JPS6136575B2 - - Google Patents

Info

Publication number
JPS6136575B2
JPS6136575B2 JP58053575A JP5357583A JPS6136575B2 JP S6136575 B2 JPS6136575 B2 JP S6136575B2 JP 58053575 A JP58053575 A JP 58053575A JP 5357583 A JP5357583 A JP 5357583A JP S6136575 B2 JPS6136575 B2 JP S6136575B2
Authority
JP
Japan
Prior art keywords
ore
furnace
reduction
fluidized bed
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58053575A
Other languages
Japanese (ja)
Other versions
JPS59179726A (en
Inventor
Toshihiro Inatani
Eiji Katayama
Nobuo Tsuchitani
Shunji Hamada
Yasuo Tanaka
Hiroshi Sakimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5357583A priority Critical patent/JPS59179726A/en
Publication of JPS59179726A publication Critical patent/JPS59179726A/en
Publication of JPS6136575B2 publication Critical patent/JPS6136575B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、難還元性鉱石の予備還元法に関
し、とくにたて型炉溶融還元法によつてクロム鉱
石粉などの難還元性鉱石粉を溶融還元する場合
に、該鉱石粉の円滑な予備還元を可能ならしめよ
うとするものである。
[Detailed Description of the Invention] The present invention relates to a method for preliminary reduction of hard-to-reducible ores, and particularly when melting and reducing hard-to-reducible ore powder such as chromium ore powder by a vertical furnace smelting reduction method. This is intended to enable smooth preliminary reduction of ore powder.

近年、鉄鉱石をはじめ主として各種の金属酸化
物よりなる原料鉱石は、塊状鉱石よりはむしろ、
粉粒状鉱石の方が多くなりつつあり、その比率は
今後もますます増加する傾向にあるとみられる。
In recent years, raw material ores mainly composed of various metal oxides, including iron ore, have become more common than lump ores.
Powdered ore is becoming more common, and its proportion is expected to continue to increase.

この傾向は、難還元性のクロム鉱石についても
同じであり、従来かような粉粒状のクロム鉱石か
らフエロクロムを製造する際、溶解炉としては、
主に電気炉が用いられてきた。しかし電気炉を用
いるフエロクロムの製造では、電力原単位は数千
KWH/tにも達し、きわめてコスト高となる不
利があつた。
This tendency is the same for chromium ore, which is difficult to reduce. Conventionally, when producing ferrochrome from granular chromium ore, the melting furnace was
Electric furnaces have been mainly used. However, in the production of ferrochrome using an electric furnace, the electricity consumption per unit is several thousand.
KWH/t, which had the disadvantage of extremely high costs.

ところで、最近は電力によらないフエロクロム
その他の合金鉄の製造技術として、原料鉱石粉か
ら直接溶融金属を得る溶融還元法が注目されてい
て、発明者らは先に、特開昭57−198205号公報に
おいて、炭素質固体還元剤の充てん層をたて型炉
内部で不断に形成する一方、このたて型炉の下部
胴壁に配設した羽口群を通して、該たて型炉から
排出される還元性の排ガスを用いて粉粒状鉱石を
部分還元した予備還元鉱石を、必要ならばさらに
フラツクスを加えて300〜1300℃の高温の空気ま
たは酸素富化空気をもつてする気流搬送下にたて
型炉内に吹込んで、上記予備還元鉱石を溶融還元
する粉粒状鉱石のたて型炉溶融還元法を提案し
た。
Incidentally, recently, the smelting reduction method for directly obtaining molten metal from raw ore powder has been attracting attention as a technology for producing ferrochrome and other ferroalloys that does not rely on electricity, and the inventors previously published Japanese Patent Application Laid-Open No. 57-198205. In the publication, while a packed layer of carbonaceous solid reducing agent is continuously formed inside the vertical furnace, it is discharged from the vertical furnace through a group of tuyeres arranged on the lower body wall of the vertical furnace. The pre-reduced ore obtained by partially reducing the granular ore using reducing exhaust gas is subjected to pneumatic conveyance using air at a temperature of 300 to 1300°C or oxygen-enriched air, with additional flux added if necessary. We proposed a vertical furnace smelting reduction method for powdery ore, in which the pre-reduced ore is blown into a vertical furnace and smelted and reduced.

かようなたて型炉溶融還元法は、各種粉粒状鉱
石の製錬に適用可能なわけであるが、クロム鉱石
の如き難還元性鉱石からのフエロアロイの製造に
適用した場合には、次のような問題があつた。
Such a vertical furnace smelting reduction method can be applied to the smelting of various powdery ores, but when applied to the production of ferroalloy from hard-to-reducible ores such as chromium ore, the following I had a problem like this.

すなわち、予備還元炉において、たて型炉から
の高温排ガスを還元ガスとして使用して、難還元
〓〓〓〓
性鉱石たとえばクロム鉱石を還元しようとして
も、酸化クロム(Cr2O3)は該鉱石中に含まれる
酸化鉄(FeO)に比べて還元されにくいため、ク
ロム鉱石全体としては所定の還元率まで予備還元
を行うことが難しいという点である。
In other words, in the preliminary reduction furnace, high-temperature exhaust gas from the vertical furnace is used as reducing gas to reduce the
Even if an attempt is made to reduce a chromium ore, for example, chromium oxide (Cr 2 O 3 ) is more difficult to reduce than the iron oxide (FeO) contained in the ore, the chromium ore as a whole cannot be reduced to a specified reduction rate. The point is that it is difficult to make a return.

また、クロム鉱石の予備還元法としては、重油
や石炭などを還元剤として使用する方法も提案さ
れているが、この場合は反応炉内温度を1100〜
1300℃の高温に保持する必要があるため、たて型
炉からの排ガス温度が低い場合には適さない。
In addition, as a preliminary reduction method for chromium ore, a method using heavy oil or coal as a reducing agent has also been proposed, but in this case, the temperature inside the reactor is set to 1100 -
Since it is necessary to maintain the temperature at a high temperature of 1300℃, it is not suitable when the exhaust gas temperature from a vertical furnace is low.

この点クロム鉱石をもつと低温で還元する還元
剤として炭化水素系ガスたとえばメタン(CH4
が有効であることが知られているが、炭化水素系
ガスによるクロム鉱石の還元反応は大きな吸熱反
応であるため、たて型炉からの高温排ガスの顕熱
を利用したとしても、還元反応がスムーズに進行
する温度950〜1150℃を確保することは難しかつ
た。
In this respect, when chromium ore is used, hydrocarbon gases such as methane (CH 4 ) are used as reducing agents that reduce at low temperatures.
However, the reduction reaction of chromium ore with hydrocarbon gas is a large endothermic reaction, so even if the sensible heat of the high-temperature exhaust gas from the vertical furnace is used, the reduction reaction will not be effective. It was difficult to maintain a temperature of 950 to 1150 degrees Celsius for smooth progress.

この発明は、上記の問題を有利に解決するもの
で、炭化水素系ガスを利用して低温で予備還元を
行う場合であつても、該炭化水素系ガスの吸熱反
応に基因した温度低下を効果的に回避して円滑な
予備還元を達成し得る、難還元性鉱石の予備還元
法を提案するものである。
This invention advantageously solves the above problem, and even when pre-reduction is performed at a low temperature using a hydrocarbon gas, it is possible to effectively reduce the temperature drop caused by the endothermic reaction of the hydrocarbon gas. This paper proposes a method for pre-reducing refractory ores, which can achieve smooth pre-reduction while avoiding such problems.

この発明は、炭化水素系ガスを使用して難還元
性の粉粒状鉱石を予備還元する場合に懸念された
吸熱反応に伴う炉内の温度低下が、該炉内に別途
に酸素含有ガスたとえば酸素ガスや空気を導入
し、炉内の炭材もしくは炉内発生ガス中の可燃成
分と部分燃焼発熱反応を生起させることによつて
有利に回避され、かくして炉内温度を適正反応温
度である950〜1150℃に維持できるとの新規知見
に立脚する。
This invention solves the problem of a temperature drop in the furnace due to an endothermic reaction when pre-reducing hard-to-reducible powdery ore using a hydrocarbon gas. This can be advantageously avoided by introducing gas or air to cause a partial combustion exothermic reaction with the combustible components in the carbon material in the furnace or the gas generated in the furnace, thus reducing the temperature in the furnace to the appropriate reaction temperature of 950°C. It is based on new knowledge that it can be maintained at 1150℃.

すなわちこの発明は、粉粒状鉱石の予備還元を
行う流動層予備還元炉と、この予備還元鉱石を溶
融還元するたて型炉とを用いるたて型炉溶融還元
法において、難還元性の粉粒状鉱石を予備還元す
るに当り、 該粉粒状鉱石の供給を受けた予備還元炉内に、
たて型炉排ガスに併せ炭化水素系ガスを炭材と共
に供給して流動層を形成させる一方、少くとも該
流動層上部の低還元域以上の領域において酸素含
有ガスを吹込むことを特徴とする難還元性鉱石の
予備還元法である。
That is, the present invention provides a vertical furnace smelting reduction method using a fluidized bed pre-reduction furnace for pre-reducing powdery ore and a vertical furnace for melting and reducing the pre-reduced ore. When pre-reducing the ore, a pre-reduction furnace is placed in which the powdered ore is supplied.
A fluidized bed is formed by supplying hydrocarbon gas along with carbonaceous materials to the vertical furnace exhaust gas, while oxygen-containing gas is blown into at least the region above the low reduction region above the fluidized bed. This is a preliminary reduction method for hard-to-reducible ores.

以下この発明を具体的に説明する。 This invention will be specifically explained below.

第1図に、この発明の実施に用いて好適な予備
還元炉を模式で示し、図中番号1は流動層反応器
からなる予備還元炉であり、その形状は通常竪型
円筒形である。2は難還元性鉱石たとえば粉粒状
クロム鉱石の供給口、3はコークスや石炭などの
炭材さらにはフラツクスなどの供給口であるが、
これらの炭材やフラツクスはクロム鉱石と混合し
て供給口2から同時に供給することもできる。4
は流動層還元ガスであるたて型炉排ガスの導入
口、5は還元剤としての炭化水素系ガスの吹込み
口、6は予備還元された粉粒状予備還元鉱石の排
出口、そして7がこの例で予備還元炉1のフリー
ボード部に開口させた酸素含有ガスの吹込み口で
ある。なお8はガス分散板、9は燃焼ガスの排出
口である。
FIG. 1 schematically shows a pre-reduction furnace suitable for carrying out the present invention, and number 1 in the figure is a pre-reduction furnace consisting of a fluidized bed reactor, and its shape is usually vertical and cylindrical. 2 is a supply port for hard-to-reducible ores such as powdered chromium ore, and 3 is a supply port for carbonaceous materials such as coke and coal, as well as flux.
These carbonaceous materials and fluxes can also be mixed with chromium ore and supplied from the supply port 2 at the same time. 4
5 is the inlet for the vertical furnace exhaust gas which is the fluidized bed reducing gas, 5 is the injection port for the hydrocarbon gas as the reducing agent, 6 is the outlet for the pre-reduced granular pre-reduced ore, and 7 is the inlet for this. In this example, this is an oxygen-containing gas injection port opened in the freeboard portion of the preliminary reduction furnace 1. Note that 8 is a gas distribution plate, and 9 is a combustion gas exhaust port.

さて、粉粒状鉱石の供給口2から炉内に供給さ
れた粉粒状クロム鉱石は、たて型炉排ガスの導入
によつて流動層10を形成すると共に吹込み口5
から供給される炭化水素系ガスによつて還元を受
ける。ところでこの炭化水素系ガスによるクロム
鉱石の還元反応は、前述した如く大きな吸熱反応
であるため、炉内の温度低下が著しくそのままで
は円滑な還元を遂行できない。
Now, the powdery chromium ore supplied into the furnace from the powdery ore supply port 2 forms a fluidized bed 10 by introducing the vertical furnace exhaust gas, and at the same time forms a fluidized bed 10 at the injection port 5.
It is reduced by hydrocarbon gas supplied from By the way, since the reduction reaction of chromium ore by this hydrocarbon gas is a large endothermic reaction as described above, smooth reduction cannot be carried out if the temperature inside the furnace is significantly lowered.

そこでこの発明では、炉内に別途に酸素含有ガ
スたとえば酸素ガスもしくは空気などを吹込み、
該炉内の炭材ないしは炉内発生ガス中の可燃成分
と部分燃焼反応を生起させ、その燃焼熱を利用す
ることにより、所定の反応温度を確保するわけで
ある。
Therefore, in this invention, an oxygen-containing gas such as oxygen gas or air is separately blown into the furnace.
A predetermined reaction temperature is ensured by causing a partial combustion reaction with the combustible components in the carbon material in the furnace or the gas generated in the furnace, and by utilizing the combustion heat.

しかしながらこの酸素含有ガスの炉内導入につ
いては、該酸素含有ガスの吹込み口近傍での局部
的な過熱による予備還元クロム鉱石粒子の焼結や
操業上のトラブルさらには予備還元クロム鉱石粒
子の再酸化による還元率の低下など種々の問題を
内包していて、不用意に流動層中に酸素含有ガス
を導入することはできず、その導入位置が肝要で
ある。
However, when introducing this oxygen-containing gas into the furnace, there are problems such as sintering of pre-reduced chromium ore particles due to local overheating near the oxygen-containing gas injection port, operational problems, and recycling of pre-reduced chromium ore particles. This involves various problems such as a reduction in the reduction rate due to oxidation, and it is impossible to inadvertently introduce oxygen-containing gas into the fluidized bed, so the introduction position is important.

そこで発明者らはこの点につき、種々の検討を
重ねたところ、酸素含有ガスの吹込み領域を、流
動層上部の低還元域以上の領域すなわち流動層上
部のクロム鉱石の予備還元率が低い部分および/
またはフリーボード部とすることにより、上掲し
た諸問題を生じるおそれなしに適正な反応温度を
〓〓〓〓
確保して効果的な予備還元が達成され得ることを
突き止めたのである。
Therefore, the inventors conducted various studies regarding this point and found that the oxygen-containing gas injection region was changed to the area above the low reduction area at the top of the fluidized bed, that is, the area at the top of the fluidized bed where the preliminary reduction rate of chromium ore was low. and/
Alternatively, by using a freeboard section, the appropriate reaction temperature can be maintained without the risk of causing the above-mentioned problems.
They found that it is possible to achieve effective preliminary reduction by ensuring that

すなわち第1図に示したように、流動層10の
上方のフリーボード部11に酸素含有ガスを導入
してフリーボード部11内で流動層発生ガス中の
可燃成分と燃焼させることにより、生起した燃焼
熱で流動層10を効果的に加熱することができる
のである。このとき図示したように粉粒状鉱石の
供給口2をフリーボード部11の上部に設置すれ
ば、上記の効果に加えて、クロム鉱石それ自体も
加熱することができ、一層効果的である。
That is, as shown in FIG. 1, oxygen-containing gas is introduced into the freeboard section 11 above the fluidized bed 10 and is combusted in the freeboard section 11 with combustible components in the fluidized bed gas. The combustion heat can effectively heat the fluidized bed 10. At this time, if the supply port 2 for the granular ore is installed at the upper part of the freeboard part 11 as shown in the figure, in addition to the above-mentioned effect, the chromium ore itself can also be heated, which is even more effective.

次に第2図に、酸素含有ガスの別の吹込み要領
を図解する。この例は、流動層10内をたとえば
多段化装置12によつて多段化して、該流動層1
0内において、クロム鉱石から予備還元クロム鉱
石に変化していく過程において、より上段部の還
元がまだ十分にには進行してなく大部分がクロム
鉱石のままである流動層上部に酸素含有ガスを吹
込む場合であり、かような吹込み要領によつても
前述したクロム鉱石粒子の焼結などの弊害なし
に、流動層内にまんべんなく熱の授受を行つて、
所定の温度を確保することができる。なおこの場
合は、酸素含有ガスを導入する個所における鉱石
の還元率が平均で10%以下であることが望まし
い。
Next, FIG. 2 illustrates another method of blowing the oxygen-containing gas. In this example, the inside of the fluidized bed 10 is multi-staged using, for example, a multi-stage device 12, and the fluidized bed 1
In the process of changing from chromium ore to pre-reduced chromium ore, oxygen-containing gas is generated in the upper part of the fluidized bed where reduction has not yet progressed sufficiently and most of the chromium ore remains as chromium ore. Even with this injection method, heat can be evenly transferred into the fluidized bed without the above-mentioned problems such as sintering of the chromium ore particles.
A predetermined temperature can be ensured. In this case, it is desirable that the reduction rate of the ore at the point where the oxygen-containing gas is introduced is 10% or less on average.

さらに第1図、第2図においてはそれぞれ、酸
素含有ガスの炉内吹込みを、フリーボード部なら
びに流動層上部のみで行う場合についてしか示さ
なかつたが、両方同時に行うことができるのはい
うまでもない。また吹込み酸素量については、あ
まりに多量に吹込むことは堅固な焼結を生じるお
それが大きいので、たとえばクロム鉱石について
はトン当り300Nm3以下程度とすることが望まし
い。さらに酸素含有ガスの吹込みに当つては、必
要に応じ予熱しておくことが、所期した効果を得
る上で一層有利である。
Furthermore, although Figures 1 and 2 only show cases in which oxygen-containing gas is injected into the furnace only in the freeboard section and the upper part of the fluidized bed, it goes without saying that both can be carried out simultaneously. Nor. Regarding the amount of oxygen blown, it is desirable to set the amount of oxygen blown to about 300 Nm 3 or less per ton for chromium ore, for example, since blown in too much oxygen may cause hard sintering. Furthermore, when blowing the oxygen-containing gas, it is more advantageous to preheat it if necessary in order to obtain the desired effect.

以下この発明の実施例について説明する。 Examples of the present invention will be described below.

前掲第2図に示した予備還元炉を用いて、下記
の操業条件下にクロム鉱石の予備還元を行つた。
Preliminary reduction of chromium ore was carried out under the following operating conditions using the pre-reduction furnace shown in FIG. 2 above.

(1) クロム鉱石:フイリツピン産クロム鉱石 組 成:Cr2O3 49.2% FeO 23.8% 粒 径:28〜48メツシユ 7.9% 48〜100メツシユ 86.7% 100メツシユ以下 5.4% 供給量:85Kg/h (2) 炭 材:コークス{CDQ(コーク・ドラ
イ・クエンチヤ)ダスト} 粒 径:48〜100メツシユ 供給量:38Kg/h (3) たて型炉排ガス供給量:890Nm3/h (4) 炭化水素系ガス:メタンガス 供給量:10Nm3/h (5) 供給酸素量:11Nm3/h (6) 目標予備還元率:35% 上記の操業条件下にクロム鉱石の予備還元を行
つたところ、予備還元炉内温度は1030℃と炭化水
素系ガス使用における適正反応温度を維持でき、
また達成予備還元率は目標値35%を満足する結果
が得られた。
(1) Chromium ore: Chromium ore from the Philippines Composition: Cr 2 O 3 49.2% FeO 23.8% Particle size: 28-48 mesh 7.9% 48-100 mesh 86.7% Less than 100 mesh 5.4% Supply rate: 85Kg/h (2 ) Charcoal material: Coke {CDQ (coke dry quencher) dust} Particle size: 48 to 100 mesh Supply amount: 38Kg/h (3) Vertical furnace exhaust gas supply amount: 890Nm 3 /h (4) Hydrocarbon type Gas: Methane gas Supply amount: 10Nm 3 /h (5) Supply oxygen amount: 11Nm 3 /h (6) Target preliminary reduction rate: 35% When chromium ore was preliminary reduced under the above operating conditions, the preliminary reduction furnace The internal temperature is 1030℃, which can maintain the appropriate reaction temperature when using hydrocarbon gas.
In addition, the achieved preliminary return rate met the target value of 35%.

以上実施例では、クロム鉱石の予備還元を行う
場合につき主に説明したが、その他マンガン鉱石
など他の難還元性鉱石の予備還元に適用できるの
はいうまでもない。
In the above embodiments, the case where preliminary reduction of chromium ore is mainly explained, but it goes without saying that the present invention can also be applied to preliminary reduction of other difficult-to-reducible ores such as manganese ore.

かくしてこの発明によれば、難還元性鉱石の予
備還元につき、還元剤として炭化水素系ガスを使
用する場合であつても、炉内の温度低下を招くこ
となしに円滑な予備還元を達成することができ、
有利である。
Thus, according to the present invention, even when a hydrocarbon gas is used as a reducing agent for preliminary reduction of hard-to-reducible ores, smooth preliminary reduction can be achieved without causing a temperature drop in the furnace. is possible,
It's advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施に使用して好適な予備
還元炉の模式図、第2図は他の好適予備還元炉の
模式図である。 〓〓〓〓
FIG. 1 is a schematic diagram of a preliminary reduction furnace suitable for use in carrying out the present invention, and FIG. 2 is a schematic diagram of another preferred preliminary reduction furnace. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 粉粒状鉱石の予備還元を行う流動層予備還元
炉と、この予備還元鉱石を溶融還元するたて型炉
とを用いるたて型炉溶融還元法において、難還元
性の粉粒状鉱石を予備還元するに当り、 該粉粒状鉱石の供給を受けた予備還元炉内に、
たて型炉排ガスに併せ炭化水素系ガスを炭材と共
に供給して流動層を形成させる一方、少くとも該
流動層上部の低還元域以上の領域において酸素含
有ガスを吹込むことを特徴とする難還元性鉱石の
予備還元法。
[Scope of Claims] 1. In a vertical furnace smelting reduction method using a fluidized bed pre-reduction furnace for pre-reducing powdery ore and a vertical furnace for melting and reducing the pre-reduced ore, When pre-reducing the granular ore, a pre-reducing furnace is placed in which the granular ore is supplied.
A fluidized bed is formed by supplying hydrocarbon gas along with carbonaceous materials to the vertical furnace exhaust gas, while oxygen-containing gas is blown into at least the region above the low reduction region above the fluidized bed. Preliminary reduction method for refractory ores.
JP5357583A 1983-03-31 1983-03-31 Preliminary reducing method of hardly reducible ore Granted JPS59179726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5357583A JPS59179726A (en) 1983-03-31 1983-03-31 Preliminary reducing method of hardly reducible ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5357583A JPS59179726A (en) 1983-03-31 1983-03-31 Preliminary reducing method of hardly reducible ore

Publications (2)

Publication Number Publication Date
JPS59179726A JPS59179726A (en) 1984-10-12
JPS6136575B2 true JPS6136575B2 (en) 1986-08-19

Family

ID=12946625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5357583A Granted JPS59179726A (en) 1983-03-31 1983-03-31 Preliminary reducing method of hardly reducible ore

Country Status (1)

Country Link
JP (1) JPS59179726A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948645A (en) * 1973-04-30 1976-04-06 Boliden Aktiebolag Method of carrying out heat-requiring chemical and/or physical processes in a fluidized bed
JPS57198205A (en) * 1981-04-28 1982-12-04 Kawasaki Steel Corp Production of molten metal from powder and granular ore
JPS589809A (en) * 1981-07-08 1983-01-20 Mitsui Toatsu Chem Inc Novel method for preparation of silicon hydride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948645A (en) * 1973-04-30 1976-04-06 Boliden Aktiebolag Method of carrying out heat-requiring chemical and/or physical processes in a fluidized bed
JPS57198205A (en) * 1981-04-28 1982-12-04 Kawasaki Steel Corp Production of molten metal from powder and granular ore
JPS589809A (en) * 1981-07-08 1983-01-20 Mitsui Toatsu Chem Inc Novel method for preparation of silicon hydride

Also Published As

Publication number Publication date
JPS59179726A (en) 1984-10-12

Similar Documents

Publication Publication Date Title
AU2003261814B2 (en) Method for producing titanium oxide containing slag
KR20000062353A (en) Production method of metallic iron
JPH11514705A (en) A combined method for producing metals and metal alloys from metal oxide ores
JP2001506315A (en) Direct reduction of metal oxide nodules
JP2001342509A (en) Method and apparatus for producing metallic iron
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
JP2732522B2 (en) Equipment for producing iron or non-ferrous metals from self-soluble or non-self-soluble, self-reducing ores ores
US4248624A (en) Use of prereduced ore in a blast furnace
JPS61272329A (en) Reduction of iron-containing chromium ore
JPS61221315A (en) Production of pig iron
JPH079015B2 (en) Smelting reduction method for iron ore
JPH0621316B2 (en) Ferrochrome manufacturing method
JPS6136575B2 (en)
JPS5918452B2 (en) Method for producing molten metal from powdered ore
EP0950117B1 (en) A method for producing metals and metal alloys
US4412862A (en) Method for the production of ferrochromium
JP2983087B2 (en) Operation method of smelting reduction
JP3516793B2 (en) How to load raw fuel such as dust agglomerate, self-reducing ore, iron scrap, solid fuel, etc. into vertical furnace
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
JPH0784624B2 (en) Method for producing molten metal from powdered ore containing metal oxide
JP2837282B2 (en) Production method of chromium-containing hot metal
JPH032922B2 (en)
JPH0723502B2 (en) Hot metal manufacturing method
JPH032933B2 (en)
JPS6156303B2 (en)