JPS6156303B2 - - Google Patents

Info

Publication number
JPS6156303B2
JPS6156303B2 JP19729681A JP19729681A JPS6156303B2 JP S6156303 B2 JPS6156303 B2 JP S6156303B2 JP 19729681 A JP19729681 A JP 19729681A JP 19729681 A JP19729681 A JP 19729681A JP S6156303 B2 JPS6156303 B2 JP S6156303B2
Authority
JP
Japan
Prior art keywords
ore
reduction furnace
reduction
amount
chromium ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19729681A
Other languages
Japanese (ja)
Other versions
JPS58100640A (en
Inventor
Hisao Hamaguchi
Hisamitsu Koitabashi
Toshihiro Inatani
Nobuo Tsuchitani
Shiko Takada
Eiji Katayama
Mitsuo Kadoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19729681A priority Critical patent/JPS58100640A/en
Publication of JPS58100640A publication Critical patent/JPS58100640A/en
Publication of JPS6156303B2 publication Critical patent/JPS6156303B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、フエロクロム製造のためのクロム鉱
石の流動予備還元方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for fluidized prereduction of chromium ore for the production of ferrochrome.

クロム鉱石の資源は低品位化、粉鉱化の傾向に
ある。クロム鉱石の製錬によるフエロクロムの製
造は通常電気炉によつているが、電力原単位は数
千KWH/tにも達し、きわめてコスト高となる。
Chromium ore resources are trending toward lower grade and fine mineralization. Ferrochrome is normally produced by smelting chromium ore using an electric furnace, but the electricity consumption rate reaches several thousand KWH/t, making it extremely expensive.

最近は電力によらないフエロクロムその他の合
金鉄製造技術としての溶融還元法が注目されてい
る。本発明者らはさきに予備還元炉と溶融還元炉
とを直列に結合した装置を用い、粉粒状鉱石から
溶融金属を製造する方法を提案したが、その方法
は各種鉱石の製錬に応用可能であり、当然クロム
鉱石からのフエロクロム製造にも応用できる。
Recently, the smelting reduction method has been attracting attention as a technology for producing ferrochrome and other ferroalloys that does not rely on electric power. The present inventors previously proposed a method for producing molten metal from powdery ore using a device in which a preliminary reduction furnace and a smelting reduction furnace were connected in series, and this method can be applied to the smelting of various ores. Naturally, it can also be applied to the production of ferrochrome from chromium ore.

しかし、クロム鉱石のように難還元性の鉱石の
予備還元炉に溶融還元炉からの高温の排ガスを還
元ガスとして使用する場合に、酸化クロム
(Cr2O3)がクロム鉱石中に含まれる酸化鉄
(FeO)に比し還元されにくいので、クロム鉱石
全体としての予備還元率が上がらないという問題
がある。
However, when using high-temperature exhaust gas from a smelting reduction furnace as a reducing gas in a pre-reduction furnace for hard-to-reducible ores such as chromium ore, chromium oxide (Cr 2 O 3 ) is Since it is difficult to reduce compared to iron (FeO), there is a problem that the preliminary reduction rate of chromium ore as a whole does not increase.

また本発明者らはクロム鉱石の予備還元方法と
して重油や石炭などの還元剤を用いる方法につい
ても提案しているが、反応炉内温度を1100〜1300
℃に保持する必要があり、溶融還元炉からの排ガ
ス温度が低い場合には適さない。
The present inventors have also proposed a method of using a reducing agent such as heavy oil or coal as a preliminary reduction method for chromium ore, but the temperature inside the reactor is set at 1100 to 1300.
It needs to be maintained at ℃ and is not suitable when the exhaust gas temperature from the smelting reduction furnace is low.

クロム鉱石をもつと低温で還元する場合の還元
剤としてメタン(CH4)が有効であることが文献
で知られている。メタンとして液化天然ガス
(LNG)を使用することはコスト高となり実用的
ではない。本発明者らは製鉄所内で容易に利用可
能なメタン源としてコークス炉ガスに着目した。
It is known in the literature that methane (CH 4 ) is effective as a reducing agent when reducing chromium ore at low temperatures. Using liquefied natural gas (LNG) as methane is expensive and impractical. The present inventors focused on coke oven gas as a methane source that can be easily used in steel plants.

しかし、コークス炉ガスを用いた流動層還元装
置によるクロム鉱石の還元実験では第1図のA曲
線に示すように、還元温度1000℃以下では還元率
がほとんど上昇せず、1000℃以上では、クロム鉱
石粒子が互いに粘着し流動化状態を維持すること
ができない。
However, in a reduction experiment of chromium ore using a fluidized bed reduction device using coke oven gas, as shown in curve A in Figure 1, the reduction rate hardly increases at reduction temperatures below 1000℃, and at temperatures above 1000℃, chromium ore decreases. The ore particles stick together and cannot maintain a fluidized state.

コークス炉ガスの組成は次に示すように、メタ
ン以外にアセチレン、エチレン、エタンなどの炭
化水素CmHnやCO2およびH2Oも含有する。
The composition of coke oven gas is as shown below, in addition to methane, it also contains hydrocarbons CmHn such as acetylene, ethylene, and ethane, as well as CO 2 and H 2 O.

CH4 20〜26% H2 57〜65% CO 5〜 8% CO2 1〜 3% N2 2〜 4% CmHn 2〜 3% H2O 2〜 3% 従つて、コークス炉ガスは、メタンのみの場合
とは還元挙動が異なつてくる。また、予備還元炉
ではコークス炉ガスを単独で用いることはなく、
溶融還元炉からの高温の排ガスと混合することに
対する考慮も必要である。
CH 4 20-26% H 2 57-65% CO 5-8% CO 2 1-3% N 2 2-4% CmHn 2-3% H 2 O 2-3% Therefore, coke oven gas contains methane The reduction behavior will be different from that in the case of only In addition, coke oven gas is not used alone in the preliminary reduction furnace;
Consideration must also be given to mixing with the hot exhaust gas from the smelting reduction furnace.

以上の実状に鑑み、本発明者らは、コークス炉
ガスを用いる低温のクロム鉱石の予備還元操業方
法を見出すため各種の実験を行なつた結果、本発
明に到達したものである。
In view of the above-mentioned circumstances, the present inventors conducted various experiments to find a method for preliminary reduction operation of low-temperature chromium ore using coke oven gas, and as a result, they arrived at the present invention.

本発明の要旨とするところは、予備還元炉と溶
融還元炉とからなる装置を用い溶融還元炉排ガス
を予備還元炉に導入し粉粒状鉱石を流動予備還元
したのち溶融還元炉に供給して溶融金属を製造す
るクロム鉱石の予備還元方法において、予備還元
炉にコークス炉ガスを、溶融還元炉排ガス導入量
の10〜70%、予備還元炉供給クロム鉱石量に対し
て400〜1200Nm3/t−鉱石の範囲で供給すると共
に、予備還元炉流動層内の炭材量が鉱石量に対し
て10〜60%を維持するように炭材を供給し、かつ
必要に応じて酸素または空気を供給して予備還元
温度を900〜1100℃に保持し、炭材の混入した予
備還元鉱石を排出することを特徴とするクロム鉱
石の予備還元法に存する。
The gist of the present invention is to use a device consisting of a pre-reduction furnace and a smelting reduction furnace to introduce the smelting reduction furnace exhaust gas into the pre-reduction furnace to pre-reduce the granular ore through fluidization, and then supply it to the smelting reduction furnace and melt it. In the preliminary reduction method of chromium ore for producing metals, coke oven gas is added to the preliminary reduction furnace at a rate of 10 to 70% of the amount of exhaust gas introduced into the smelting reduction furnace, and 400 to 1200Nm 3 /t− relative to the amount of chromium ore supplied to the preliminary reduction furnace. In addition to supplying a range of ore, carbon material is supplied so that the amount of carbon material in the fluidized bed of the preliminary reduction furnace is maintained at 10 to 60% of the amount of ore, and oxygen or air is supplied as necessary. The present invention relates to a method for pre-reducing chromium ore, which is characterized by maintaining the pre-reduction temperature at 900 to 1100°C and discharging the pre-reduced ore mixed with carbonaceous materials.

コークス炉ガス中に含まれるCO2やH2Oは還元
反応を阻害するので、これに対処するためには、
クロム鉱石にコークスや石炭などの炭材を添加す
ることが有効である。よく知られているように
1100℃以下の還元温度では、コークスや石炭など
の炭材による還元速度はかなり小さい。しかし、
炭材とコークス炉ガス中のCO2やH2Oがソルーシ
ヨンロス反応を起こしてCOやH2に転換すること
によつて結果として還元反応が促進されることに
なる。また炭材をクロム鉱石に添加することによ
つて、還元温度を1000℃以上にしてもクロム鉱石
粒子が相互に粘着し合うことによる流動化阻害を
防止することができる。例えば、第1図のB曲線
は、クロム鉱石85%、炭材15%の装入物をコーク
ス炉ガス30%、還元ガス70%の還元ガスで還元し
たときの温度と還元率との関係を示し、流動化阻
害を防止できたので還元温度を高めることがで
き、還元率が増加した。
CO 2 and H 2 O contained in coke oven gas inhibit the reduction reaction, so to deal with this,
It is effective to add carbonaceous materials such as coke and coal to chromium ore. as is well known
At reduction temperatures below 1100°C, the reduction rate by carbonaceous materials such as coke and coal is quite slow. but,
CO 2 and H 2 O in the carbonaceous material and coke oven gas cause a solution loss reaction and are converted to CO and H 2 , thereby promoting the reduction reaction. Furthermore, by adding carbonaceous material to chromium ore, it is possible to prevent fluidization inhibition due to mutual adhesion of chromium ore particles even if the reduction temperature is 1000° C. or higher. For example, curve B in Figure 1 shows the relationship between temperature and reduction rate when a charge of 85% chromium ore and 15% carbonaceous material is reduced with 30% coke oven gas and 70% reducing gas. As the inhibition of fluidization could be prevented, the reduction temperature could be raised and the reduction rate increased.

クロム鉱石に混入する炭材の混入比率は、炭材
がクロム鉱石に対して10%以下ではクロム鉱石粒
子相互の粘着(焼結現象)による流動化阻害を防
止する効果が少なく、60%以上では体積が嵩みす
ぎて反応容積あたりの生産性が減少するので、10
〜60%が適当である。
If the ratio of carbonaceous material mixed into chromium ore is less than 10%, it will have little effect in preventing fluidization caused by adhesion between chromium ore particles (sintering phenomenon), and if it is more than 60%, it will be less effective. Since the volume is too large and the productivity per reaction volume decreases, 10
~60% is appropriate.

混入する炭材の粒径はクロム鉱石の粒径と差が
ありすぎると偏析を起すので同程度の粒径である
ことが望ましい。実験に使用したクロム鉱石の粒
径は48〜100メツシユ80%以上であり、これに対
して混入した炭材の粒径は48〜100メツシユのも
のを用いた。
If the particle size of the carbonaceous material to be mixed in is too different from the particle size of the chromium ore, segregation will occur, so it is desirable that the particle size is about the same. The particle size of the chromium ore used in the experiment was 80% or more of 48 to 100 mesh, whereas the particle size of the carbon material mixed in was 48 to 100 mesh.

次に、コークス炉ガスとCOやH2等の他の還元
ガスとの比率を変化させて還元率との関係を調べ
た結果を第2図に示す。第2図の曲線Cは還元温
度1000℃、曲線Dは還元温度1100℃の場合であ
る。第2図から、コークス炉ガスの混入により還
元率を高めることができることが明らかである。
コークス炉ガスの混入比率が10%以下では効果が
少なくまた、過多となつても効果が減ずるので還
元ガスに対して10〜70%の範囲が好適である。
Next, Figure 2 shows the results of examining the relationship between the ratio of coke oven gas and other reducing gases such as CO and H 2 to the reduction rate. Curve C in FIG. 2 is for a reduction temperature of 1000°C, and curve D is for a reduction temperature of 1100°C. It is clear from FIG. 2 that the reduction rate can be increased by mixing in coke oven gas.
If the mixing ratio of coke oven gas is less than 10%, the effect will be small, and if it is too much, the effect will be reduced, so a range of 10 to 70% relative to the reducing gas is suitable.

鉱石量に対するコークス炉ガス量と還元率との
関係を第3図に示す。図中曲線Eは還元温度1000
℃、曲線Fは1100℃の場合である。第3図からコ
ークス炉ガス量は400Nm3/t−鉱石以上は必要で
600Nm3/t−鉱石附近が最も還元率が高く、それ
以上では逆に還元率は減少傾向となる。コスト面
も考慮すれば1200Nm3/t−鉱石程度が上限とな
る。
Figure 3 shows the relationship between the amount of coke oven gas and the reduction rate with respect to the amount of ore. Curve E in the figure is a reduction temperature of 1000
℃, curve F is for the case of 1100℃. From Figure 3, the amount of coke oven gas is 400Nm 3 /t - ore or more.
600Nm 3 /t - The reduction rate is highest near the ore, and above that the reduction rate tends to decrease. Considering the cost, the upper limit is about 1200Nm 3 /t - ore.

第4図は本発明方法の実施に用いられる流動予
備還元炉の実施例を模式的に示す断面図である。
FIG. 4 is a cross-sectional view schematically showing an embodiment of a fluidized pre-reduction furnace used in carrying out the method of the present invention.

予備還元炉1は流動層反応器からなり、形状は
通常竪形円筒形である。粉状のクロム鉱石はクロ
ム鉱石供給口3より予備還元炉内に供給され流動
層2を形成する。予備還元炉1内で予備還元され
たクロム鉱石は予備還元鉱排出口4から排出され
溶融還元炉(図示せず)へ輸送されて吹き込まれ
る。コークスや石炭などの炭材およびフラツクス
等はクロム鉱石と混合して供給してもよく、また
別の供給口5,5から供給することもできる。
The pre-reduction furnace 1 consists of a fluidized bed reactor, and is usually vertically cylindrical in shape. Powdered chromium ore is supplied into the preliminary reduction furnace from the chromium ore supply port 3 to form a fluidized bed 2. The chromium ore pre-reduced in the pre-reduction furnace 1 is discharged from the pre-reduced ore outlet 4, transported to and blown into a smelting reduction furnace (not shown). Carbonaceous materials such as coke and coal, flux, etc. may be supplied mixed with chromium ore, or may be supplied from separate supply ports 5, 5.

溶融還元炉からの高温の排ガスは、流動層の下
部の供給口8から供給される。ガス分散板9は必
要に応じて設けることができる。
High temperature exhaust gas from the smelting reduction furnace is supplied from the supply port 8 at the bottom of the fluidized bed. The gas distribution plate 9 can be provided as necessary.

コークス炉ガスは予備還元炉1の側面の供給口
6から供給する。溶融還元炉からの高温の排ガス
と混合して排ガス供給口8から供給することもで
きる。
Coke oven gas is supplied from the supply port 6 on the side of the preliminary reduction furnace 1 . It can also be mixed with high-temperature exhaust gas from the smelting reduction furnace and supplied from the exhaust gas supply port 8.

流動予備還元炉1を用いて、還元温度を900〜
1100℃、炭材供給量を流動層内における炭材とク
ロム鉱石との比率が10〜60%を維持する量、コー
クス炉ガス供給量をクロム鉱石t当り400〜
1200Nm3、溶融還元炉排ガス量に対して10〜70%
の操業条件下でクロム鉱石の予備還元を行なうこ
とによつて、クロム鉱石の予備還元率20〜60%を
達成することができる。
Using fluidized pre-reduction furnace 1, reduce the reduction temperature to 900~
1100℃, the amount of carbon material supplied is such that the ratio of carbon material and chromium ore in the fluidized bed is maintained at 10 to 60%, and the amount of coke oven gas supplied is 400 to 400 per ton of chromium ore.
1200Nm 3 , 10-70% of the amount of smelting reduction furnace exhaust gas
By carrying out the preliminary reduction of chromium ore under the operating conditions of 20 to 60%, it is possible to achieve a preliminary reduction rate of chromium ore of 20 to 60%.

溶融還元炉からの排ガスの顕熱だけで必要な還
元温度の900〜1100℃を維持できない場合は、予
備還元炉の排出口10から排出される排ガスとの
熱交換によるクロム鉱石の予熱が必要である。ク
ロム鉱石の予熱方法としては流動層を多段にする
方法やサスペンジヨン・プレヒーターを用いる方
法が適当である。
If the necessary reduction temperature of 900 to 1100°C cannot be maintained with only the sensible heat of the exhaust gas from the smelting reduction furnace, it is necessary to preheat the chromium ore by heat exchange with the exhaust gas discharged from the outlet 10 of the preliminary reduction furnace. be. Appropriate methods for preheating chromium ore include a multistage fluidized bed method and a suspension preheater.

溶融還元炉からの高温排ガスの顕熱と装入鉱石
を予熱することとによつても熱量が不足する場合
は、酸素または高温の空気を供給口7から供給し
て炭材をCOまで部分燃焼させた燃焼熱を利用す
ることができる。
If the amount of heat is insufficient due to the sensible heat of the high-temperature exhaust gas from the smelting reduction furnace and the preheating of the charged ore, oxygen or high-temperature air is supplied from the supply port 7 to partially burn the carbonaceous material to CO. The generated combustion heat can be used.

予備還元鉱排出口4から排出される予備還元鉱
石中に混入する粉状炭材は、予備還元鉱と共に溶
融還元炉に吹き込まれて還元剤および燃料として
消費されることになる。従つて、溶融還元炉に装
入するコークス量が減少し、塊状コークスを節約
することができる大きな利点がある。
Powdered carbonaceous material mixed in the pre-reduced ore discharged from the pre-reduced ore discharge port 4 is blown into the smelting reduction furnace together with the pre-reduced ore and is consumed as a reducing agent and fuel. Therefore, there is a great advantage that the amount of coke charged into the smelting reduction furnace can be reduced and lump coke can be saved.

本発明方法によれば、コークス炉ガスと炭材と
を使用することにより、従来、溶融還元炉の排ガ
スだけでは還元のしにくいクロム鉱石を比較的低
温で予備還元することができる。
According to the method of the present invention, by using coke oven gas and carbonaceous material, chromium ore, which conventionally has been difficult to reduce with only exhaust gas from a smelting reduction furnace, can be pre-reduced at a relatively low temperature.

本発明の効果をまとめると次のようになる。 The effects of the present invention can be summarized as follows.

(1) 製鉄所内で入手容易なコークス炉ガスをメタ
ン源として使用できる。
(1) Coke oven gas, which is easily available in steel plants, can be used as a methane source.

(2) クロム鉱石に炭材を混入することによつて、
コークス炉ガスの還元力を高めることができ
る。
(2) By mixing carbonaceous materials into chromium ore,
The reducing power of coke oven gas can be increased.

(3) 炭材を添加することによつて、クロム鉱石粒
子が粘着することを防止できるので還元温度を
高めることができ、予備還元率を上げることが
できる。
(3) By adding carbonaceous material, it is possible to prevent the chromium ore particles from sticking, thereby increasing the reduction temperature and increasing the preliminary reduction rate.

(4) 溶融還元炉排ガスの顕熱だけでは還元温度が
維持できないときは、酸素や高温空気を吹き込
んで炭材の燃焼熱を利用できる。
(4) When the reduction temperature cannot be maintained with the sensible heat of the smelting reduction furnace exhaust gas alone, the combustion heat of the carbonaceous material can be used by blowing in oxygen or high-temperature air.

(5) 予備還元鉱とともに炭材が溶融還元炉へ吹き
込まれるので、溶融還元炉のコークス消費量を
減少することができる。すなわち塊状コークス
を粉状の炭材で代替することができる。
(5) Since carbonaceous materials are blown into the smelting reduction furnace together with the pre-reduced ore, the amount of coke consumed in the smelting reduction furnace can be reduced. That is, lump coke can be replaced with powdered carbonaceous material.

次に本発明の実施例を以下に示す。 Next, examples of the present invention will be shown below.

実施例 (1) クロム鉱石:フイリピン産クロム鉱石 組成:Cr2O3 49.2% FeO 23.8% 粒径:28〜48M 7.9% 48〜100M 86.7% 100M以下 5.4% (Mはメツシユである) (2) 炭材:コークス(CDQ(コーク・ドライ・
クエンチヤ)ダスト) 粒径:48〜100メツシユ (3) 予備還元炉操業データ クロム鉱石供給量:175Kg/hr 炭材供給量:68Kg/hr (炭材/クロム鉱石=39%) 溶融還元炉排ガス量:590Nm3/hr コークス炉ガス量:120Nm3/hr (コークス炉ガス量/溶融還元炉排ガス量=20
%) (コークス炉ガス量/クロム鉱石量=686Nm3/t
−鉱石) 酸素量:47Nm3/hr 予備還元炉温度:1030℃ クロム鉱石の予備還元率:38%
Example (1) Chromium ore: Chromium ore from the Philippines Composition: Cr 2 O 3 49.2% FeO 23.8% Particle size: 28-48M 7.9% 48-100M 86.7% 100M or less 5.4% (M is mesh) (2) Carbon material: Coke (CDQ (coke dry)
(quencher) dust) Particle size: 48 to 100 mesh (3) Pre-reduction furnace operation data Chromium ore supply amount: 175Kg/hr Carbonaceous material supply amount: 68Kg/hr (Charcoal material / chrome ore = 39%) Smelting reduction furnace exhaust gas amount : 590Nm 3 /hr Coke oven gas amount: 120Nm 3 /hr (Coke oven gas amount / Melting reduction furnace exhaust gas amount = 20
%) (Coke oven gas amount/chromium ore amount = 686Nm 3 /t
-Ore) Oxygen amount: 47Nm 3 /hr Pre-reduction furnace temperature: 1030℃ Pre-reduction rate of chromium ore: 38%

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ還元温度、コークス
炉ガス濃度、鉱石量に対するコークス炉ガス量、
に対するクロム鉱石予備還元率との関係を示す図
表、第4図は予備還元炉の模式縦断面図である。 A……クロム鉱石100%装入しコークス炉ガス
100%の場合、B……クロム鉱石85%炭材15%装
入しコークス炉ガス30%還元ガス70%の場合、
C,E……還元温度1000℃の場合、D,F……還
元温度1100℃の場合、1……予備還元炉、2……
流動層、3……クロム鉱石供給口、4……予備還
元鉱排出口、5……炭材およびフラツクス供給
口、6……コークス炉ガス供給口、7……酸素ま
たは高温空気の供給口、8……溶融還元炉の排ガ
ス供給口、9……ガス分散板。
Figures 1 to 3 show reduction temperature, coke oven gas concentration, amount of coke oven gas relative to amount of ore, respectively.
FIG. 4 is a schematic longitudinal sectional view of a preliminary reduction furnace. A...Coke oven gas charged with 100% chromium ore
In the case of 100%, B... 85% chromium ore, 15% charging of carbonaceous material, 30% coke oven gas, 70% reducing gas,
C, E...When the reduction temperature is 1000℃, D, F...When the reduction temperature is 1100℃, 1...Preliminary reduction furnace, 2...
Fluidized bed, 3...Chromium ore supply port, 4...Preliminary reduced ore discharge port, 5...Charcoal material and flux supply port, 6...Coke oven gas supply port, 7...Oxygen or high temperature air supply port, 8...Exhaust gas supply port of the melting reduction furnace, 9...Gas distribution plate.

Claims (1)

【特許請求の範囲】[Claims] 1 予備還元炉と溶融還元炉とからなる装置を用
い溶融還元炉排ガスを予備還元炉に導入し粉粒状
鉱石を流動予備還元したのち溶融還元炉に供給し
て溶融金属を製造するクロム鉱石の予備還元方法
において、予備還元炉にコークス炉ガスを溶融還
元炉排ガス導入量の10〜70%、予備還元炉供給ク
ロム鉱石量に対して400〜1200Nm3/t−鉱石の範
囲で供給すると共に、予備還元炉流動層内の炭材
量が鉱石量に対して10〜60%を維持するように炭
材を供給し、かつ、予備還元温度を900〜1100℃
に保持し、炭材の混入した予備還元鉱石を排出す
ることを特徴とする、クロム鉱石の予備還元法。
1 Preparation of chromium ore using a device consisting of a pre-reduction furnace and a smelting-reduction furnace, introducing the smelting-reduction furnace exhaust gas into the pre-reduction furnace, fluidizing the granular ore and supplying it to the smelting-reduction furnace to produce molten metal. In the reduction method, coke oven gas is supplied to the preliminary reduction furnace in the range of 10 to 70% of the amount of smelting reduction furnace exhaust gas introduced, and 400 to 1200Nm 3 /t-ore relative to the amount of chromium ore supplied to the preliminary reduction furnace. Supply carbon material so that the amount of carbon material in the fluidized bed of the reduction furnace maintains 10 to 60% of the amount of ore, and set the preliminary reduction temperature to 900 to 1100℃.
A method for pre-reducing chromium ore, which is characterized by holding the ore in a chromium ore tank and discharging the pre-reduced ore mixed with carbonaceous materials.
JP19729681A 1981-12-08 1981-12-08 Preliminary reducing method for chromium ore Granted JPS58100640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19729681A JPS58100640A (en) 1981-12-08 1981-12-08 Preliminary reducing method for chromium ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19729681A JPS58100640A (en) 1981-12-08 1981-12-08 Preliminary reducing method for chromium ore

Publications (2)

Publication Number Publication Date
JPS58100640A JPS58100640A (en) 1983-06-15
JPS6156303B2 true JPS6156303B2 (en) 1986-12-02

Family

ID=16372096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19729681A Granted JPS58100640A (en) 1981-12-08 1981-12-08 Preliminary reducing method for chromium ore

Country Status (1)

Country Link
JP (1) JPS58100640A (en)

Also Published As

Publication number Publication date
JPS58100640A (en) 1983-06-15

Similar Documents

Publication Publication Date Title
JP2001506315A (en) Direct reduction of metal oxide nodules
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
JPH079015B2 (en) Smelting reduction method for iron ore
JP2016536468A (en) Steel production in coke dry fire extinguishing system.
JPS6156303B2 (en)
MXPA97007698A (en) Procedure to make arra
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JPS59129707A (en) Method and device for direct refining of metallic oxide
JPH0784624B2 (en) Method for producing molten metal from powdered ore containing metal oxide
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
JP3718604B2 (en) Blast furnace raw material charging method
Kunitomo et al. Blast furnace ironmaking process using pre-reduced iron ore
JPH032922B2 (en)
WO2023162389A1 (en) Method for reducing fine iron ore
Dutta et al. Sponge Iron
YAMAOKA et al. A New Ironmaking Process Consisted of Shaft Type Reduction Furnace and Cupola Type Melting Furnace
JPS5980706A (en) Operating method of preliminary reduction furnace with fluidized bed
Dutta et al. Alternate Ironmaking
Havemann Direct iron ore reduction for Asia
JP3220307B2 (en) Operating method of vertical scrap melting furnace
JPS6136575B2 (en)
Edström Technology and economic viability of smelting reduction processes
JPS5918453B2 (en) Method for producing molten metal from powdered ore containing metal oxides
Down Plasma processing for materials production. Final report
JPS6131166B2 (en)