JPH03197610A - Method for operating circulating fluidized bed reduction apparatus - Google Patents

Method for operating circulating fluidized bed reduction apparatus

Info

Publication number
JPH03197610A
JPH03197610A JP34386289A JP34386289A JPH03197610A JP H03197610 A JPH03197610 A JP H03197610A JP 34386289 A JP34386289 A JP 34386289A JP 34386289 A JP34386289 A JP 34386289A JP H03197610 A JPH03197610 A JP H03197610A
Authority
JP
Japan
Prior art keywords
fluidized bed
reduction
ore
gas
circulating fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34386289A
Other languages
Japanese (ja)
Other versions
JPH0637655B2 (en
Inventor
Satoru Suzuki
悟 鈴木
Kazuya Kunitomo
和也 国友
Tatsuhiko Egashira
江頭 達彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34386289A priority Critical patent/JPH0637655B2/en
Publication of JPH03197610A publication Critical patent/JPH03197610A/en
Publication of JPH0637655B2 publication Critical patent/JPH0637655B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To raise reduction temp. in a circulating fluidized bed and to improve utilizing rate of gas by introducing reduction gas into a fluidized bed tower charged with powdery ore having a specific value or lower of T.Fe content and a prescribed grain size constitution to execute fluidizing reduction and circulatively supplying the reduced ore into lower part from upper part of the tower. CONSTITUTION:At the time of executing fluidizing reduction by introducing the reduction gas in the circulating fluidized bed as the essential fluidizing gas, the grain size of charged powdery ore is regulated so as to be 10-40wt.% coarse grain having >=2mm grain diameter and 15-30wt.% intermediate grain having 2-0.5mm grain diameter. Further, the average T.Fe content in the charged ore is regulated to <=65wt.% and desirably, the T.Fe content of the fine grain having <=0.5mm diameter is made to <=65wt.%. As the development of sticking can be prevented with the regulation of grain size distribution as above, the reduction temp. in the circulating fluidized bed can be raised and the utilizing rate of gas can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、循環流動層還元炉を用いて鉱石、特に鉄鉱石
を還元する場合の操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an operating method for reducing ore, particularly iron ore, using a circulating fluidized bed reduction furnace.

〔従来の技術〕[Conventional technology]

高炉を用いた製鉄法は設備投資が大きく、原燃料面でも
良質の塊成鉱やコークスを必要とする。
The iron manufacturing method using a blast furnace requires a large capital investment and requires high-quality agglomerate ore and coke in terms of raw materials and fuels.

このため、これらの設備、原燃料面の制約を解消する溶
融還元法が注目されている。溶融還元法は溶融還元炉と
予備還元炉との2つの大きなプロセスによって構成され
ている。予備還元炉には粒子循環装置を有する流動層、
すなわち循環流動層を応用する方法がある。かかる循環
流動層還元法は、例えば時開11B62−228878
号公報に記載されているように、粉鉱石を装入し、さら
にその底部から主流動ガスである還元ガスを導入して流
動層を形成するライザーを有し、そのライザーの上方に
固体−ガス分離のためのサイクロンを設け、さらに同サ
イクロンに連続してライザー下部に連結したダウンカマ
ーを設けた構造の装置において、流動層からの粉鉱石を
サイクロンを経て再度流動層に循環しつつ予備還元され
る。
For this reason, the smelting reduction method that eliminates these restrictions in terms of equipment and raw materials and fuels is attracting attention. The smelting reduction method consists of two major processes: a smelting reduction furnace and a pre-reduction furnace. The preliminary reduction furnace has a fluidized bed with a particle circulation device,
In other words, there is a method of applying a circulating fluidized bed. Such a circulating fluidized bed reduction method is described, for example, in Jikai 11B62-228878.
As described in the publication, it has a riser that charges fine ore and further introduces reducing gas, which is the main fluid gas, from the bottom of the riser to form a fluidized bed, and above the riser there is a solid-gas In a device that is equipped with a cyclone for separation and a downcomer connected to the lower part of the riser, fine ore from the fluidized bed is pre-reduced while being circulated through the cyclone and back to the fluidized bed. Ru.

この流動層還元法においては、他の気泡流動層等に比べ
てガス流速が大きいために使用する鉱石粒子の粒度分布
幅を広くできること、生産性が高いという利点がある。
This fluidized bed reduction method has the advantage that the particle size distribution width of the ore particles used can be widened because the gas flow rate is higher than in other bubble fluidized beds, and productivity is high.

また、粉鉱石のガス還元速度は還元温度に大きく影響さ
れ、還元温度を高くすれば還元速度が大きくなり高効率
となる。ところが、還元温度の上昇はスティッキングの
発生を招き鉱石の流動が停止し操業ができなくなるとい
う問題がある。
Further, the gas reduction rate of fine ore is greatly influenced by the reduction temperature, and the higher the reduction temperature, the higher the reduction rate and the higher the efficiency. However, there is a problem in that an increase in the reduction temperature causes sticking to occur, stopping the flow of ore and making it impossible to operate.

このスティッキング現象は気泡流動層では「化学装置J
 1986年6月号に記載されているように、還元過程
において鉱石表面に金属鉄の突起が生成し、焼結するこ
とによって粒子運動が不活発になり流動停止に至ると考
えられている。循環流動層においてはガス流速が大きい
ので流動反応炉であるライザー内ではこの様なスティッ
キングは起こらないが、還元温度を上昇させると粒子移
動層であるダウンカマーでスティッキングする。
This sticking phenomenon occurs in ``Chemical Equipment J'' in the bubble fluidized bed.
As described in the June 1986 issue, it is thought that during the reduction process, metallic iron protrusions are formed on the surface of the ore and sintered, thereby making particle movement inactive and stopping the flow. In a circulating fluidized bed, the gas flow rate is high, so such sticking does not occur in the riser, which is a fluidized reactor, but when the reduction temperature is increased, sticking occurs in the downcomer, which is a particle movement bed.

このスティッキングは還元温度を低下させれば回避でき
るが、還元温度の低下は還元反応の進行が遅くなり、生
産性、ガス原単位の悪化をもたらすという欠点がある。
This sticking can be avoided by lowering the reduction temperature, but this has the disadvantage that lowering the reduction temperature slows down the progress of the reduction reaction, resulting in deterioration of productivity and gas consumption.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明において解決すべき課題は、循環流動層還元法の
高生産性の特長を失うことなくスティッキングの発生を
防止する手段を見出すことにある。
The problem to be solved by the present invention is to find a means for preventing the occurrence of sticking without losing the high productivity feature of the circulating fluidized bed reduction method.

(課題を解決するための手段〕 本発明は、循環流動層による粉鉱石の還元において、装
入粉鉱石を21111粒径以上の粗粒が10〜40重量
%、2〜0.5aの粒径を有する中間粒が15〜30重
量%になるように粒度調整し、かつ装入鉱石の平均T、
 Fe含有量が65重量%以下にすることによって上記
課題を解決した。また、好ましくは[1,5mm粒径以
下の細粒のT、 Pa含有量を65重量%以下とするこ
とが望ましい。
(Means for Solving the Problems) In the reduction of fine ore using a circulating fluidized bed, the present invention is characterized in that the charged fine ore contains 10 to 40% by weight of coarse particles having a particle size of 21111 or more and a particle size of 2 to 0.5a. The particle size is adjusted so that the intermediate grains having 15 to 30% by weight have an average T of the charged ore,
The above problem was solved by setting the Fe content to 65% by weight or less. Further, it is preferable that the T and Pa contents of the fine particles having a particle size of 1.5 mm or less be 65% by weight or less.

〔作用〕[Effect]

本発明は、以下の知見に基づいて完成した。 The present invention was completed based on the following findings.

循環流動層還元装置にふけるダウンカマー内のクラスタ
ー〇発生は、装入鉱石の粒度分布と鉄分品位(T、Fe
含有量)に影響される。鉱石の粒度分布の影響は以下の
通りである。粒度分布幅が狭い場合には粗粒程クラスタ
ーは生成しにくく、0.5mm以下の細粒は巨大クラス
ターを生成しやすくする。この嫌な関係は鉱石の鉄分品
位が高くなるとよりクラスターを生成しやすくなり、T
、Feが65重量%を越えると特にクラスターの生成が
顕著になる。このため、鉄分品位が高い鉱石の場合、−
窓以上の0.5mm以下の細粒が存在すると巨大クラス
ターの生成が顕著になり操業トラブルが発生する。
The occurrence of clusters in the downcomer in the circulating fluidized bed reduction equipment depends on the particle size distribution of the charged ore and the iron content (T, Fe).
content). The influence of ore particle size distribution is as follows. When the particle size distribution width is narrow, coarse particles are less likely to form clusters, and fine particles of 0.5 mm or less are more likely to form giant clusters. This unpleasant relationship is such that the higher the iron content of the ore, the easier it is to form clusters, and T
, When Fe exceeds 65% by weight, the formation of clusters becomes particularly noticeable. Therefore, in the case of ores with high iron content, −
If fine grains of 0.5 mm or less are present above the window, the formation of giant clusters becomes noticeable and operational troubles occur.

一方、2髄径以上の粗粒と、2〜0.5mmの粒径を有
する中間粒をそれぞれ10〜40重量%と15〜30重
量%の範囲内にあるように粒度分布を調整することによ
ってクラスターの生成を抑制できる。特に、中間粒は粗
粒間に存在することによって粒子接点の応力を分散させ
る機能を有し、これによってクラスターの生成を抑制す
る。したがって、粗粒と細粒の間に存在する中間粒の鉄
分品位が低ければクラスターの生成はより抑制される。
On the other hand, by adjusting the particle size distribution so that the coarse particles with a diameter of 2 or more and the intermediate particles with a particle diameter of 2 to 0.5 mm are within the ranges of 10 to 40% by weight and 15 to 30% by weight, respectively. Cluster generation can be suppressed. In particular, intermediate grains have the function of dispersing stress at grain contact points by being present between coarse grains, thereby suppressing the formation of clusters. Therefore, if the iron content of the intermediate grains existing between the coarse grains and the fine grains is low, the generation of clusters will be further suppressed.

〔実施例〕〔Example〕

第1図に鉄分品位とスティッキングの関係を示す。ここ
で、スティッキング指数とはスティッキングによって装
入原料粒度の最大径以上になった鉱石の割合を示す。T
、 Feが65重量%を越えるとスティッキングしやす
くなることがわかる。次に、第2図1ご鉱石粒子径とス
ティッキングの関係を示す。細粒はどスティッキングし
やすいことがわかる。
Figure 1 shows the relationship between iron content and sticking. Here, the sticking index indicates the proportion of ore whose diameter exceeds the maximum particle size of the charged raw material particles due to sticking. T
, it can be seen that when Fe exceeds 65% by weight, sticking tends to occur. Next, Figure 2 shows the relationship between ore particle diameter and sticking. It can be seen that fine particles are easier to stick.

中間粒の混合によるスティッキングの変化を第3図に示
す。中間粒が15〜30重量%の範囲でスティッキング
の抑制効果がある。このとき、中間粒の鉱石のT、 P
e含有量を低下させるとスティッキングの抑制効果が顕
著になる。第3図において示したAの鉱石混合割合の場
合はクラスターが生成せずに操業できる還元温度は85
0℃であった。また、Bの鉱石混合割合の場合はクラス
ターが生成せずに操業できる還元温度は900℃以上で
あった。
Figure 3 shows the change in sticking due to the mixing of intermediate grains. There is an effect of suppressing sticking when the amount of intermediate grains is in the range of 15 to 30% by weight. At this time, T, P of the intermediate grain ore
When the e content is lowered, the effect of suppressing sticking becomes more pronounced. In the case of ore mixing ratio A shown in Figure 3, the reduction temperature at which operation can be performed without cluster formation is 85.
It was 0°C. Furthermore, in the case of the ore mixing ratio B, the reduction temperature at which operation could be performed without cluster formation was 900° C. or higher.

以上のように、装入鉱石の粒度訓整によってクラスター
の生成を抑制することができる。さらに、中間粒のT、
Fe含有量を低くすることによってよりクラスターの生
成を抑制できる。
As described above, the formation of clusters can be suppressed by adjusting the particle size of the charged ore. Furthermore, T of the intermediate grain,
By lowering the Fe content, cluster formation can be further suppressed.

〔発明の効果〕〔Effect of the invention〕

本発明によって以下の効果を奏することができる。 The following effects can be achieved by the present invention.

(1)粒度分布の調整によってスティッキングの発生を
防止できることから、循環流動層の還元温度の上昇が可
能となり、ガス利用率を上げることができる。
(1) Since the occurrence of sticking can be prevented by adjusting the particle size distribution, the reduction temperature of the circulating fluidized bed can be increased, and the gas utilization rate can be increased.

(2) 循環流動層の生産性をさらに上昇できる。(2) The productivity of the circulating fluidized bed can be further increased.

(3)溶融還元法の予備還元プロセスに循環流動層を適
用すれば同一のガス量でもより予備還元率を上げること
ができるので、溶銑製造における石炭原単位を低下でき
る。
(3) If a circulating fluidized bed is applied to the pre-reduction process of the smelting reduction method, the pre-reduction rate can be increased even with the same amount of gas, so the coal consumption rate in hot metal production can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鉄分品位とスティッキングの関係を示す図、第
2図は鉱石粒子径とスティッキングの関係を示す図、第
3図は中間粒の混合によるスティッキングの変化を示す
図である。
FIG. 1 is a diagram showing the relationship between iron content and sticking, FIG. 2 is a diagram showing the relationship between ore particle size and sticking, and FIG. 3 is a diagram showing changes in sticking due to mixing of intermediate grains.

Claims (1)

【特許請求の範囲】[Claims] 1、T.Fe含有量が65重量%以下の粉鉱石を装入し
た流動層塔内に還元ガスを主要な流動性ガスとして導入
して流動還元せしめ、還元鉱石を同塔の上方から取り出
して同塔の下方に循環供給する循環流動層還元法におい
て、2mm粒径以上の粗粒が10〜40重量%、2〜0
.5mmの粒径が15〜30重量%の粒度構成を有する
粉鉱石を装入する循環流動層還元装置の操業方法。
1.T. A reducing gas is introduced as the main fluidizing gas into a fluidized bed tower charged with fine ore with an Fe content of 65% by weight or less to cause fluidized reduction, and the reduced ore is taken out from the top of the tower and sent to the bottom of the tower. In the circulating fluidized bed reduction method, the amount of coarse particles with a particle size of 2 mm or more is 10 to 40% by weight, and 2 to 0% by weight.
.. A method for operating a circulating fluidized bed reduction apparatus in which fine ore having a particle size composition of 15 to 30% by weight of 5 mm particles is charged.
JP34386289A 1989-12-26 1989-12-26 Operating method of circulating fluidized bed reduction equipment Expired - Lifetime JPH0637655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34386289A JPH0637655B2 (en) 1989-12-26 1989-12-26 Operating method of circulating fluidized bed reduction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34386289A JPH0637655B2 (en) 1989-12-26 1989-12-26 Operating method of circulating fluidized bed reduction equipment

Publications (2)

Publication Number Publication Date
JPH03197610A true JPH03197610A (en) 1991-08-29
JPH0637655B2 JPH0637655B2 (en) 1994-05-18

Family

ID=18364812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34386289A Expired - Lifetime JPH0637655B2 (en) 1989-12-26 1989-12-26 Operating method of circulating fluidized bed reduction equipment

Country Status (1)

Country Link
JP (1) JPH0637655B2 (en)

Also Published As

Publication number Publication date
JPH0637655B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
CN104531933B (en) Method for producing high-quality nickel-iron alloy by reducing laterite-nickel ore under control
CA2128605A1 (en) Method for reducing material containing metal oxide in solid phase
JPH03197610A (en) Method for operating circulating fluidized bed reduction apparatus
KR940001137B1 (en) Prereduction furnace of circulation type
EP1718775B1 (en) Pre-treatment process for feed material for direct reduction process
CA2534863A1 (en) Process and plant for reducing solids containing iron oxide
US4443250A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing materials
JPS63140006A (en) Method for charging raw material into blast furnace
US2912319A (en) Method for desulphurizing iron
JP4149080B2 (en) Method for producing raw material for iron making, raw material for iron making, and method for operating blast furnace
CN108842058A (en) A kind of processing method reducing the dry manufacturing process for returning rate of iron ore pellets and iron ore concentrate
CN108950186A (en) A kind of processing method for the manufacturing process and iron ore concentrate improving iron ore pellets yield
JPH0637656B2 (en) A method for suppressing sticking during reduction of fine ore by a circulating fluidized bed.
TWI802162B (en) Operation method of reduction furnace
JP2000226608A (en) Operation of blast furnace
JPS63103008A (en) Blast furnace operational method using high al2o3 ore
JPS62227018A (en) Production of molten metal from powdery ore
CN115652078A (en) Ore return mosaic sintering process
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JPS6280210A (en) Method for reducing fluid layer of ore
JPH09165607A (en) Operation of blast furnace
JPH08253801A (en) Method for using reduced ore in blast furnace
JPS59104410A (en) Fluidized bed type preliminary reducing furnace
JPH11241111A (en) Production of metallic iron
JPH06100909A (en) Operation of blast furnace