JP3536509B2 - Blast furnace operation method for producing low Si pig - Google Patents

Blast furnace operation method for producing low Si pig

Info

Publication number
JP3536509B2
JP3536509B2 JP05038396A JP5038396A JP3536509B2 JP 3536509 B2 JP3536509 B2 JP 3536509B2 JP 05038396 A JP05038396 A JP 05038396A JP 5038396 A JP5038396 A JP 5038396A JP 3536509 B2 JP3536509 B2 JP 3536509B2
Authority
JP
Japan
Prior art keywords
basicity
center
furnace
blast furnace
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05038396A
Other languages
Japanese (ja)
Other versions
JPH08311511A (en
Inventor
武 内山
幹治 武田
望 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP05038396A priority Critical patent/JP3536509B2/en
Publication of JPH08311511A publication Critical patent/JPH08311511A/en
Application granted granted Critical
Publication of JP3536509B2 publication Critical patent/JP3536509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低Si銑を製造す
る高炉操業方法に関する。
TECHNICAL FIELD The present invention relates to a blast furnace operating method for producing low Si pig iron.

【0002】[0002]

【従来の技術】高炉において低Si銑を製造する方法の
1つとして、高炉装入物堆積層の塩基度分布を、炉中心
部よりも炉周辺部寄りの方がより高い塩基度となるよう
に調節して操業を行う方法(特開昭59−1500
号公報)がある。一般に高炉内でのSi移行は、羽口前
の高温領域において、 SiO2+C → SiO+CO によりSiOガスが発生し、さらに SiO+Si+CO により、溶銑中にSiが入ることが知られている。
2. Description of the Related Art As one method of producing low-Si pig iron in a blast furnace, the basicity distribution of a blast furnace charge deposit layer is set so that the basicity is higher near the furnace periphery than in the center of the furnace. how adjusted to perform operations in (JP 59-1500 0 3
No. Gazette). In general, it is known that in a Si transfer in a blast furnace, in a high-temperature region in front of a tuyere, SiO gas is generated by SiO 2 + C → SiO + CO, and Si enters the hot metal by SiO + CSi + CO.

【0003】前記の装入物の塩基度分布を炉中心部より
も炉周辺部寄りの方がより高い塩基度を持つように調節
する方法においては、羽口前の高温領域を通過する溶融
物の塩基度を高めてSiO2 の活量を低下させ、SiO
ガスの発生を抑制することにより、Siの溶銑への移行
反応を抑制することがその主旨である。
[0003] In the above method of adjusting the basicity distribution of the charged material so that the basicity is higher near the periphery of the furnace than in the center of the furnace, the melt passing through the high-temperature region in front of the tuyere is required. To lower the activity of SiO 2 ,
The purpose is to suppress the transfer reaction of Si to hot metal by suppressing the generation of gas.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記の方法で
は図2に示すように、高炉1内にコークス層3の上に堆
積させる原料(鉱石層2)は炉壁側に高塩基度原料2a
を、炉心側に低塩基度原料2bを装入する。炉芯5の通
液性の悪い不活性状態においては、融着帯4の中心部で
生成した溶融物7は炉芯5の表層を羽口6に向かって流
れるため、羽口前の高温域においては結局装入原料の平
均的な塩基度となってしまい低Si化の効果が減少して
しまうという問題があった。
However, in the above-mentioned method, as shown in FIG. 2, the raw material (ore layer 2) deposited on the coke layer 3 in the blast furnace 1 has a high basicity raw material 2a on the furnace wall side.
Is charged into the core side with the low basicity raw material 2b. In the inert state where the core 5 has poor liquid permeability, the melt 7 generated at the center of the cohesive zone 4 flows on the surface layer of the core 5 toward the tuyere 6, so that the high temperature region in front of the tuyere is high. However, there is a problem that the average basicity of the charged raw material is eventually reached and the effect of reducing Si is reduced.

【0005】すなわち、高炉1の中心の通気、通液性が
低下する、いわゆる炉芯不活性化が起こると、図3に示
すようにSi低下効果がなくなる。本発明は、前記問題
点を解決した低Si銑の製造する技術を提供するのを目
的とする。
That is, when the ventilation and liquid permeability at the center of the blast furnace 1 decrease, that is, when the so-called furnace core inactivation occurs, the Si lowering effect is lost as shown in FIG. An object of the present invention is to provide a technique for producing low Si pig iron that has solved the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】本発明は前記問題点を解
決するために、高炉内に堆積させる原料の塩基度CaO
/SiO2 の半径方向分布を炉周辺部寄りの原料の塩基
度が炉中心部寄りの原料の塩基度より0.5以上高くな
るように装入原料および装入方法を調節し、かつ、高炉
中心部にコークスを装入し、中心部コークス層厚を大き
くすることを特徴とする低Si銑を製造する高炉操業方
法を提供するものである。この場合に前記炉周辺部寄り
と中心部寄りとの境界を、無次元半径0.7±0.1と
することが好ましい。
According to the present invention, in order to solve the above-mentioned problems, the basicity of the raw material to be deposited in the blast furnace is CaO.
The raw material and the charging method are adjusted so that the radial distribution of / SiO 2 is higher than the basicity of the raw material near the furnace center by 0.5 or more than the basicity of the raw material near the furnace center; It is an object of the present invention to provide a blast furnace operating method for producing low Si pig iron, characterized by charging coke in the center and increasing the coke layer thickness in the center. In this case, it is preferable that the boundary between the vicinity of the furnace periphery and the vicinity of the center has a dimensionless radius of 0.7 ± 0.1.

【0007】[0007]

【発明の実施の形態】本発明では、図1に模式的に示す
ように装入物の塩基度分布を、炉中心部よりも周辺寄り
の方が高くなるように調整しつつ、かつ通常のコークス
層3に加えてコークス8を中心部に集中的に装入するこ
とにより、炉芯5を活性化し、通液性を高く保つように
したので、中心部の低塩基度溶融物7は炉芯5を流れ、
周辺部の高塩基度溶融物は周辺部の羽口前高温領域を流
れる。また羽口前の高温領域において溶融物中のSiO
2 活量が低下し、SiOガス発生量が抑制され、溶銑中
へのSi移行量も減少する。以上の作用により結局出銑
Siが低下する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, as shown schematically in FIG. 1, the basicity distribution of the charge is adjusted so that the basicity distribution is higher at the periphery than at the center of the furnace, and the conventional method is used. By intensively charging coke 8 in the center in addition to the coke layer 3, the furnace core 5 was activated and liquid permeability was maintained high. Flow through the wick 5,
The high basicity melt at the periphery flows through the high temperature region in front of the tuyere at the periphery. In the high temperature region before the tuyere, SiO
(2) The activity is reduced, the amount of generated SiO gas is suppressed, and the amount of Si transferred into the hot metal is also reduced. By the above operation, the tapping Si is eventually reduced.

【0008】無次元半径0.7±1としたのは、0.7
±0.1よりも炉周辺側はレースウェイの高温領域が存
在する領域であるため、0.7±0.1を境界として塩
基度レベルを分けると本発明の効果が大きくなるからで
ある。高炉のレースウェイ深度は、送風量、羽口径、コ
ークス粒度によって変化するが、これまでの測定例では
壁から1.0〜2.5m程度であった。図6に、塩基度
差0.8、中心装入コークス2t/chのときの[S
i]と境界位置との関係を示す。0.7±0.1をはず
れると[Si]が急激に高くなる。またCaO/SiO
2 塩基度差を0.5以上としたのは図5に示すように、
塩基度差が0.5以上で、SiO2 の活量asio2が約2
倍の差がつき、目的とするSi低下の効果が得られるか
らである。
[0008] The dimensionless radius of 0.7 ± 1 is 0.7
This is because the effect of the present invention is enhanced when the basicity level is divided on the boundary of 0.7 ± 0.1 because the high temperature region of the raceway exists on the furnace peripheral side of ± 0.1. Although the raceway depth of the blast furnace changes depending on the air volume, tuyere diameter, and coke particle size, it has been about 1.0 to 2.5 m from the wall in the measurement examples so far. FIG. 6 shows [S] when the basicity difference is 0.8 and the central charging coke is 2 t / ch.
i] and the boundary position. If it deviates from 0.7 ± 0.1, [Si] sharply increases. CaO / SiO
As shown in FIG. 5, the difference between the two basicities was set to 0.5 or more.
When the basicity difference is 0.5 or more, the activity a sio2 of SiO 2 is about 2
This is because the difference is doubled and the intended effect of reducing Si is obtained.

【0009】半径方向の塩基度分布の調整は、具体的に
は、 (イ)高塩基度に調整した焼結鉱、ペレット (ロ)ドロマイト、転炉滓、連鋳スラグ等のCaO濃度
の高い副原料 等の高塩基度原料を周辺部に装入し、 (a)低塩基度に調整した焼結鉱、ペレット (b)生鉱石 (c)硅石等のSiO2 濃度の高い副原料 等の低塩基度原料を中心部に装入すればよい。また上記
塩基度の異なる原料を所望の位置に装入するには、ベル
レス装入装置を有する高炉又はベル・ムーバブルアーマ
の装入装置を有する高炉において、鉱石の装入バッチを
塩基度を変更した2バッチ以上に分割し、低塩基度の原
料がより中心に、高塩基度の原料がより周辺に堆積する
ようにベルレス装入シュートの角度又はムーバブルアー
マの位置等を調節して装入すればよい。ベルレス高炉に
おいて鉱石を多バッチにする時間的余裕又は炉頂バンカ
の数が不足しているか、又はシーケンス上多バッチ化が
できない場合は、貯鉱槽からの切出順序を高塩基度原料
から低塩基度原料へ順次切出すことによって、高塩基度
原料が先に炉内に装入されるように調節し、炉周辺部か
ら順次原料を装入してもよい。またはこの逆を行っても
よい。
The basicity of the basicity distribution in the radial direction is adjusted by, specifically, (a) a high basicity adjusted sintered ore, pellet (b) dolomite, converter slag, continuous cast slag, etc., having a high CaO concentration. High basicity raw materials such as auxiliary raw materials are charged into the periphery, and (a) sintered ore adjusted to low basicity, pellets (b) raw ore (c) silica raw materials with high SiO 2 concentration, etc. What is necessary is just to charge a low basicity raw material to a center part. Further, in order to charge the raw materials having different basicities to desired positions, the basicity of the ore charging batch was changed in a blast furnace having a bellless charging device or a blast furnace having a bell movable armor charging device. Divide into two or more batches and adjust the angle of the bell-less charging chute or the position of the movable armor so that the low basicity raw material accumulates at the center and the high basicity raw material accumulates more at the periphery. Good. If there is not enough time to make multiple batches of ore or the number of top bunker in Bellless Blast Furnace is insufficient, or if multiple batches are not possible in the sequence, the order of cutting from the ore storage tank should be changed from high basicity material to low basicity material. By sequentially cutting out the basicity raw materials, it may be adjusted so that the high basicity raw materials are charged into the furnace first, and the raw materials may be sequentially charged from the periphery of the furnace. Alternatively, the reverse may be performed.

【0010】コークスを中心部に装入するには、ベル高
炉においては専用の中心装入シュートを用いるのが一般
的である。ベルレス高炉においては装入シュートを垂直
又は垂直に近い状態でコークスを装入する方法を用いれ
ばよい。
[0010] In order to charge coke into the center, it is common to use a dedicated center charging chute in a bell blast furnace. In the bellless blast furnace, a method of charging coke in a state where the charging chute is vertical or nearly vertical may be used.

【0011】[0011]

【実施例】次に本発明の実施例について説明する。表1
に本発明の実施例及び比較例の操業条件及び結果を一括
して示した。実施例1〜3、比較例1〜3で塩基度分布
を調整する方法は、鉱石を高/低塩基度原料に2分割し
て、ベルレスシュートの角度を調整することにより高塩
基度原料を周辺部に、低塩基度原料を中心部寄りに装入
した。また実施例1〜3においてコークス中心装入はベ
ルレス装入シュートを垂直に立てた状態でコークスを装
入することにより実施した。
Next, an embodiment of the present invention will be described. Table 1
The operating conditions and results of Examples and Comparative Examples of the present invention are shown together. The method of adjusting the basicity distribution in Examples 1 to 3 and Comparative Examples 1 to 3 is to divide the ore into two parts of high / low basicity raw material and adjust the angle of the bellless chute to surround the high basicity raw material. The low basicity raw material was charged near the center. In Examples 1 to 3, the central charging of coke was performed by charging coke with the bellless charging chute standing upright.

【0012】比較例1〜3はコークス中心装入を実施し
ていない。実施例1は高塩基度のバッチに塩基度2.0
の焼結鉱を用い、低塩基度のバッチに生鉱石を用いた。
実施例2は低塩基度のバッチの生鉱石を実施例1よりも
増やし、高塩基度のバッチに転炉滓を装入して平均の塩
基度を実施例1とほぼ等しくなるように調整した例であ
る。実施例3は高/低塩基度を大略50:50に分割
し、焼結鉱と生鉱石の配合率と連鋳スラグを用いて塩基
度を調整した実施例である。
In Comparative Examples 1 to 3, the central charging of coke was not performed. Example 1 shows a high basicity batch with a basicity of 2.0.
Raw ore was used for the low basicity batch.
In Example 2, the raw ore in the low basicity batch was increased from that in Example 1, and converter slag was charged in the high basicity batch to adjust the average basicity to be approximately equal to Example 1. It is an example. Example 3 is an example in which the high / low basicity is roughly divided into 50:50, and the basicity is adjusted using the mixing ratio of the sinter ore and the raw ore and the continuous cast slag.

【0013】図4に実施例1〜3の炉頂装入原料の半径
方向の塩基度分布を実測した結果を示す。いずれの場合
も炉壁近傍で塩基度が高く、中心部で塩基度が低下して
いる。表1から明らかなように、実施例1〜3は、コー
クス中心装入を実施しなかった比較例1〜3と比較し、
出銑Siが0.05%低くなっており、本発明により安
定的に低Si銑を得ることができた。
FIG. 4 shows the results of the measurements of the basicity distribution in the radial direction of the raw materials charged to the furnace top in Examples 1 to 3. In each case, the basicity is high near the furnace wall, and the basicity is low at the center. As is clear from Table 1, Examples 1 to 3 are compared with Comparative Examples 1 to 3 in which coke center charging was not performed.
The tapping Si was reduced by 0.05%, and a low Si pig could be stably obtained by the present invention.

【0014】表2にベルレスの装入パターンを変更する
ことにより、無次元半径0.7で分割した時の装入原料
の周辺側塩基度と中心側塩基度との差が実施例1〜3よ
りも低くなるようにした場合の操業試験結果を示す。比
較例4〜6は装入原料の塩基度差がそれぞれ0.2,
0.4,0.4の割合で、出銑Siは0.24〜0.2
5%と、いずれも実施例1〜3の0.18〜0.20%
よりも高く、効果が小さい。
By changing the bellless charging pattern in Table 2, the difference between the basicity on the peripheral side and the basicity on the center side of the charged raw material when divided by a dimensionless radius of 0.7 is shown in Examples 1 to 3. The operation test result when the lower limit is set is shown. In Comparative Examples 4 to 6, the basicity differences of the charged raw materials were 0.2 and 0.2, respectively.
0.4, 0.4, the tapping Si is 0.24 to 0.2
5%, and 0.18 to 0.20% of Examples 1 to 3
Higher and less effective.

【0015】表3に中心部寄りと周辺部寄りとの境界を
0.5〜0.9としたときの実施例4〜7を示した。な
お、実施例1も表3に再掲した。またこれらを図6にプ
ロットしてグラフで示した。図6にも示したように、無
次元半径が0.6〜0.8では[Si]が0.204〜
0.208と低いのに対し、無次元半径が0.5の実施
例6、0.9の実施例7ではそれぞれ[Si]が0.2
21、0.225といずれも無次元半径が0.7±0.
1の実施例よりもいくぶん高く、従って、中心部寄りと
周辺部寄りとの境界を0.7±0.1の範囲にすると、
より優れた効果が得られ好ましいことが知られる。
Table 3 shows Examples 4 to 7 in which the boundary between the center portion and the peripheral portion is 0.5 to 0.9. Table 1 also shows Example 1 again. These are plotted in FIG. 6 and shown as a graph. As shown in FIG. 6, when the dimensionless radius is 0.6 to 0.8, [Si] is 0.204 to
While the dimensionless radius is 0.5, Example 6 has a low dimension of 0.5, whereas Example 7 has a non-dimensional radius of 0.9.
21, 0.225, and the dimensionless radius is 0.7 ± 0.2.
Somewhat higher than the embodiment of FIG. 1 and therefore, if the boundary between the center and the periphery is in the range of 0.7 ± 0.1,
It is known that a more excellent effect is obtained and preferable.

【0016】なお、ここではベルレス高炉における試験
結果のみを示したが、ベル・ムーバブルアーマ高炉にお
いても同様な結果が得られている。
Although only the test results in the bellless blast furnace are shown here, similar results were obtained in the bell movable armor blast furnace.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【発明の効果】本発明は、高炉装入物の塩基度分布を炉
周辺部で高く、中心部で低くしかつコークス中心装入を
実施して炉芯の通液性を大きく保ったので、低Si銑を
安定的に製造することができるようになった。
According to the present invention, the basicity distribution of the blast furnace charge is high at the periphery of the furnace, low at the center, and the center of coke is charged to maintain the liquid permeability of the furnace core. Low Si pig can be produced stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高炉内の炉芯活性時の炉内液流れを模式的に示
した図である。
FIG. 1 is a diagram schematically illustrating a furnace liquid flow when a core in a blast furnace is activated.

【図2】高炉内の炉芯不活性時の炉内液流れを模式的に
示した図である。
FIG. 2 is a view schematically showing a furnace liquid flow when a core in a blast furnace is inactive.

【図3】出銑Siと炉芯コークス粉等の関係を示したグ
ラフである。
FIG. 3 is a graph showing a relationship between tapping Si, furnace core coke powder, and the like.

【図4】装入物塩基度分布を示すグラフである。FIG. 4 is a graph showing a charge basicity distribution.

【図5】塩基度とSiO2 の活量asio2との関係を示す
グラフである。
FIG. 5 is a graph showing a relationship between basicity and activity a sio2 of SiO 2 .

【図6】出銑Siと無次元半径との関係を示すグラフで
ある。
FIG. 6 is a graph showing a relationship between tapping Si and a dimensionless radius.

【符号の説明】[Explanation of symbols]

1 高炉 2 鉱石層 2a 高塩基度原料 2b 低塩基度原
料 3 コークス層 4 融着帯 5 炉芯 6 羽口 7 溶融物 8 コークス
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Ore layer 2a High basicity raw material 2b Low basicity raw material 3 Coke layer 4 Cohesive zone 5 Core 6 Tuyere 7 Melt 8 Coke

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−150003(JP,A) 特開 昭58−61202(JP,A) 特開 平7−138624(JP,A) 特開 平1−263207(JP,A) 特開 平6−271908(JP,A) 特開 平3−232912(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21B 5/00 313 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-150003 (JP, A) JP-A-58-61202 (JP, A) JP-A-7-138624 (JP, A) JP-A-1- 263207 (JP, A) JP-A-6-271908 (JP, A) JP-A-3-232912 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21B 5/00 313

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高炉内に堆積させる原料の塩基度CaO
/SiO2 の半径方向分布を炉周辺部寄りの原料の塩基
度が炉中心部寄りの原料の塩基度より0.5以上高くな
るように装入原料および装入方法を調節し、かつ、高炉
中心部にコークスを装入し、中心部コークス層厚を大き
くすることを特徴とする低Si銑を製造する高炉操業方
法。
1. The basicity CaO of a raw material deposited in a blast furnace
The raw material and the charging method are adjusted so that the radial distribution of / SiO 2 is higher than the basicity of the raw material near the furnace center by 0.5 or more than the basicity of the raw material near the furnace center; A blast furnace operating method for producing low Si pig, characterized by charging coke in the center and increasing the coke layer thickness in the center.
【請求項2】 前記炉周辺部寄りと前記中心部寄りとの
境界を、無次元半径0.7±0.1としたことを特徴と
する請求項1記載の低Si銑を製造する高炉操業方法。
2. A blast furnace operation for producing low Si pig according to claim 1, wherein a boundary between the vicinity of the furnace and the vicinity of the center has a dimensionless radius of 0.7 ± 0.1. Method.
JP05038396A 1995-03-10 1996-03-07 Blast furnace operation method for producing low Si pig Expired - Fee Related JP3536509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05038396A JP3536509B2 (en) 1995-03-10 1996-03-07 Blast furnace operation method for producing low Si pig

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5120895 1995-03-10
JP7-51208 1995-03-10
JP05038396A JP3536509B2 (en) 1995-03-10 1996-03-07 Blast furnace operation method for producing low Si pig

Publications (2)

Publication Number Publication Date
JPH08311511A JPH08311511A (en) 1996-11-26
JP3536509B2 true JP3536509B2 (en) 2004-06-14

Family

ID=26390856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05038396A Expired - Fee Related JP3536509B2 (en) 1995-03-10 1996-03-07 Blast furnace operation method for producing low Si pig

Country Status (1)

Country Link
JP (1) JP3536509B2 (en)

Also Published As

Publication number Publication date
JPH08311511A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
JP3536509B2 (en) Blast furnace operation method for producing low Si pig
EP0249006A1 (en) Method for manufacturing chromium-bearing pig iron
JP4173925B2 (en) Blast furnace operation method
JPH1036906A (en) Operation of vertical furnace
JP4047422B2 (en) How to operate a vertical furnace
JP3829516B2 (en) Blast furnace operation method
JP4005682B2 (en) How to operate a vertical furnace
JP3516793B2 (en) How to load raw fuel such as dust agglomerate, self-reducing ore, iron scrap, solid fuel, etc. into vertical furnace
JP3014549B2 (en) Blast furnace operation method
JP3700458B2 (en) Low Si hot metal manufacturing method
JPH02285010A (en) Method for regulating si in molten pig iron
JPH07278634A (en) Operation of scrap melting furnace
JP2969249B2 (en) Blast furnace operation method
JP2541200B2 (en) Converter for preventing melting of furnace wall due to high temperature gas
JP2837282B2 (en) Production method of chromium-containing hot metal
JP3283739B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JPH0313291B2 (en)
JP2002020810A (en) Blast furnace operating method
JPH11158521A (en) Operation of vertical furnace
JPH09194914A (en) Operation of blast furnace at the time of injecting a large quantity of pulverized fine coal
JPH02282410A (en) Smelting reduction method for ore
JPH06179905A (en) Operation of coke packing layer type vertical furnace
JPH09137208A (en) Method for charging raw material to blast furnace
CALDERON et al. Considerations of Iron Reduction Processes.(Basic study on iron making by a miniature blast furnace-II)
JP2002256310A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees