JPH11241111A - Production of metallic iron - Google Patents
Production of metallic ironInfo
- Publication number
- JPH11241111A JPH11241111A JP4820098A JP4820098A JPH11241111A JP H11241111 A JPH11241111 A JP H11241111A JP 4820098 A JP4820098 A JP 4820098A JP 4820098 A JP4820098 A JP 4820098A JP H11241111 A JPH11241111 A JP H11241111A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- iron oxide
- amount
- metallic iron
- reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鉄鉱石等の酸化鉄
を炭材等の炭素質還元剤と共に加熱還元して金属鉄を得
る技術の改良に関し、特に、鉄鉱石等の酸化鉄を炭材な
どの炭素質還元剤と共に加熱して還元し金属鉄を得る際
に、必要最小限の炭素質還元剤で酸化鉄を金属鉄にまで
効率よく還元すると共に、鉄鉱石などの酸化鉄源中に脈
石成分等として混入してくるスラグ成分をうまく溶融分
離し、高純度の金属鉄を効率よく製造することのできる
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a technique for obtaining metallic iron by heating and reducing iron oxide such as iron ore together with a carbonaceous reducing agent such as carbonaceous material, and more particularly, to improving iron oxide such as iron ore. When iron is obtained by heating together with a carbonaceous reducing agent such as material to obtain metallic iron, iron oxide is efficiently reduced to metallic iron with the minimum necessary amount of carbonaceous reducing agent. The present invention relates to a method capable of efficiently melting and separating a slag component mixed as a gangue component and the like to efficiently produce high-purity metallic iron.
【0002】[0002]
【従来の技術】鉄鉱石や酸化鉄ペレット等の酸化鉄を炭
材等の炭素質還元剤や還元性ガスにより直接還元して還
元鉄を得る直接製鉄法としては、従来よりミドレックス
法に代表されるシャフト炉法が知られている。この種の
直接製鉄法は、天然ガス等から製造される還元ガスをシ
ャフト炉下部の羽口より吹き込み、その還元力を利用し
酸化鉄を還元して還元鉄を得る方法である。また最近で
は、天然ガスに代わる還元剤として石炭等の炭材を使用
する還元鉄製造プロセスが注目されており、具体的に
は、鉄鉱石等の焼成ペレットを石炭粉と共にロータリー
キルンで加熱還元する、所謂SL/RN法がすでに実用
化されている。2. Description of the Related Art As a direct iron production method for obtaining reduced iron by directly reducing iron oxide such as iron ore and iron oxide pellets with a carbonaceous reducing agent such as carbonaceous material or a reducing gas, the Midrex method has conventionally been represented. A known shaft furnace method is known. This type of direct iron making method is a method in which a reducing gas produced from natural gas or the like is blown from a tuyere at a lower portion of a shaft furnace, and iron oxide is reduced using the reducing power to obtain reduced iron. Recently, a reduced iron production process using a coal material such as coal as a reducing agent in place of natural gas has been attracting attention.Specifically, calcined pellets such as iron ore are reduced by heating in a rotary kiln together with coal powder, The so-called SL / RN method has already been put to practical use.
【0003】また他の還元鉄製造法として米国特許第
3,443,931号公報には、炭材と粉状酸化鉄を混
合して塊状化し、ロータリーハース上で加熱還元して還
元鉄を製造するプロセスが開示されている。このプロセ
スは、粉鉱石と粉炭を混合して塊状化し、これを高温雰
囲気下で加熱還元するものである。As another method for producing reduced iron, US Pat. No. 3,443,931 discloses a method in which a carbon material and powdered iron oxide are mixed to form a lump and reduced by heating on a rotary hearth to produce reduced iron. A process is disclosed. In this process, fine ore and fine coal are mixed and agglomerated, and this is heated and reduced in a high-temperature atmosphere.
【0004】これらの方法で製造された還元鉄は、その
まま或はブリケット状等に成形してから電気炉へ装入
し、鉄源として用いられる。近年、鉄スクラップのリサ
イクルが活発化するにつれて、上記方法によって得られ
る還元鉄はスクラップ中に混入してくる不純物元素の希
釈材として注目されている。[0004] The reduced iron produced by these methods is used as an iron source as it is or after being shaped into a briquette or the like, and then charged into an electric furnace. In recent years, as the recycling of iron scrap has become more active, reduced iron obtained by the above method has attracted attention as a diluent for impurity elements mixed into the scrap.
【0005】ところが従来の還元製鉄法によって得られ
る還元鉄には、原料として用いた酸化鉄(鉄鉱石など)
や炭材(石炭など)に含まれるSiO2 、Al2 O3 、
CaO等のスラグ成分がそのまま混入してくるため、製
品の鉄品位(金属鉄としての純度)は低くなる。実用に
当たっては、次の精錬工程でこれらのスラグ成分は分離
除去されるが、スラグ量の増加は精錬溶湯の歩留りを低
下させるばかりでなく電気炉の操業コストにも大きな影
響を及ぼすので、鉄品位が高くスラグ成分含有量の少な
い還元鉄が求められているが、前述の如き従来の還元鉄
の製法でこうした要求に応えるには、還元鉄製造原料と
して鉄品位の高い鉄鉱石を使用しなければならず、実用
可能な製鉄原料の選択の幅を大幅に狭めることになる。[0005] However, the reduced iron obtained by the conventional reduction iron making method includes iron oxide (such as iron ore) used as a raw material.
SiO 2, Al 2 O 3 contained in or carbonaceous material (such as coal),
Since the slag component such as CaO is directly mixed, the iron quality (purity as metallic iron) of the product is lowered. In practical use, these slag components are separated and removed in the next smelting process. In order to meet such demands with the conventional method of producing reduced iron as described above, it is necessary to use high-grade iron ore as a raw material for producing reduced iron. Rather, the range of choice of practicable iron-making raw materials is greatly reduced.
【0006】他方、酸化鉄を直接還元して還元鉄を得る
方法としてDIOS法等の溶融還元法も知られている。
この方法は、酸化鉄を予め鉄純度で30〜50%程度に
まで予備還元しておき、その後、鉄浴中で炭素と直接還
元反応させることによって金属鉄にまで還元を行う方法
であるが、この方法は予備還元と鉄浴中での最終還元の
2工程が必須になるため作業が煩雑であるばかりでなく
で、鉄浴中に存在する溶融酸化鉄(FeO)と耐火物が
直接接触するため、耐火物の損耗が激しいという問題も
指摘される。On the other hand, as a method of directly reducing iron oxide to obtain reduced iron, a smelting reduction method such as a DIOS method is also known.
In this method, iron oxide is preliminarily reduced to an iron purity of about 30 to 50%, and then reduced to metallic iron by direct reduction reaction with carbon in an iron bath. In this method, two steps of pre-reduction and final reduction in an iron bath are indispensable, so that not only the operation is complicated, but also the molten iron oxide (FeO) present in the iron bath comes into direct contact with the refractory. Therefore, a problem that refractory wear is severe is pointed out.
【0007】更に特公昭56−19366号公報には、
金属酸化物と固体炭素質材料およびスラグ形成材を含む
集塊物を加熱・還元し、該集塊物の形状を保ちながら、
還元により生成した金属鉄をスラグシェルで包む様な状
態を形成し、その後スラグシェルを溶融させて金属鉄と
スラグを分離する方法を開示している。ところがこの方
法では、還元により生成した金属の再酸化を阻止するた
め、該金属を完全に包み込むに足る量のスラグを生成さ
せなければならず、スラグ形成材の配合量が不足すると
金属の包み込みが不十分となって金属の再酸化が避けら
れなくなる。しかも加熱還元条件によってはFeO濃度
の高いスラグが生成し、設備の内張り耐火物を著しく損
傷するという、実用化する上で大きな問題も生じてく
る。Further, Japanese Patent Publication No. 56-19366 discloses that
Heating and reducing the agglomerate containing the metal oxide and the solid carbonaceous material and the slag forming material, while maintaining the shape of the agglomerate,
It discloses a method of forming a state in which metallic iron generated by reduction is wrapped in a slag shell and then melting the slag shell to separate metallic iron and slag. However, in this method, in order to prevent re-oxidation of the metal generated by the reduction, it is necessary to generate slag in an amount sufficient to completely enclose the metal. It becomes insufficient and reoxidation of the metal becomes unavoidable. In addition, depending on the heating and reducing conditions, a slag having a high FeO concentration is generated, which significantly damages the refractory lining of the equipment, which poses a serious problem in practical use.
【0008】上記の様に、スラグ成分含有量の少ない金
属鉄を製造する方法の実現は、製品金属鉄としての付加
価値を高めるばかりでなく、電気炉を用いた製鉄コスト
の低減、更には金属鉄製造における使用原料の選択の柔
軟性という観点から極めて重要になってくる。また、加
熱・還元により副生するスラグ中の酸化鉄含有量を極力
少なくし、耐火物の溶損を抑えることは、この種の製鉄
法を工業的規模で実現可能にする上で極めて重要とな
る。[0008] As described above, the realization of a method of producing metallic iron having a small slag component content not only increases the added value of the product metallic iron, but also reduces the cost of iron making using an electric furnace and further reduces the metallurgy. This becomes extremely important from the viewpoint of flexibility in selecting raw materials used in iron production. In addition, minimizing the iron oxide content in the slag by-produced by heating and reduction and suppressing the erosion of refractories is extremely important in making this type of ironmaking process feasible on an industrial scale. Become.
【0009】本発明者らはこうした状況に着目し、鉄成
分含有量の高い酸化鉄はもとより鉄成分含有量の比較的
低い鉄鉱石等からでも、耐火物の溶損などを生じること
なく鉄純度の極めて高い金属鉄を、簡単な処理で効率よ
く得ることのできる技術の開発を期してかねてより研究
を進めており、その研究成果として下記の方法を開発
し、先に特開平9−256017号として提案した。The present inventors have paid attention to such a situation, and have found that iron purities can be obtained from iron oxide having a high iron content as well as iron ore having a relatively low iron content without causing erosion of refractories or the like. Research has been conducted in advance of the development of a technology capable of efficiently obtaining metal iron having a very high efficiency by a simple treatment. As a result of the research, the following method has been developed, and the method described in JP-A-9-256017 has been described. As suggested.
【0010】この発明は、炭素質還元剤が存在する酸化
鉄の成形体を加熱還元して金属鉄を製造する際に、 加熱還元により金属鉄外皮を生成且つ成長させ、内部
には酸化鉄が実質的に存在しなくなるまで還元を進める
と共に、内部に生成スラグの凝集物を形成し、 加熱還元により金属鉄外皮を生成且つ成長させ、内部
に酸化鉄が実質的に存在しなくなるまで還元を進め、更
に加熱を続けて内部に生成するスラグを金属鉄外皮の外
側へ流出させ、 加熱還元により金属鉄外皮を生成且つ成長させ、内部
には酸化鉄が実質的に存在しなくなるまで還元を進め、
更に加熱を続けて金属鉄とスラグを溶融分離し、あるい
は 加熱還元により金属鉄外皮を生成且つ成長させ、内部
には酸化鉄が実質的に存在しなくなるまで還元を進める
と共に、内部に生成スラグの凝集物を形成させ、次いで
生成スラグを金属鉄から分離するところに特徴を有して
いる。According to the present invention, when producing a metallic iron by heating and reducing an iron oxide molded body in which a carbonaceous reducing agent is present, a metallic iron outer skin is generated and grown by the thermal reduction, and the iron oxide is contained inside. Reduction is promoted until substantially no longer present, and agglomerates of generated slag are formed inside, and metallic iron skin is generated and grown by heat reduction, and reduction is progressed until substantially no iron oxide is present inside , Further heating is continued to cause the slag generated inside to flow out of the metal iron shell, to generate and grow the metal iron shell by heat reduction, and to proceed with reduction until iron oxide is substantially absent inside,
Further heating is continued to melt and separate the metallic iron and the slag, or the metallic iron outer skin is generated and grown by heat reduction, and the reduction is advanced until there is substantially no iron oxide inside, and the generated slag is formed inside. It is characterized in that agglomerates are formed and then the resulting slag is separated from the metallic iron.
【0011】上記の方法を実施するに当たっては、金
属鉄外皮の一部を溶融させることによって、内部の溶融
スラグを金属鉄外皮外へ流出させればよく、この際、あ
るいは前記の方法を実施するに当たり、金属鉄外皮の
一部もしくは全部を溶融させるには、金属外皮内に存在
する炭素質還元剤を金属鉄に溶解(固溶)させること
(この現象を”浸炭”ということもある)によって当該
金属外皮の融点を降下させればよい。[0011] In carrying out the above method, the molten slag in the inside may be caused to flow out of the metal iron shell by melting a part of the metal iron shell. In this case, the above method is carried out. In order to melt part or all of the metallic iron shell, the carbonaceous reducing agent present in the metal shell is dissolved (solid-solved) in metallic iron (this phenomenon is sometimes called "carburization"). What is necessary is just to lower the melting point of the metal sheath.
【0012】尚上記公開発明において、「金属鉄外皮内
部に酸化鉄が実質的に存在しなくなるまで還元を進め
る」ことの好ましい定量的基準は、加熱還元工程で、
「FeOを主体とする酸化鉄の含有率が5重量%以下、
より好ましくは2重量%以下となるまで還元を進めるこ
と」であり、また別の観点からすると、還元反応によっ
て生成する金属鉄から分離される生成スラグ中のFeO
を主体とする酸化鉄の含有量が、5重量%以下、より好
ましくは2重量%以下となるまで還元を進めることが望
ましい。In the above disclosed invention, the preferable quantitative criterion for “promoting reduction until iron oxide substantially does not exist inside the metallic iron shell” is a heat reduction step,
"The content of iron oxide mainly composed of FeO is 5% by weight or less,
More preferably, the reduction is promoted to 2% by weight or less. "From another viewpoint, FeO in the produced slag separated from the metallic iron produced by the reduction reaction is considered.
It is desirable to carry out the reduction until the content of iron oxide mainly composed of 5% by weight or less, more preferably 2% by weight or less.
【0013】そして、この方法によって得られる高純度
の金属鉄および生成スラグは、加熱溶融した状態で比重
差により分離し、あるいは冷却固化してから磁選等によ
り分離すると、金属化率で95%程度以上、更には98
%以上といった非常に高純度の金属鉄を得ることがで
き、しかもこの公開発明によれば、生成スラグ中の酸化
鉄含有量を可及的に少なくすることができるので、酸化
鉄に起因する処理炉耐火物の溶損も起こらず、設備保全
の観点からしても極めて実用性の高い技術として、その
実用化が期待される。The high-purity metallic iron and produced slag obtained by this method are separated by a specific gravity difference in a heated and molten state, or are separated by cooling and then solidified by magnetic separation or the like. More than 98
% Or more, it is possible to obtain highly pure metallic iron, and according to the disclosed invention, the iron oxide content in the produced slag can be reduced as much as possible. Practical use of this technology is expected as a technology with extremely high practicality from the viewpoint of facility maintenance, without causing furnace refractory erosion.
【0014】[0014]
【発明が解決しようとする課題】本発明者らは上記公開
発明の基本的な技術思想を活用し、これを工業的規模で
より経済的に効率よく実現可能にすべく、特に酸化鉄の
還元に用いられる炭素質還元剤の消費量低減と消費熱量
の低減を期して更に研究を進めてきた。DISCLOSURE OF THE INVENTION The present inventors have utilized the basic technical concept of the above-mentioned disclosed invention, and in order to make it more economically and efficiently realizable on an industrial scale, in particular, reduction of iron oxide. In order to reduce the consumption of the carbonaceous reducing agent and the amount of heat consumed, further research has been conducted.
【0015】即ち上記公開発明では、前述の如く炭素質
還元剤が存在する酸化鉄の成形体を加熱還元し、該成形
体の周りに金属鉄外皮を生成且つ成長させて、内部には
酸化鉄が実質的に存在しなくなるまで還元を進めると共
に、内部に生成スラグを凝集分離することを基本とする
直接還元製鉄法であり、該還元を効率よく進めるには、
成形体中に含まれる被還元成分である酸化鉄に対して過
剰量の炭素質還元剤を使用しなければならず、また生成
する金属鉄を生成スラグから効率よく分離するには、該
金属鉄への炭素の固溶量(浸炭量)を増やすことによっ
て金属鉄の融点を低下させることが有効となる。That is, in the disclosed invention, as described above, the iron oxide compact in which the carbonaceous reducing agent is present is reduced by heating, and a metallic iron shell is formed and grown around the compact, and the iron oxide is formed inside. Is a direct reduction steelmaking method based on coagulation and separation of the generated slag inside while reducing substantially no longer exists.
It is necessary to use an excessive amount of a carbonaceous reducing agent with respect to the iron oxide which is a component to be reduced contained in the compact, and in order to efficiently separate the produced metallic iron from the produced slag, the metallic iron It is effective to decrease the melting point of metallic iron by increasing the amount of solid solution of carbon (the amount of carburizing) into the iron.
【0016】こうした理由もあって、上記公開発明で
は、原料酸化鉄に対し炭素質還元剤を理論当量を超えて
かなり過剰に使用している。ところがこの公開発明を工
業規模で実用化する際に、原料中の炭素質還元剤が占め
るコスト比率はかなり高く、該炭素質還元剤の消費量を
必要最小限に抑えることは、この方法の工業化を実現す
るうえで極めて重要となる。また、この加熱還元には多
大な熱エネルギーを必要とするので、該熱エネルギーを
必要最小限に抑えることも極めて重要となる。For these reasons, in the above-mentioned disclosed invention, the carbonaceous reducing agent is used in an excessive amount exceeding the theoretical equivalent with respect to the raw material iron oxide. However, when the disclosed invention is put to practical use on an industrial scale, the cost ratio occupied by the carbonaceous reducing agent in the raw material is quite high, and minimizing the consumption of the carbonaceous reducing agent is necessary for industrialization of this method. It is extremely important in realizing. Further, since a large amount of heat energy is required for this heat reduction, it is extremely important to minimize the heat energy.
【0017】本発明はこうした事情に着目してなされた
ものであって、その目的は、炭素質還元剤と酸化鉄を含
む成形体を加熱還元して金属鉄を製造する際に、炭素質
還元剤の消費量と加熱還元に要する熱エネルギーを必要
最小限に抑え、酸化鉄の還元を実用規模でより低コスト
で効率よく遂行することのできる方法を確立しようとす
るものである。The present invention has been made in view of such circumstances, and an object of the present invention is to reduce the carbonaceous material when producing a metallic iron by heating and reducing a compact containing a carbonaceous reducing agent and iron oxide. It is an object of the present invention to establish a method capable of minimizing the consumption of the agent and the heat energy required for heat reduction, and performing iron oxide reduction efficiently at lower cost on a practical scale.
【0018】[0018]
【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る金属鉄の製法は、炭素質還元剤と
酸化鉄を含む成形体を加熱還元して金属鉄を製造する方
法において、前記成形体中の有効炭素量を、該成形体中
の酸化鉄を還元するのに必要な化学量論量CAに対し、
CA 〜{CA +[(0.043)/(1−0.04
3)]×T.Fe}[式中、T.Feは酸化鉄中の全F
e含有率(重量%)を表わす]の範囲に調整すると共
に、加熱還元温度を、前記過剰量の有効炭素が全量金属
鉄に固溶したと仮定した時のFe−C系状態図における
液相線温度TA 〜(TA +50)℃の温度範囲、もしく
は1350〜1400℃の温度範囲のうち高い方の温度
範囲内に制御するところに特徴を有している。Means for Solving the Problems The method for producing metallic iron according to the present invention, which can solve the above-mentioned problems, relates to a method for producing metallic iron by heating and reducing a compact containing a carbonaceous reducing agent and iron oxide. , The effective carbon amount in the molded body, the stoichiometric amount C A required to reduce the iron oxide in the molded body,
C A to ΔC A + [(0.043) / (1−0.04
3)] × T. Fe} [where T. Fe is all F in iron oxide
e content (% by weight)], and the heat reduction temperature is set to the liquid phase in the Fe-C phase diagram when it is assumed that the excess amount of available carbon is completely dissolved in metallic iron. It is characterized in that the temperature is controlled within the temperature range of the linear temperature T A to (T A +50) ° C. or the higher temperature range of 1350 to 1400 ° C.
【0019】また上記本発明を別の観点から見ると、上
記加熱還元温度を、前記有効炭素量がCA 〜{CA +
[(0.024)/(1−0.024)]×T.Fe}
であるときは、前記化学量論量を超える有効炭素が全量
金属鉄に固溶したと仮定した時のFe−C系状態図にお
ける液相線温度TA 〜(TA +50)℃の温度範囲内
に、また前記有効炭素量が{CA +[(0.024)/
(1−0.024)]×T.Fe}超、{CA +
[(0.043)/(1−0.043)]×T.Fe}
以下であるときは、1350〜1400℃の温度範囲内
に制御する方法として位置付けることもできる。Further, when the present invention is viewed from another viewpoint, the above-mentioned heat reduction temperature is adjusted so that the effective carbon amount is C A to ΔC A +
[(0.024) / (1-0.024)] × T. Fe}
When it is assumed that the effective carbon exceeding the stoichiometric amount is completely dissolved in the metallic iron, the temperature range of the liquidus temperature T A to (T A +50) ° C. in the Fe—C system diagram. And the effective carbon amount is ΔC A + [(0.024) /
(1-0.024)] × T. Fe}, ΔC A +
[(0.043) / (1-0.043)] × T. Fe}
When it is below, it can be positioned as a method of controlling within a temperature range of 1350 to 1400 ° C.
【0020】[0020]
【発明の実施の形態】上記の様に本発明では、炭素質還
元剤(以下、炭材ということもある)が存在する酸化鉄
(以下、鉄鉱石ということもある)の成形体を加熱還元
して金属鉄を製造する際に、成形体中の炭材量を必要最
小限に抑えると共に、加熱還元時の温度を可及的に低く
することによって消費熱エネルギーの低減を可能にした
ものであり、以下、本発明で定める前記炭材量や加熱温
度を定めた理由を詳細に説明していく。BEST MODE FOR CARRYING OUT THE INVENTION As described above, in the present invention, a formed body of iron oxide (hereinafter, also referred to as iron ore) in which a carbonaceous reducing agent (hereinafter, also referred to as carbon material) is present is reduced by heating. In the production of metallic iron, the amount of carbon material in the compact is kept to a minimum and the temperature at the time of heat reduction is reduced as much as possible to reduce heat energy consumption. In the following, the reason why the carbon material amount and the heating temperature determined in the present invention are determined will be described in detail.
【0021】炭材と酸化鉄を含む成形体を加熱すると、
下記反応式によって還元反応が進行し還元鉄(金属鉄)
が生成する。 FeOx + xC → Fe + xCO……(1) FeOx + (x/2)CO → Fe + (x/2) CO2 ……(2) Y=y1 +y2 ……(3) 但し、Y:還元に必要なCの化学当量(mol) y1 :(1)式の反応に必要な炭素量(mol) y2 :(2)式の反応に必要な炭素量(mol)When a molded body containing carbon material and iron oxide is heated,
The reduction reaction proceeds according to the following reaction formula and reduced iron (metallic iron)
Is generated. FeO x + xC → Fe + xCO (1) FeO x + (x / 2) CO → Fe + (x / 2) CO 2 (2) Y = y 1 + y 2 (3) Y: chemical equivalent (mol) of C required for reduction y 1 : carbon amount (mol) required for the reaction of formula (1) y 2 : carbon amount (mol) required for the reaction of formula (2)
【0022】従って、加熱還元の原料となる炭材と酸化
鉄を含む成形体を製造する際の酸化鉄に対する炭材の配
合比率は、上記(3)式で示される理論当量以上に設定
しなければならない。一方、理論当量を超えて配合され
た炭材中の過剰Cは、還元により生成した金属鉄に固溶
し、図1のFe−C状態図に示す如く金属鉄の融点を低
下させる。そして、Cが固溶した金属鉄の融点よりも加
熱温度が高くなると、該金属鉄は溶融し、生成スラグと
の分離が進行する。Accordingly, the mixing ratio of the carbon material to the iron oxide in the production of a molded article containing the carbon material as the raw material for heat reduction and the iron oxide must be set to be equal to or more than the theoretical equivalent shown by the above formula (3). Must. On the other hand, excess C in the carbonaceous material blended in excess of the theoretical equivalent dissolves in the metallic iron generated by the reduction, and lowers the melting point of the metallic iron as shown in the Fe-C phase diagram of FIG. Then, when the heating temperature is higher than the melting point of the metallic iron in which C is dissolved, the metallic iron is melted and the separation from the produced slag proceeds.
【0023】即ち上記成形体中に配合される炭材の配合
量は、酸化鉄の還元に要する理論当量以上とすべきであ
ることは当然として、それを超える過剰量は生成する金
属鉄への固溶による融点の低下、延ては生成スラグとの
分離を効率よく進めるための加熱温度にも大きくかかわ
ってくる。そこでこうした知見を基に、酸化鉄の還元と
金属鉄へのCの固溶(それに伴う融点降下)に最も無駄
のない最適炭材配合量と加熱温度を明らかにすべく研究
を進めてきた。That is, it is natural that the amount of the carbon material blended in the above-mentioned molded body should be equal to or more than the theoretical equivalent required for the reduction of iron oxide. This is greatly affected by the lowering of the melting point due to the solid solution and, in turn, the heating temperature for efficiently promoting the separation from the formed slag. Therefore, based on these findings, research has been conducted to clarify the optimum amount of carbon material and the heating temperature at which the reduction of iron oxide and the solid solution of C in metallic iron (and the resulting decrease in melting point) are most efficient.
【0024】その結果まず炭材量については、炭材中に
含まれる有効炭素量基準で、酸化鉄の還元に要する化学
量論量CA 以上で且つ{CA +[(0.043)/(1
−0.043)]×T.Fe}以下に抑えるのが最も効
果的であることを確認した。ここで炭材中の有効炭素量
とは、酸化鉄の還元と金属鉄の浸炭に有効に消費される
炭素分を意味しており、即ち、酸化鉄と混合して成形体
を製造する際の加熱乾燥工程、あるいは加熱還元のため
の昇温工程で還元反応が開始する温度に至るまでの間に
炭化水素ガスなどとして揮発する炭素分を除いた炭素分
を意味する。As a result, first, the amount of the carbon material is equal to or more than the stoichiometric amount C A required for the reduction of the iron oxide and ΔC A + [(0.043) /, based on the effective carbon amount contained in the carbon material. (1
−0.043)] × T. It has been confirmed that it is most effective to keep Fe} or less. Here, the effective carbon amount in the carbonaceous material means a carbon content that is effectively consumed for reduction of iron oxide and carburization of metallic iron, that is, when mixed with iron oxide to produce a molded body. It means the carbon content excluding the carbon content volatilized as hydrocarbon gas or the like until the temperature reaches the temperature at which the reduction reaction starts in the heating drying step or the temperature raising step for heat reduction.
【0025】そして、炭材中の有効炭素量が上記化学量
論量CA 未満では、炭素量不足になって全酸化鉄の還元
を完結させることができず、また生成した金属鉄へのC
の固溶による融点降下による加熱温度の低減効果も期待
できなくなる。そして上記化学量論量CA を超える過剰
分の有効炭素は、図1にも示した様に、生成する金属鉄
に固溶してその融点を降下させ、結果として、より低温
でのスラグ分離を可能とするが、こうした浸炭(Cの固
溶)による金属鉄の融点降下は{CA +[(0.04
3)/(1−0.043)]×T.Fe}で下限とな
り、それ以上にC固溶量が増大すると融点は上昇してく
る。即ち、{CA +[(0.043)/(1−0.04
3)]×T.Fe}を超える過剰量の有効炭素は、酸化
鉄の加熱還元には無駄であるばかりでなく、生成する金
属鉄の融点降下とそれに伴う加熱温度の低下には却って
マイナスとなり、更には後述する如く成形体の圧潰強度
も低下して加熱還元時に崩壊し易くなる傾向も生じてく
るので、有効炭素量の上限は{CA +[(0.043)
/(1−0.043)]×T.Fe}と定めた。If the effective carbon content in the carbon material is less than the above stoichiometric amount C A , the carbon content becomes insufficient and the reduction of all iron oxides cannot be completed.
The effect of lowering the heating temperature due to the melting point drop due to the solid solution cannot be expected. Then, as shown in FIG. 1, the excess available carbon exceeding the stoichiometric amount C A dissolves in the formed metallic iron and lowers its melting point. As a result, the slag separation at a lower temperature occurs. However, the melting point drop of metallic iron due to such carburization (solid solution of C) is ΔC A + [(0.04
3) / (1-0.043)] × T. The lower limit is at Fe}, and the melting point rises when the amount of C solid solution further increases. That is, ΔC A + [(0.043) / (1−0.04
3)] × T. An excess amount of available carbon exceeding Fe} is not only wasted in the heat reduction of iron oxide, but also becomes negative in decreasing the melting point of the produced metallic iron and the accompanying decrease in the heating temperature. Since the crushing strength of the molded article also decreases and tends to collapse during heat reduction, the upper limit of the effective carbon amount is ΔC A + [(0.043)
/(1−0.043)]×T. Fe}.
【0026】一方加熱還元温度については、前記過剰量
の有効炭素が全量金属鉄に固溶したと仮定した時のFe
−C系状態図における液相線温度TA 〜(TA +50)
℃の温度範囲、もしくは1350〜1400℃の温度範
囲のうち高い方の温度範囲に制御することが必要とな
る。即ち加熱温度の下限は、第1の要件として、前記過
剰量の有効炭素が全量金属鉄に固溶したと仮定した時の
Fe−C系状態図における液相線温度TA 以上としなけ
ればならず、該加熱温度が上記液相線温度TA 未満で
は、Cが固溶した金属鉄が溶融しないため生成スラグと
の分離が進行し得なくなる。但し、加熱温度がたとえ前
記液相線温度TA 以上であっても、該加熱温度が135
0℃未満の低温域では過剰炭素の固溶速度が著しく低下
し、本発明で一応の目標還元時間とする「20分以下」
では金属鉄の融点が1350℃以下にまで下がらず、生
成スラグとの分離が進行し得なくなる。On the other hand, with respect to the heat reduction temperature, assuming that the excess amount of available carbon was completely dissolved in metallic iron,
Liquidus temperature T A ~ in -C phase diagram (T A +50)
It is necessary to control the temperature to the higher of the temperature range of 1 ° C or the temperature range of 1350 to 1400 ° C. That lower limit of the heating temperature, as a first requirement, the effective carbon of the excess amount is to be taken as the liquidus temperature T A more in Fe-C phase diagram when it is assumed that a solid solution to the total amount of metallic iron On the other hand, if the heating temperature is lower than the liquidus temperature T A , the metallic iron in which C forms a solid solution does not melt, so that separation from the generated slag cannot proceed. However, even if the heating temperature is equal to or higher than the liquidus temperature T A , the heating temperature is 135
In a low-temperature range of less than 0 ° C., the solid solution rate of excess carbon is remarkably reduced.
In this case, the melting point of metallic iron does not drop to 1350 ° C. or lower, and the separation from the produced slag cannot proceed.
【0027】この様な理由から、加熱温度の下限は、上
記「液相線温度TA または1350℃」の高い方の温度
とすべきであるが、加熱温度を過度に高めることは熱エ
ネルギー消費量の増大につながり、無為にランニングコ
ストの増大を招くだけであるので、実操業への適用を考
慮して好ましい加熱温度の上限は「(TA +50)℃ま
たは1400℃」の高い方の温度と定めている。For such a reason, the lower limit of the heating temperature should be the higher one of the above-mentioned "liquidus temperature T A or 1350 ° C". In consideration of application to actual operation, the upper limit of the preferable heating temperature is the higher temperature of “(T A +50) ° C. or 1400 ° C.”, since this leads to an increase in the amount and unnecessarily increases the running cost. It is determined.
【0028】かくして本発明で定める有効炭素量と加熱
温度の好適範囲は、図1に斜線で示す領域となり、該狭
い範囲の固定炭素配合量と加熱温度を採用することによ
って、酸化鉄の加熱還元をより少ない炭材量と熱エネル
ギーで効率よく遂行することができる。Thus, the preferred range of the effective carbon amount and the heating temperature specified in the present invention is a region shown by oblique lines in FIG. 1. By adopting the fixed carbon content and the heating temperature in the narrow range, the heat reduction of the iron oxide can be achieved. Can be efficiently performed with less carbon material and heat energy.
【0029】なお図1からも明らかである様に、上記好
適加熱温度を示す斜線領域はFe中のC固溶量が2.4
%の前後で変化しており、C固溶量が0〜2.4%の範
囲では好適加熱温度は液相線Lに沿って変化し、C固溶
量が2.4を超えると好適加熱温度は1350〜140
0℃の一定範囲となる。こうした傾向より、前記有効炭
素量がCA 〜{CA +[(0.024)/(1−0.0
24)]×T.Fe}であるときは、前記化学量論量を
超える有効炭素が全量金属鉄に固溶したと仮定した時の
Fe−C系状態図における液相線温度TA 〜(TA +5
0)℃の温度範囲内に、また前記有効炭素量が{CA +
[(0.024)/(1−0.024)]×T.Fe}
超、{CA +[(0.043)/(1−0.043)]
×T.Fe}以下であるときは、1350〜1400℃
の温度範囲内に制御する方法と言い替えることもでき
る。As is clear from FIG. 1, the hatched region showing the above-mentioned preferred heating temperature has a C solid solution content of 2.4 in Fe.
%, And when the amount of C solid solution is in the range of 0 to 2.4%, the preferable heating temperature changes along the liquidus line L. When the amount of C solid solution exceeds 2.4, the suitable heating temperature is changed. Temperature is 1350-140
It is in a certain range of 0 ° C. From such a tendency, the effective carbon amount is C A to ΔC A + [(0.024) / (1−0.0
24)] × T. When Fe}, the liquidus temperature T A to (T A +5) in the Fe—C phase diagram when it is assumed that all available carbon exceeding the stoichiometric amount is dissolved in metallic iron.
0) Within the temperature range of ° C. and the effective carbon amount is ΔC A +
[(0.024) / (1-0.024)] × T. Fe}
Super, ΔC A + [(0.043) / (1-0.043)]
× T. 1350-1400 ° C when Fe} or less
It can be rephrased as a method of controlling the temperature within the above range.
【0030】本発明を実施する際に用いられる炭素質還
元剤としては、採掘後粉砕・篩い分け等の処理を加えた
だけの石炭粉、乾留等の熱処理を施した例えばコークス
を粉砕したもの、石油コークスなど、その種類の如何は
一切問わず、例えば炭素質を含む廃棄物として回収され
る高炉ダスト等であっても構わない。但し本発明で使用
する炭素質還元剤は、加熱還元反応を効率よく進行させ
るため、有効炭素量が70重量%以上、より好ましくは
80重量%以上のものを選択し、且つ比表面積を高める
ため粒径が2mm以下、望ましくは1mm以下の粉状の
ものを使用することが望ましい。また鉄鉱石等の酸化鉄
についても、同様に比表面積を大きくして還元反応効率
を高めるため、粒径が2mm以下、望ましくは1mm以
下の粉状のものを使用するのがよい。Examples of the carbonaceous reducing agent used in practicing the present invention include coal powder which has been subjected to a treatment such as pulverization and sieving after mining, and a material obtained by pulverizing coke which has been subjected to a heat treatment such as dry distillation. Any kind of petroleum coke or the like may be used, and for example, blast furnace dust collected as waste containing carbonaceous material may be used. However, the carbonaceous reducing agent used in the present invention is selected to have an effective carbon amount of 70% by weight or more, more preferably 80% by weight or more, and to increase the specific surface area in order to efficiently promote the heat reduction reaction. It is desirable to use a powder having a particle size of 2 mm or less, preferably 1 mm or less. Similarly, iron oxide such as iron ore is preferably used in powder form having a particle size of 2 mm or less, preferably 1 mm or less in order to similarly increase the specific surface area and enhance the reduction reaction efficiency.
【0031】本発明では、これらの炭素質還元剤と酸化
鉄を前記好適配合比率となる様に混合し、必要により適
当なバインダーを併用して塊状、粒状、ペレット状、ブ
リケット状など任意の形状に成形し、炭素質還元剤の配
合量、即ち有効炭素量に応じて前述の如く加熱還元温度
を好適範囲に制御することにより、金属鉄を経済的に効
率よく製造することができる。In the present invention, these carbonaceous reducing agents and iron oxide are mixed in such a suitable mixing ratio as described above, and if necessary, an appropriate binder is used in combination to obtain an arbitrary shape such as lump, granule, pellet, briquette or the like. By controlling the heating and reducing temperature to a suitable range as described above in accordance with the amount of the carbonaceous reducing agent, that is, the effective carbon amount, metallic iron can be economically and efficiently produced.
【0032】[0032]
【実施例】以下、実験例を挙げて本発明をより具体的に
説明するが、下記実施例はもとより本発明を限定する性
質のものではなく、前・後記の趣旨に適合し得る範囲で
適当に変更を加えて実施することも可能であり、それら
はいずれも本発明の技術的範囲に包含される。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to experimental examples. However, the following examples are not intended to limit the present invention, and the present invention is not limited to the following examples. It is also possible to implement the present invention with modifications, and all of them are included in the technical scope of the present invention.
【0033】実験例 表1に示す組成の鉄鉱石と炭材およびバインダーを同表
に示す比率で配合し、造粒して得た平均径17mmのペ
レットを使用し、下記の如く加熱温度を数水準変更して
加熱還元を行ない、酸化鉄の還元・溶融挙動を観察し
た。なお表2に、炭材の配合比率と還元後の過剰炭素量
(配合した酸化鉄を還元するのに必要な化学量論量に対
して過剰の有効炭素量:理論値)および該過剰炭素量が
全量金属鉄に固溶したと仮定したときの金属鉄の融点を
示す。 (加熱条件) 加熱温度:1200〜1500℃ 加熱雰囲気:N2 加熱時間:20分Experimental Example An iron ore having a composition shown in Table 1 was mixed with a carbon material and a binder in the ratio shown in the same table, and pellets having an average diameter of 17 mm obtained by granulation were used. Heat reduction was performed with the level changed, and the reduction and melting behavior of iron oxide was observed. Table 2 shows the mixing ratio of the carbon material, the excess carbon amount after reduction (the excess effective carbon amount with respect to the stoichiometric amount necessary for reducing the compounded iron oxide: theoretical value), and the excess carbon amount. Shows the melting point of metallic iron when it is assumed that all are dissolved in metallic iron. (Heating conditions) Heating temperature: 1200 to 1500 ° C Heating atmosphere: N 2 Heating time: 20 minutes
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【表2】 [Table 2]
【0036】上記実験で得られた還元処理物の化学組成
と金属鉄の溶融状態を表3に示すと共に、ペレット製造
時の炭材配合量と加熱温度が、生成する金属鉄の溶融状
態に及ぼす影響を図2に一覧表として示す(図2中に記
載したNo.1〜10は、表3の試料No.に対応して
いる)。また図3には、上記実験で得た還元処理物のの
断面写真、図4にはその一部の外観写真を抜粋して示
し、図5には、表3における試料No.8で得た還元生
成物の断面写真[図5(A)]とその顕微鏡写真[図5
(B)]を示す。The chemical composition of the reduced product and the molten state of metallic iron obtained in the above experiment are shown in Table 3, and the amount of the carbon material and the heating temperature at the time of pellet production affect the molten state of the metallic iron produced. The influence is shown as a list in FIG. 2 (Nos. 1 to 10 described in FIG. 2 correspond to the sample Nos. In Table 3). FIG. 3 is a cross-sectional photograph of the reduced product obtained in the above experiment, FIG. 4 is an excerpt of a photograph of a part of the reduced product, and FIG. 8 (FIG. 5 (A)) and its micrograph [FIG.
(B)].
【0037】尚、図3,5の写真において、白く現われ
ているのは還元鉄が溶融し凝集したものを示し、灰色〜
黒色の部分は生成スラグを示している。また図5(B)
の灰色地にアメーバー状に現われているのは、金属鉄に
固溶することなく残存した固体Cを示している。In the photographs of FIGS. 3 and 5, those appearing white indicate that reduced iron was melted and agglomerated.
The black part shows the generated slag. FIG. 5 (B)
Appearing in an amoeba-like manner on the gray background indicates solid C remaining without being dissolved in metallic iron.
【0038】[0038]
【表3】 [Table 3]
【0039】表1〜3および図2〜5より次の様に解析
することができる。試料No.1〜4は、炭材配合量に
応じて還元時の加熱温度を適正に制御した実施例で、い
ずれも還元により生成した金属鉄が十分に溶融し、殆ん
ど1塊りに凝集しており、「T.Fe」、「M.F
e」、「金属化率」の何れにおいても非常に高い値が得
られている。The analysis can be made as follows from Tables 1 to 3 and FIGS. Sample No. 1-4 are examples in which the heating temperature at the time of reduction is appropriately controlled in accordance with the amount of the carbonaceous material. In each case, the metallic iron generated by the reduction is sufficiently melted and almost agglomerated into one lump. And “T.Fe”, “MF”
e) and a “metallization ratio”, very high values are obtained.
【0040】これらに対し試料No.5〜10は、炭材
の有効炭素量に対して還元時の加熱温度が不足する比較
例であり、還元生成物の断面には部分的に金属鉄の凝集
物が見られるものの、全体が溶融・凝集するまでには至
っておらず、酸化鉄の還元と生成した金属鉄へのCの固
溶とそれに伴う融点の降下が不十分で、例えばNo.
5,6,8では部分的に金属鉄外皮の生成は見られる
が、内部にも無数の金属鉄が分散しており、溶融が不十
分でスラグとの分離が十分に進行しておらず、またN
o.7,9,10では金属鉄外皮そのものが殆んど生成
しておらず、金属鉄と生成スラグの分離が殆んど行なわ
れていない。On the other hand, sample no. Nos. 5 to 10 are comparative examples in which the heating temperature at the time of reduction is insufficient with respect to the effective carbon content of the carbonaceous material. No reduction was achieved until the iron oxide was reduced, and the reduction of iron oxide and the solid solution of C in the formed metallic iron and the resulting decrease in melting point were insufficient.
In 5, 6, and 8, the formation of metallic iron skin is partially observed, but countless metallic iron is dispersed inside, and the melting is insufficient and the separation from slag has not sufficiently progressed. Also N
o. In 7, 9, and 10, almost no metallic iron skin itself was generated, and almost no separation of metallic iron and generated slag was performed.
【0041】更にスラグ成分(CaO+SiO2 +Al
2 O3 )を見ると、試料No.1〜4(実施例)では何
れもスラグ含有量は1重量%以下の極めて低い値を示し
ており、スラグ分離がほぼ完全に行なわれているのに対
し、No.5〜10では何れも7重量%前後のスラグが
混入しており、スラグ分離が不十分であることを確認で
きる。Further, a slag component (CaO + SiO 2 + Al
2 O 3 ), sample no. In each of Examples 1 to 4 (Examples), the slag content showed an extremely low value of 1% by weight or less, and slag separation was almost completely performed. In all of the samples 5 to 10, around 7% by weight of slag was mixed, and it was confirmed that slag separation was insufficient.
【0042】また、図5(B)(No.8で得た還元生
成物の断面拡大写真)からも明らかである様に、還元時
の加熱温度が低過ぎる場合は、還元に必要な化学量論量
のCに対して過剰量のCが金属鉄に固溶することなく固
体Cとして系内に残存しており、このことからも、加熱
温度不足のために金属鉄へのCの固溶が十分に進まず、
金属鉄の溶融が不十分になっていることを確認できる。Further, as is apparent from FIG. 5B (enlarged cross-sectional photograph of the reduction product obtained in No. 8), when the heating temperature during the reduction is too low, the stoichiometry required for the reduction is reduced. An excessive amount of C with respect to the stoichiometric amount of C remains in the system as a solid C without being dissolved in the metallic iron. Does not progress enough,
It can be confirmed that the melting of metallic iron is insufficient.
【0043】また下記表4は、炭材配合量がペレットの
圧潰強度に与える影響を調べた結果(ペレットの製法は
前記と同じ)を示したものであり、炭材配合量の増大に
よってペレットの圧潰強度は大幅に低下してくることが
分かる。従って、ペレットの圧潰強度を高めて加熱還元
時におけるペレットの破壊や崩壊、更には粉化を抑えて
加熱還元を効率よく進めるうえでも、炭材の配合量は必
要最小限に抑えるべきである。Table 4 below shows the results of examining the effect of the amount of the carbon material on the crushing strength of the pellet (the method of producing the pellet is the same as described above). It can be seen that the crushing strength is greatly reduced. Therefore, in order to increase the crushing strength of the pellets, to suppress the destruction and collapse of the pellets during heat reduction, and further to efficiently promote the heat reduction by powdering, the blending amount of the carbonaceous material should be minimized.
【0044】[0044]
【表4】 [Table 4]
【0045】[0045]
【発明の効果】本発明は以上の様に構成されており、炭
素質還元剤の配合量を、酸化鉄の還元に要する化学量論
量と生成する金属鉄への固溶量、更には該C固溶に伴う
金属鉄の融点を考慮して加熱温度を適正に制御すること
により、必要最小限の炭素質還元剤の使用量と加熱温度
で酸化鉄の加熱還元と溶融によるスラグとの分離を効率
よく進めることができ、工業的規模でのより経済的で実
用性の高い金属鉄の製法を確立できた。The present invention is configured as described above. The amount of the carbonaceous reducing agent is determined by changing the amount of the stoichiometric amount required for the reduction of the iron oxide and the amount of the solid solution in the formed metallic iron. By properly controlling the heating temperature in consideration of the melting point of metallic iron accompanying the solid solution of C, the required amount of carbonaceous reducing agent is used and the slag is separated by heating and reducing iron oxide at the required heating temperature. And a more economical and practical method for producing metallic iron on an industrial scale was established.
【図1】本発明法における過剰有効炭素量と還元時の好
適加熱温度範囲を、Fe−C状態図によって説明するた
めの図である。FIG. 1 is a diagram for explaining an excess effective carbon amount and a suitable heating temperature range at the time of reduction in the method of the present invention by using an Fe—C phase diagram.
【図2】酸化鉄の還元に必要な化学量論量のCに対する
過剰C量と還元時の加熱温度が、生成する金属鉄の溶融
状態に与える影響を、表形式で示した図である。FIG. 2 is a diagram showing, in a tabular form, the effects of the excess C amount on the stoichiometric amount of C required for the reduction of iron oxide and the heating temperature at the reduction on the molten state of metallic iron produced.
【図3】上記図2および表3のNo.1〜10で得た還
元生成物の断面写真である。FIG. 3 is a diagram showing the results of No. 3 shown in FIG. It is a cross-sectional photograph of the reduction product obtained in 1-10.
【図4】実験例で得た加熱還元生成物の一部を抜粋し、
過剰有効炭素量と加熱温度および還元生成物の外観写真
を表形式にまとめた図である。FIG. 4 is an excerpt of a part of the heat reduction product obtained in the experimental example,
It is the figure which put together the appearance photograph of the excess effective carbon amount, the heating temperature, and the reduction product in a table form.
【図5】実験例のNo.8で得た還元生成物の図面代用
断面写真および断面拡大写真である。FIG. 8A and 8B are a sectional substitute photograph and an enlarged sectional photograph of the reduction product obtained in FIG.
フロントページの続き (72)発明者 清水 正賢 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内Continued on the front page (72) Inventor Masanori Shimizu 1 Kanazawacho, Kakogawa-shi, Hyogo Kobe Steel, Ltd. Inside the Kakogawa Works
Claims (2)
熱還元して金属鉄を製造する方法において、前記成形体
中の有効炭素量を、該成形体中の酸化鉄を還元するのに
必要な化学量論量CA に対し、CA 〜{CA +[(0.
043)/(1−0.043)]×T.Fe}[式中、
T.Feは酸化鉄中の全Fe含有率(重量%)を表わ
す]の範囲に調整すると共に、加熱還元温度を、前記化
学量論量を超える有効炭素が全量金属鉄に固溶したと仮
定した時のFe−C系状態図における液相線温度TA 〜
(TA +50)℃の温度範囲、もしくは1350〜14
00℃の温度範囲のうち、高い方の温度範囲内に制御す
ることを特徴とする金属鉄の製法。1. A method for producing metallic iron by heating and reducing a molded body containing a carbonaceous reducing agent and iron oxide, wherein the amount of effective carbon in the molded body is determined by reducing the amount of iron oxide in the molded body. to stoichiometry C a required, C a ~ {C a + [(0.
043) / (1-0.043)] × T. Fe} [wherein
T. Fe represents the total Fe content (% by weight) in the iron oxide], and the heat reduction temperature is determined based on the assumption that all the effective carbon exceeding the stoichiometric amount was dissolved in the metallic iron. liquidus in the Fe-C phase diagram the temperature T a ~
(T A +50) ℃ temperature range, or 1350-14
A method for producing metallic iron, wherein the temperature is controlled within a higher temperature range of the temperature range of 00 ° C.
熱還元して金属鉄を製造する方法において、前記成形体
中の有効炭素量を、該成形体中の酸化鉄を還元するのに
必要な化学量論量CA に対し、CA 〜{CA +[(0.
043)/(1−0.043)]×T.Fe}の範囲に
調整すると共に、加熱還元温度を、前記有効炭素量がC
A 〜{CA +[(0.024)/(1−0.024)]
×T.Fe}であるときは、前記化学量論量を超える有
効炭素が全量金属鉄に固溶したと仮定した時のFe−C
系状態図における液相線温度TA 〜(TA +50)℃の
温度範囲内に、また前記有効炭素量が{CA +[(0.
024)/(1−0.024)]×T.Fe}超、{C
A +[(0.043)/(1−0.043)]×T.F
e}以下であるときは、1350〜1400℃の温度範
囲内に制御することを特徴とする金属鉄の製法。2. A method for producing metallic iron by heating and reducing a compact containing a carbonaceous reducing agent and iron oxide, wherein the amount of effective carbon in the compact is determined by reducing the amount of iron oxide in the compact. to stoichiometry C a required, C a ~ {C a + [(0.
043) / (1-0.043)] × T. In addition to adjusting the heating reduction temperature to the range of Fe}
A to ΔC A + [(0.024) / (1−0.024)]
× T. When Fe}, Fe-C when it is assumed that all available carbon exceeding the above stoichiometric amount was dissolved in metallic iron.
Within the temperature range of the liquidus temperature T A to (T A +50) ° C. in the system phase diagram, and the effective carbon amount is ΔC A + [(0.
024) / (1-0.024)] × T. Fe}, △ C
A + [(0.043) / (1-0.043)] × T. F
A method for producing metallic iron, wherein when the temperature is not more than e}, the temperature is controlled within a temperature range of 1350 to 1400 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04820098A JP3844873B2 (en) | 1998-02-27 | 1998-02-27 | Metal iron manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04820098A JP3844873B2 (en) | 1998-02-27 | 1998-02-27 | Metal iron manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11241111A true JPH11241111A (en) | 1999-09-07 |
JP3844873B2 JP3844873B2 (en) | 2006-11-15 |
Family
ID=12796750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04820098A Expired - Fee Related JP3844873B2 (en) | 1998-02-27 | 1998-02-27 | Metal iron manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3844873B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002092860A1 (en) | 2001-05-15 | 2002-11-21 | Midrex International B.V. Zurich Branch | Granular metallic iron |
WO2011155417A1 (en) | 2010-06-07 | 2011-12-15 | 株式会社神戸製鋼所 | Granular metal production method |
-
1998
- 1998-02-27 JP JP04820098A patent/JP3844873B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002092860A1 (en) | 2001-05-15 | 2002-11-21 | Midrex International B.V. Zurich Branch | Granular metallic iron |
JP2002339009A (en) * | 2001-05-15 | 2002-11-27 | Midrex Internatl Bv Zurich Branch | Granular metallic iron |
AU2002256884B2 (en) * | 2001-05-15 | 2008-06-19 | Midrex International B.V. Zurich Branch | Granular metallic iron |
US7806959B2 (en) | 2001-05-15 | 2010-10-05 | Midrex International B.V. Zurich Branch | Metallic iron nuggets |
WO2011155417A1 (en) | 2010-06-07 | 2011-12-15 | 株式会社神戸製鋼所 | Granular metal production method |
Also Published As
Publication number | Publication date |
---|---|
JP3844873B2 (en) | 2006-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4330257B2 (en) | Metal iron manufacturing method | |
JP4153281B2 (en) | Method for producing titanium oxide-containing slag | |
EP1405924A1 (en) | Method for producing granular metal | |
JP4691827B2 (en) | Granular metal iron | |
JPH10195513A (en) | Production of metallic iron | |
JP2001279313A (en) | Method for producing molten metallic iron | |
TW201215682A (en) | Process for producing molten steel using particulate metallic iron | |
JP2010229525A (en) | Method for producing ferronickel and ferrovanadium | |
JP5428534B2 (en) | Pig iron production method using high zinc content iron ore | |
JP4540172B2 (en) | Production of granular metallic iron | |
JP3845893B2 (en) | Metal iron manufacturing method | |
WO2007083450A1 (en) | Process for producing metallic iron | |
JP5000593B2 (en) | Manufacturing method of granular metallic iron and manufacturing method of molten steel using the metallic iron | |
JPH11241111A (en) | Production of metallic iron | |
JP6729073B2 (en) | Reduction/dissolution method of iron raw material containing iron oxide | |
JP2000045007A (en) | Production of metallic iron and device therefor | |
JP5892317B2 (en) | Production method of raw materials for blast furnace | |
JP2011179090A (en) | Method for producing granulated iron | |
JP2009062557A (en) | Method for operating mobile hearth furnace | |
JP2000119722A (en) | Production of reduced iron pellet | |
ZA200300865B (en) | Method for manufacturing metal nuggets. | |
JP5971482B2 (en) | Agglomerate production method | |
JP5892318B2 (en) | Agglomerate production method | |
JPH10102117A (en) | Production of metallic iron and production equipment thereof | |
JP4564126B2 (en) | Method for producing molten iron using a rotary kiln |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060627 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060725 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060815 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060817 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090825 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100825 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110825 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120825 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120825 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130825 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |