JPH0637656B2 - A method for suppressing sticking during reduction of fine ore by a circulating fluidized bed. - Google Patents

A method for suppressing sticking during reduction of fine ore by a circulating fluidized bed.

Info

Publication number
JPH0637656B2
JPH0637656B2 JP34386389A JP34386389A JPH0637656B2 JP H0637656 B2 JPH0637656 B2 JP H0637656B2 JP 34386389 A JP34386389 A JP 34386389A JP 34386389 A JP34386389 A JP 34386389A JP H0637656 B2 JPH0637656 B2 JP H0637656B2
Authority
JP
Japan
Prior art keywords
reduction
fluidized bed
ore
circulating fluidized
sticking during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34386389A
Other languages
Japanese (ja)
Other versions
JPH03197611A (en
Inventor
悟 鈴木
和也 国友
哲明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34386389A priority Critical patent/JPH0637656B2/en
Publication of JPH03197611A publication Critical patent/JPH03197611A/en
Publication of JPH0637656B2 publication Critical patent/JPH0637656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、循環流動層還元炉を用いて鉱石、特に鉄鉱石
を還元する場合の操業方法に関する。
TECHNICAL FIELD The present invention relates to an operating method for reducing ore, particularly iron ore, using a circulating fluidized bed reduction furnace.

〔従来の技術〕 高炉を用いた製鉄法は設備投資が大きく、原燃料面でも
良質の塊成鉱やコークスを必要とする。このため、これ
らの設備、原燃料面の制約を解消する溶融還元法が注目
されている。溶融還元法は溶融還元炉と予備還元炉との
2つの大きなプロセスによって構成されている。予備還
元炉には粒子循環装置を有する流動層、すなわち循環流
動層を応用する方法がある。かかる循環流動層還元法
は、例えば特開昭62−228878号公報に記載されているよ
うに、粉鉱石を装入し、さらにその底部から主流動ガス
である還元ガスを導入して流動層を形成するライザーを
有し、そのライザーの上方に固体−ガス分離のためのサ
イクロンを設け、さらに同サイクロンに連続してライザ
ー下部に連結したダウンカマーを設けた構造の装置にお
いて、流動層からの粉鉱石をサイクロンを経て再度流動
層に循環しつつ予備還元される。
[Prior Art] The ironmaking method using a blast furnace requires a large amount of capital investment and requires high quality agglomerated ore and coke in terms of raw fuel. Therefore, the smelting reduction method, which eliminates the restrictions on these facilities and raw fuels, has been drawing attention. The smelting reduction method is composed of two large processes, a smelting reduction furnace and a preliminary reduction furnace. In the preliminary reduction furnace, there is a method of applying a fluidized bed having a particle circulation device, that is, a circulating fluidized bed. Such a circulating fluidized bed reduction method, for example, as described in JP-A-62-228878, charged powdered ore, further introducing a reducing gas that is the main fluidized gas from the bottom of the fluidized bed. In a device having a riser to be formed, a cyclone for solid-gas separation above the riser, and a downcomer continuously connected to the cyclone at the bottom of the riser, a device from a fluidized bed The ore is pre-reduced while circulating through the cyclone to the fluidized bed again.

この循環流動層還元法においては、他の気泡流動層等に
比べてガス流速が大きいために使用する鉱石粒子の粒度
分布幅を広くできること、生産性が高いという利点があ
る。
In this circulating fluidized bed reduction method, since the gas flow velocity is higher than that of other bubbling fluidized beds and the like, there are advantages that the particle size distribution width of the ore particles used can be widened and the productivity is high.

また、粉鉱石のガス還元速度は還元温度に大きく影響さ
れ、還元温度を高くすれば還元速度が大きくなり高効率
となる。ところが、還元温度の上昇はスティッキングの
発生を招き鉱石の流動が停止し操業ができなくなるとい
う問題がある。
Further, the gas reduction rate of powdered ore is greatly affected by the reduction temperature, and if the reduction temperature is raised, the reduction rate increases and the efficiency becomes high. However, there is a problem that the increase of the reduction temperature causes sticking, the flow of the ore is stopped, and the operation cannot be performed.

このスティッキング現象は気泡流動層では「化学装置」
1986年6月号に記載されているように、還元過程におい
て鉱石表面に金属鉄の突起が生成し、焼結することによ
って粒子運動が不活発になり流動停止に至ると考えれて
いる。循環流動層においてはガス流速が大きいので流動
反応炉であるライザー内ではこの様なスティッキングは
起こらないが、還元温度を上昇させると粒子移動層であ
るダウンカマーでスティッキングする。
This sticking phenomenon is a "chemical device" in a bubbling fluidized bed.
As described in the June 1986 issue, it is considered that during the reduction process, protrusions of metallic iron are produced on the surface of the ore and the sintering causes the particle motion to become inactive and to stop the flow. In the circulating fluidized bed, since the gas flow velocity is high, such sticking does not occur in the riser, which is a fluidized reactor, but when the reduction temperature is raised, sticking is performed by the downcomer, which is the particle moving bed.

このスティッキングは還元温度を低下させれば回避でき
るが、還元温度の低下は還元反応の進行が遅くなり、生
産性、ガス原単位の悪化をもたらすという欠点がある。
This sticking can be avoided by lowering the reduction temperature, but the reduction of the reduction temperature has a drawback that the progress of the reduction reaction is slowed down, resulting in deterioration of productivity and gas basic unit.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明において解決すべき課題は、循環流動層還元法に
おいて、その生産性を下げることなく、スティッキング
の発生に伴う問題を解消して高い安定性を有する操業法
を確立することにある。
The problem to be solved in the present invention is to solve the problems associated with the occurrence of sticking in the circulating fluidized bed reduction method without lowering its productivity and to establish an operation method having high stability.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、循環流動層還元法において、装入鉄鉱石のT.
Fe量に応じて炭材を鉱石中に混合することを特徴とす
る。
The present invention is a circulating fluidized bed reduction method in which T.
It is characterized in that carbonaceous materials are mixed in the ore according to the amount of Fe.

その際の炭材の混合割合(C重量%)は、 C重量%=2.5(T.Fe−60)±5 ここで C重量%≧0,T.Feの単位は重量% として算出される量である。The mixing ratio (C% by weight) of the carbonaceous material at that time is C% by weight = 2.5 (T.Fe-60) ± 5 where C% by weight ≧ 0, the unit of T.Fe is calculated as% by weight. Is.

〔作用〕[Action]

本発明は、以下の知見に基づいて完成した。 The present invention has been completed based on the following findings.

循環流動層還元装置におけるダウンカマー内のクラスタ
ーの発生は、装入鉱石の鉄分品位(T.Fe含有量)に大き
く影響され、鉄分品位が高くなるとよりクラスターを生
成しやすくなり、T.Feが65重量%を越えると特にクラス
ターの生成が顕著になる。このため操業トラブルが発生
する。
The generation of clusters in the downcomer in the circulating fluidized bed reduction device is greatly affected by the iron content (T.Fe content) of the ore charged, and the higher the iron content, the more easily clusters are formed, and the T.Fe content increases. If it exceeds 65% by weight, the formation of clusters becomes remarkable. This causes operational troubles.

一方、この装入鉱石への炭材の混合はクラスターの生成
を抑制する効果がある。そして、鉱石中に混合される炭
材の量は上記算出式を満足したときに、その効果は大き
い。
On the other hand, the mixing of carbonaceous material into the charged ore has the effect of suppressing the formation of clusters. When the amount of carbonaceous material mixed in the ore satisfies the above calculation formula, its effect is great.

〔実施例〕〔Example〕

第1図に示す機構を有する循環流動層還元装置を用い
て、2mm以下の粒度の粉鉱石を還元した。
A circulating fluidized bed reduction apparatus having the mechanism shown in FIG. 1 was used to reduce fine ore having a particle size of 2 mm or less.

その結果を表1に示す。The results are shown in Table 1.

第1図において、1は原料供給口、2は還元ガス、3は
上昇管、4はサイクロン、5は下降移送管、6及び7は
成品取り出し口である。
In FIG. 1, 1 is a raw material supply port, 2 is a reducing gas, 3 is an ascending pipe, 4 is a cyclone, 5 is a descending transfer pipe, and 6 and 7 are product outlets.

T.Ffが57%の鉱石Aでは炭材の混合なしで高還元率まで
還元が可能で、かつガス利用率も17%と高い(NO.
1)。したがって、鉱石Aの様な鉄分品位が低い鉱石で
は炭材の混合は必要ない。鉱石BはT.Feが68%と高い
が、この場合は炭材の混合なしではスティッキングのた
めに900℃での還元はほとんど進まない(NO.2)。ステ
ィッキングを回避するために還元温度を800℃まで低下
すると還元率を上昇させることができるが、ガス利用率
の低下とこれに伴う生産性の低下をきたす。(NO.
6)。そこで炭材を混合するとつぎの様になる。すなわ
ち、炭材混合量10%ではガス利用率を高く保つことがで
きるが還元率は35%であり低い(NO.3)。炭材を20%
混合すると還元率を70%とすることが可能で、かつガス
利用率の低下も見られない(NO.4)。炭材をさらに混合し
30%とすると還元率は90%以上になるがガス利用率が低
下する(NO.5)。したがって、ガス利用率を高く保持
し、かつ還元率を高めるためには炭材混合の範囲が存在
する。また、鉱石の鉄分品位が低くなればそれに応じて
混合する炭材量を減少させることができる。
Ore A with a T.Ff of 57% can be reduced to a high reduction rate without mixing carbonaceous materials, and the gas utilization rate is as high as 17% (NO.
1). Therefore, it is not necessary to mix carbonaceous materials in an ore with a low iron grade such as ore A. Ore B has a high T.Fe content of 68%, but in this case, the reduction at 900 ° C hardly progresses without sticking carbonaceous materials due to sticking (NO.2). The reduction rate can be increased by lowering the reduction temperature to 800 ° C in order to avoid sticking, but this leads to a reduction in gas utilization rate and a consequent reduction in productivity. (NO.
6). Then, when the carbonaceous material is mixed, it becomes as follows. In other words, when the carbonaceous material content is 10%, the gas utilization rate can be kept high, but the reduction rate is low at 35% (NO.3). 20% carbonaceous material
When mixed, the reduction rate can be 70% and no reduction in gas utilization rate is observed (NO.4). Further mix the carbonaceous material
At 30%, the reduction rate will be over 90%, but the gas utilization rate will decrease (NO.5). Therefore, in order to keep the gas utilization rate high and increase the reduction rate, there is a range of carbonaceous material mixing. Further, if the iron content of the ore becomes lower, the amount of carbonaceous material to be mixed can be reduced accordingly.

〔発明の効果〕〔The invention's effect〕

本発明によって以下の効果を奏することができる。 The following effects can be achieved by the present invention.

(1) 粒度分布の調整によってスティッキングの発生を
防止できることから、循環流動層の還元温度の上昇が可
能となり、ガス利用率をあげることができる。
(1) Since the occurrence of sticking can be prevented by adjusting the particle size distribution, the reduction temperature of the circulating fluidized bed can be increased and the gas utilization rate can be increased.

(2) 循環流動層の生産性をさらに上昇できる。(2) The productivity of the circulating fluidized bed can be further increased.

(3) 溶融還元法の予備還元プロセスに循環流動層を適
用すれば同一のガス量でもより予備還元率を上げること
ができるので、溶銑製造における石炭原単位を低下でき
る。
(3) If the circulating fluidized bed is applied to the preliminary reduction process of the smelting reduction method, the preliminary reduction rate can be further increased even with the same gas amount, so that the coal basic unit in hot metal production can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は循環流動層還元装置を示す図である。 1:原料供給口、2:還元ガス 3:上昇管、4:サイクロン 5:下降移送管、6,7:成品取り出し口 FIG. 1 is a diagram showing a circulating fluidized bed reduction apparatus. 1: Raw material supply port, 2: Reduction gas 3: Ascending pipe, 4: Cyclone 5: Descent transfer pipe, 6, 7: Product outlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】装入鉄鉱石のT.Fe量に応じて炭材を鉱石中
に混合する循環流動層による粉鉱石還元時のスティッキ
ング抑制方法であって、前記炭材の鉱石及び炭材に対す
る混合割合(C重量%)を、次式 C重量%=2.5(T.Fe−60)±5 ここで C重量%≧0,T.Feの単位は重量% によって算出される量混合する循環流動層による粉鉱石
還元時のスティッキング抑制方法。
1. A method for suppressing sticking during powder ore reduction by a circulating fluidized bed in which a carbonaceous material is mixed into the ore according to the amount of T.Fe in the charged iron ore, wherein the carbonaceous material is the ore and the carbonaceous material. The mixing ratio (C wt%) is calculated by the following formula C wt% = 2.5 (T.Fe-60) ± 5 where C wt% ≧ 0, the unit of T.Fe is the amount calculated by wt%. Method for suppressing sticking during reduction of fine ore by bed.
JP34386389A 1989-12-26 1989-12-26 A method for suppressing sticking during reduction of fine ore by a circulating fluidized bed. Expired - Lifetime JPH0637656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34386389A JPH0637656B2 (en) 1989-12-26 1989-12-26 A method for suppressing sticking during reduction of fine ore by a circulating fluidized bed.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34386389A JPH0637656B2 (en) 1989-12-26 1989-12-26 A method for suppressing sticking during reduction of fine ore by a circulating fluidized bed.

Publications (2)

Publication Number Publication Date
JPH03197611A JPH03197611A (en) 1991-08-29
JPH0637656B2 true JPH0637656B2 (en) 1994-05-18

Family

ID=18364820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34386389A Expired - Lifetime JPH0637656B2 (en) 1989-12-26 1989-12-26 A method for suppressing sticking during reduction of fine ore by a circulating fluidized bed.

Country Status (1)

Country Link
JP (1) JPH0637656B2 (en)

Also Published As

Publication number Publication date
JPH03197611A (en) 1991-08-29

Similar Documents

Publication Publication Date Title
JP5000486B2 (en) Direct reduction method and apparatus
JPH02156009A (en) Manufacture of steel from finely divided ore
GB2068769A (en) Method and apparatus for reducing an iron oxide material in a fluidized bed
JPS6169910A (en) Fluidized bed reducing method of iron ore
US4412858A (en) Method of converting iron ore into molten iron
CA2128605A1 (en) Method for reducing material containing metal oxide in solid phase
JPH0637656B2 (en) A method for suppressing sticking during reduction of fine ore by a circulating fluidized bed.
JPH0637655B2 (en) Operating method of circulating fluidized bed reduction equipment
JPH0699734B2 (en) Circulating fluidized bed type pre-reduction furnace for fine iron ore
US4443250A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing materials
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JP3874320B2 (en) Fluidized reduction method of high crystal water powder iron ore
WO1998038129A1 (en) Production method of iron carbide
JPS62230912A (en) Vertical type fluidized reduction method
JPH06145749A (en) Method for reducing ore by circulating fluidized bed
CN207699619U (en) The system containing Iron Ore Powder of processing
JPS61284510A (en) Production of molten metal
JPS6280210A (en) Method for reducing fluid layer of ore
JPS59104410A (en) Fluidized bed type preliminary reducing furnace
JPH03294410A (en) Device for blowing gas in circulating fluidized bed reduction apparatus
JPH0637662B2 (en) Fluidized bed pre-reduction method for powdered ore
JPS6044366B2 (en) How to operate a fluidized bed pre-reduction furnace
JPS6056991B2 (en) Fluidized bed pre-reduction furnace with internal
JPH0788523B2 (en) Operating method of circulating fluidized bed reduction equipment
JPH04314832A (en) Method for reducing pulverized ore by circulating fluidized bed