還元炉で発生する排ガスを
利用した鉱石の予備還元(および予熱)が行なわれる。
そして、この予備還元には流動層形式の予備還元炉が適
しており、この形式の炉が多く用いられている。
In the smelting reduction of iron ore, the ore is preliminarily reduced (and preheated) using the exhaust gas generated in the smelting reduction furnace.
A fluidized bed type preliminary reduction furnace is suitable for this preliminary reduction, and this type of furnace is often used.

溶融還元は事前の塊成化処理を経ない鉄鉱石(-7mm程度
の粒度の鉱石)を利用できるという大きな利点がある
が、鉄鉱石は粒度分布が広いため、流動層で比較的粗粒
の鉱石を含めて均一に流動化させようとすると、微粉鉄
鉱石(例えば-0.3mmの鉱石)が排ガスとともに炉外に飛
散してしまう。このようにして飛散する微粉鉱石は流動
層に装入される鉄鉱石の30〜40%にも達する。
The smelting reduction has a great advantage that it can use iron ore (ore with a grain size of about -7 mm) that has not undergone a prior agglomeration treatment, but since iron ore has a wide grain size distribution, it has relatively coarse grains in the fluidized bed. If it is attempted to uniformly fluidize the iron ore, fine iron ore (for example, -0.3 mm ore) will be scattered outside the furnace together with the exhaust gas. The fine ore scattered in this way reaches 30 to 40% of the iron ore charged in the fluidized bed.

このように飛散した微粉鉱石は集塵装置により回収され
るが、これを溶融還元炉に投入しても微粉であるため炉
口ガスとともに飛散し易い。また、回収された微粉鉱石
を気流によって移送して溶融還元炉に吹き込む方法(イ
ンジェクション法)も提案されているが、この方法では
移送、吹込用の配管の摩耗が著しく、設備故障を生じ易
い。
The fine ore thus scattered is collected by the dust collector, but even if it is put into the smelting reduction furnace, it is fine and easily scattered together with the gas at the furnace opening. Further, a method (injection method) of transporting the recovered fine ore by an air flow and blowing it into a smelting reduction furnace has been proposed, but this method causes remarkable wear of pipes for transportation and injection, which easily causes equipment failure.

また、微粉鉱石は流動層への装入後すぐに飛散してしま
うため、これを回収して溶融還元炉に装入しようとして
も、不十分な予備還元状態で装入せざるを得ない。
Further, since the fine ore is scattered immediately after it is charged into the fluidized bed, even if the fine ore is recovered and charged into the smelting reduction furnace, it must be charged in an insufficient preliminary reduction state.

本発明はこのような従来の問題に鑑み、原料鉱石に含ま
れる微粉鉱石をインジェクション等を用いることなく、
しかも適度な還元状態とした上で溶融還元炉に容易に供
給することができる方法を提供せんとするものである。
The present invention, in view of such a conventional problem, without using the fine powder ore contained in the raw ore, such as injection,
Moreover, it is an object of the present invention to provide a method that can be easily supplied to a smelting reduction furnace after being brought to an appropriate reduction state.

〔問題を解決するための手段〕[Means for solving problems]

このため本発明は、流動層形式の予備還元炉により鉄鉱
石の予備還元を行う溶融還元製鉄法において、予備還元
炉から排ガスとともに飛散した微粉鉄鉱石を回収し、こ
れを予備還元炉の排ガスまたは/および溶融還元炉の発
生ガスとO2とが吹込まれる流動層形式の凝集炉に装入し
て、高温還元雰囲気下で適度な粒度に凝集成長させた
後、溶融還元炉に供給するようにしたことをその特徴と
する。
Therefore, the present invention, in the smelting reduction iron manufacturing method of performing preliminary reduction of iron ore by a preliminary reduction furnace of the fluidized bed type, recover fine pulverized iron ore scattered with the exhaust gas from the preliminary reduction furnace, the exhaust gas of the preliminary reduction furnace or And / or the gas generated in the smelting reduction furnace and O 2 are blown into the fluidized bed type coagulation furnace, and the particles are aggregated and grown to an appropriate particle size in a high temperature reducing atmosphere, and then supplied to the smelting reduction furnace. The feature is that

〔作用〕[Action]

凝集炉に装入された微粉鉄鉱石は炉内で流動層を形成し
つつ、微粉が焼結して凝集し、適度な粒に成長する。ま
た、炉内が還元雰囲気であるため、鉱石は適度に還元さ
れた状態になる。そして、このように適度な粒に成長し
た鉱石は、その自重により炉下部の排出口から排出され
る。排出された鉱石は溶融還元炉にインジェクション等
を用いることなく装入(上置き装入)されるが、粒径が
あるため炉口ガスで飛散するようなことなく炉内に装入
される。
The fine iron ore charged into the agglomeration furnace forms a fluidized bed in the furnace, and the fine powder is sintered and agglomerated to grow into appropriate particles. Further, since the furnace has a reducing atmosphere, the ore is in a state of being appropriately reduced. Then, the ore that has grown to a suitable grain is discharged from the discharge port at the bottom of the furnace due to its own weight. The discharged ore is charged (upper charging) into the smelting reduction furnace without using injection or the like, but since it has a particle size, it is charged into the furnace without being scattered by the furnace port gas.

〔実施例〕〔Example〕

第1図及び第2図は本発明の一実施例を示すもので、1
は流動層形式の予備還元炉、2は同じく流動層形式の凝
集炉、3は微粉回収用の集塵装置、4は溶融還元炉であ
る。
1 and 2 show an embodiment of the present invention.
Is a fluidized bed type preliminary reduction furnace, 2 is a fluidized bed type coagulation furnace, 3 is a dust collector for collecting fine powder, and 4 is a smelting reduction furnace.

本実施例では、凝集炉2に予備還元炉からの排ガスが供
給される。
In this embodiment, the exhaust gas from the preliminary reduction furnace is supplied to the coagulation furnace 2.

以下、図面に基づいて説明すると、溶融還元炉4の発生
ガスは集塵装置7を経て予備還元炉1に供給される。予
備還元炉4には鉄鉱石が装入されており、流動層5が形
成される。予備還元炉4に装入された鉄鉱石のうち、比
較的粗粒のものは適性な流動層を形成して予備還元・予
熱された後、鉱石排出管6から排出され、そのまま溶融
還元炉4に装入される。
In the following, with reference to the drawings, the gas generated in the smelting reduction furnace 4 is supplied to the preliminary reduction furnace 1 via the dust collector 7. Iron ore is charged into the preliminary reduction furnace 4, and a fluidized bed 5 is formed. Of the iron ore charged in the preliminary reduction furnace 4, those having relatively coarse particles form a suitable fluidized bed to be pre-reduced and preheated, and then discharged from the ore discharge pipe 6 and directly as they are in the smelting reduction furnace 4 Is charged to.

一方、比較的微粒の鉄鉱石は、排ガスとともに炉外に排
出された後、集塵装置3で回収され、凝集炉2に装入さ
れる。凝集炉2には前記集塵装置3を経た排ガス(通
常、600〜800℃程度)が酸素とともに底部から吹込ま
れ、炉内に高温還元雰囲気の流動層8が形成される。こ
の流動層8では第2図に示すように燃焼帯9が形成さ
れ、この燃焼帯9により微粒鉱石どうしが凝集して焼結
し、粗粒状に成長する。適当な粒度(通常、粒径2〜5
mm)まで成長した鉱石11は自重により落下し、排出管10
から炉外に導かれ、そのまま溶融還元炉4に上置き装入
される。
On the other hand, relatively fine iron ore is discharged to the outside of the furnace together with the exhaust gas, then collected by the dust collector 3 and charged into the coagulation furnace 2. Exhaust gas (usually about 600 to 800 ° C.) that has passed through the dust collector 3 is blown into the coagulation furnace 2 from the bottom together with oxygen, and a fluidized bed 8 in a high-temperature reducing atmosphere is formed in the furnace. A combustion zone 9 is formed in the fluidized bed 8 as shown in FIG. 2. The combustion zone 9 causes the fine ores to agglomerate and sinter to grow into coarse particles. Suitable particle size (usually particle size 2-5
The ore 11 which has grown up to
From the furnace to the outside of the furnace, and is placed on the smelting reduction furnace 4 as it is.

予備還元炉1から供給される排ガスは還元性ガスであ
り、成分としてCOを20〜30%、H2を5〜10%程度含んで
いる。この排ガスは第2図に示すようにしてO2とともに
炉底から吹込まれる。ここで、O2は燃焼帯の温度が1200
〜1400℃となり、且つ排ガス中のCO、H2が部分燃焼する
ことにより炉内が還元雰囲気となる程度の供給量とす
る。
The exhaust gas supplied from the pre-reduction furnace 1 is a reducing gas, and contains 20 to 30% CO and 5 to 10% H 2 as components. This exhaust gas is blown from the furnace bottom together with O 2 as shown in FIG. Here, the temperature of the combustion zone of O 2 is 1200
The supply amount is about 1400 ° C., and CO and H 2 in the exhaust gas are partially combusted to form a reducing atmosphere in the furnace.

凝集炉2内で粗大化した鉱石は炉内の還元雰囲気により
適度に還元され、しかも高温状態にあることから、炉か
ら排出後、そのまま溶融炉4に送られる。
The ore coarsened in the coagulation furnace 2 is appropriately reduced by the reducing atmosphere in the furnace, and since it is in a high temperature state, it is discharged from the furnace and then sent to the melting furnace 4 as it is.

なお、微粒鉱石の予備還元をより効果的に行なうため、
第1図の鎖線で示すように集塵装置3で回収された微粒
鉱石の一部を予備還元炉1に返送するようにすることも
できる。
In addition, in order to carry out the preliminary reduction of fine ore more effectively,
It is also possible to return a part of the fine ore collected by the dust collector 3 to the preliminary reduction furnace 1 as shown by the chain line in FIG.

また、凝集炉2に吹き込むガスとしては、溶融還元炉4
の発生ガスそのものを用いることもできる。第3図はそ
の一実施例を示すもので、集塵装置7を経た発生ガス
(還元性ガス)の一部を凝集炉2に供給する。
The gas blown into the coagulation furnace 2 is the smelting reduction furnace 4
It is also possible to use the generated gas itself. FIG. 3 shows an embodiment thereof, and a part of the generated gas (reducing gas) that has passed through the dust collector 7 is supplied to the coagulation furnace 2.

その他の構成は第1図に示すものと同様であり、同一符
号を付して説明は省略する。
Other configurations are the same as those shown in FIG. 1, and the same reference numerals are given and the description thereof is omitted.

なお、凝集炉2には予備還元炉の排ガスと溶融還元炉の
発生ガスの両方を混合してまたは別個に供給するように
してもよい。
Note that both the exhaust gas from the preliminary reduction furnace and the gas generated from the smelting reduction furnace may be mixed or separately supplied to the coagulation furnace 2.

〔発明の効果〕〔The invention's effect〕

以上述べた本発明によれば、原料鉱石中に含まれる微粉
鉱石を系内の還元性排ガスを利用して粗大化、予備還元
および予熱し、これを溶融還元炉にインジェクションを
用いることなく装入することができ、溶融還元の操業を
安定且つ経済的に実施することができる。
According to the present invention described above, the fine ore contained in the raw ore is coarsened, pre-reduced and preheated by utilizing the reducing exhaust gas in the system, and charged into the smelting reduction furnace without using injection. Therefore, the operation of smelting reduction can be carried out stably and economically.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の一実施例を示すもので、第
1図は全体説明図、第2図は凝集炉の模式説明図であ
る。第3図は本発明の他の実施例を示す全体説明図であ
る。 図において、1は予備還元炉、2は凝集炉、3は集塵装
置、4は溶融還元炉、5,8は流動層である。
1 and 2 show an embodiment of the present invention. FIG. 1 is an overall explanatory view, and FIG. 2 is a schematic explanatory view of a coagulation furnace. FIG. 3 is an overall explanatory view showing another embodiment of the present invention. In the figure, 1 is a preliminary reduction furnace, 2 is a coagulation furnace, 3 is a dust collector, 4 is a smelting reduction furnace, and 5 and 8 are fluidized beds.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流動層形式の予備還元炉により鉄鉱石の予
備還元を行う溶融還元製鉄法において、予備還元炉から
排ガスとともに飛散した微粉鉄鉱石を回収し、これを予
備還元炉の排ガスまたは/および溶融還元炉の発生ガス
とO2とが吹込まれる流動層形式の凝集炉に装入して、高
温還元雰囲気下で適度な粒度に凝集成長させた後、溶融
還元炉に供給することを特徴とする溶融還元製鉄法。
1. A smelting reduction iron-making method in which preliminary reduction of iron ore is carried out in a fluidized bed type preliminary reduction furnace, and fine iron ore scattered along with the exhaust gas is recovered from the preliminary reduction furnace, and the fine iron ore exhausted from the preliminary reduction furnace or / In addition, the gas generated in the smelting reduction furnace and O 2 are blown into a fluidized bed type coagulation furnace, and the particles are coagulated and grown to an appropriate particle size in a high-temperature reducing atmosphere, and then supplied to the smelting reduction furnace. Characteristic smelting reduction iron making method.
JP32936288A 1988-12-28 1988-12-28 Smelting reduction ironmaking method Expired - Lifetime JPH0611884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32936288A JPH0611884B2 (en) 1988-12-28 1988-12-28 Smelting reduction ironmaking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32936288A JPH0611884B2 (en) 1988-12-28 1988-12-28 Smelting reduction ironmaking method

Publications (2)

Publication Number Publication Date
JPH02175809A JPH02175809A (en) 1990-07-09
JPH0611884B2 true JPH0611884B2 (en) 1994-02-16

Family

ID=18220610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32936288A Expired - Lifetime JPH0611884B2 (en) 1988-12-28 1988-12-28 Smelting reduction ironmaking method

Country Status (1)

Country Link
JP (1) JPH0611884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160068567A (en) * 2014-12-05 2016-06-15 주식회사 포스코 Dust collecting appratus of pelletizing facilities

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT409495B (en) * 2000-12-12 2002-08-26 Voest Alpine Ind Anlagen METHOD AND DEVICE FOR INCREASING THE HEAT CONTENT OF AN AT LEAST PARTLY REDUCING REACTION GAS
CA3237177A1 (en) * 2021-11-30 2023-06-08 Shoji USHIO Facility for producing reduced iron and method for producing reduced iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160068567A (en) * 2014-12-05 2016-06-15 주식회사 포스코 Dust collecting appratus of pelletizing facilities

Also Published As

Publication number Publication date
JPH02175809A (en) 1990-07-09

Similar Documents

Publication Publication Date Title
JP3264330B2 (en) Fluidized bed reduction apparatus for iron ore particles and method for reducing iron ore particles using the apparatus
US4886246A (en) Metal-making apparatus involving the smelting reduction of metallic oxides
RU2555318C2 (en) Method and device for production of moulded products
US8690988B2 (en) Use of bimodal carbon distribution in compacts for producing metallic iron nodules
JPH0611884B2 (en) Smelting reduction ironmaking method
JP2003213312A (en) Method for manufacturing metallic iron
JP2608736B2 (en) Method of charging exhaust gas dust in smelting reduction furnace
JP3735016B2 (en) Molten iron manufacturing method and molten iron manufacturing apparatus
JP2579785B2 (en) Pre-reduction device for smelting reduction
CA1204943A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing material
JP3797184B2 (en) Method for producing sintered ore
JPH10305923A (en) Transport device for powder and granular material
WO1999051783A1 (en) Method and apparatus for producing molten iron from iron oxides
JPH0639608B2 (en) Iron ore preheating / reducing device
JPH02209408A (en) Smelting reduction iron-making method
JPH0723500B2 (en) Smelting reduction method of powdery ore
JPS6311610A (en) Prereduction device for iron ore
JPH01129916A (en) Method for charging ore in smelting reduction furnace
JPH05171233A (en) Method for charging collected dust in smelting reduction equipment
JP2502976B2 (en) Iron ore preliminary reduction device
JPS6044366B2 (en) How to operate a fluidized bed pre-reduction furnace
JPH08253801A (en) Method for using reduced ore in blast furnace
JPH09310128A (en) Treatment of sludge containing oil
JPH077313Y2 (en) Pre-reduction equipment for smelting reduction of iron ore
JPH0394006A (en) Method for blowing powdery body from tuyere in blast furnace