JPS62230922A - Operating method for vertical type melt reduction furnace - Google Patents

Operating method for vertical type melt reduction furnace

Info

Publication number
JPS62230922A
JPS62230922A JP7388486A JP7388486A JPS62230922A JP S62230922 A JPS62230922 A JP S62230922A JP 7388486 A JP7388486 A JP 7388486A JP 7388486 A JP7388486 A JP 7388486A JP S62230922 A JPS62230922 A JP S62230922A
Authority
JP
Japan
Prior art keywords
furnace
gas
wall
cooling
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7388486A
Other languages
Japanese (ja)
Inventor
Takashi Ushijima
牛島 崇
Eiji Katayama
英司 片山
Hisao Hamada
浜田 尚夫
Shiko Takada
高田 至康
Katsutoshi Igawa
井川 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7388486A priority Critical patent/JPS62230922A/en
Publication of JPS62230922A publication Critical patent/JPS62230922A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To effectively prevent damage to the wall of a vertical type melt reduction furnace by providing gas supply ports to the cylindrical circumference of the furnace wall and cooling the furnace wall with a cooling gas at the time of producing a molten metal in said furnace. CONSTITUTION:A carbon solid reducing agent (powder coke, etc.) is charged from a supply device 4 into the vertical type melt reduction furnace 3. An oxygen-contg. gas is blown from plural tuyeres 5 into the furnace to form a fluidized bed 9 and a packed bed 11. Powdery ore is supplied from tuyeres 1 into the fluidized bed 9 and the powdery ore is heated to form the molten metal 13 and molten slag 12. A generated exhaust gas 2 is taken out of a discharge port 7. The fluidized bed part 9 forms a high-temp. region of about 1,500-1,600 deg.C and therefore cooling gas supply ports 6a, 6a are installed to the cylindrical circumference of the wall of the furnace 3. The exhaust gas 2 cooled to an ordinary temp. by a cooler 15 is introduced into said ports. The cooling gas ascends mostly along the furnace wall and therefore the inside wall of the furnace is effectively cooled. The volume of the cooling gas to be introduced is adjusted to about 1-5vol% of the volume of the gas in the furnace. The consumption of the inside wall of the furnace is, thus considerably reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、竪型溶融還元炉の操業方法に関し。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of operating a vertical melting reduction furnace.

特に高温の竪型炉内の排ガスの効果的な冷却を達成する
ことにより、円滑な竪型炉操業を実現しようとするもの
である。
In particular, by achieving effective cooling of the high-temperature exhaust gas in the vertical furnace, it is intended to realize smooth operation of the vertical furnace.

〔従来の技術〕[Conventional technology]

近年、鉄鉱石はじめ各種の金属酸化物を含む原料鉱石は
、塊状鉱石より、粉粒状鉱石の方が多くなりつつあり、
今後もますますその比率は増加する傾向にあると見られ
る。従来、粉粒状鉱石の精錬方法としては、粉粒状鉱石
を塊成化した後、この塊成鉱を電炉、転炉、その他の溶
解炉で溶融還元する方式が一般的である。しかしこのよ
うな方式によれば、塊成化のための設備と材料および処
理エネルギーなどの処理費を必要とするだけでなく、塊
成化した後、焼成を必要とする場合には、その際に焼成
炉から排出されるガス中のNOx、SOxおよびダスト
などを処理するための費用が多いという難点を伴う。
In recent years, raw material ores containing various metal oxides, including iron ore, have become more granular ore than lumpy ore.
This ratio is expected to continue to increase in the future. Conventionally, a common method for refining powdery ore is to agglomerate the powdery ore and then melt and reduce the agglomerated ore in an electric furnace, converter, or other melting furnace. However, this method not only requires processing costs such as equipment and materials for agglomeration and processing energy, but also requires additional processing costs when firing is required after agglomeration. However, there is a disadvantage in that the cost for treating NOx, SOx, dust, etc. in the gas discharged from the firing furnace is high.

また上記の方式の他に、アーク炉やプラズマまたは純酸
素を利用する炉を用いて、粉粒状の予備還元鉱を、塊成
ないしは焼成を経ずに溶融還元する方式も企てられては
いるが、アーク炉やプラズマ炉を用いる方式によれば電
力消費が莫大であるばかりでなく、立地条件にもル1約
があり、純Iv素を利用する炉を用いる方式によれば、
高温雰囲気を得ることは容易であっても酸素使用量が多
いなどの問題をはらんでいる。
In addition to the above-mentioned methods, methods have also been proposed in which powdery pre-reduced ore is melted and reduced without agglomeration or calcination using an arc furnace, a furnace that uses plasma, or pure oxygen. However, the method using an arc furnace or plasma furnace not only consumes a huge amount of electricity, but also has locational requirements, and the method using a furnace using pure IV element
Although it is easy to obtain a high-temperature atmosphere, there are problems such as a large amount of oxygen being used.

本発明者らは先に、上記の諸問題を有利に解決するもの
として、特願昭58−11707号明細書において、粉
状鉱石を炭素系固体還元剤の流動層に装入し、酸素を含
む気体を炭素系固体還元剤の充填層に吹込む粉状鉱石の
溶融金属製造方法を提案した。
The present inventors previously proposed in Japanese Patent Application No. 11707/1987 that the above-mentioned problems could be solved advantageously by charging powdered ore into a fluidized bed of a carbon-based solid reducing agent and removing oxygen. We proposed a method for producing molten metal from powdered ore by blowing the containing gas into a packed bed of carbon-based solid reducing agent.

上記の方法において、予熱され竪型炉内に装入される装
入物は、該炉内下部に形成された炭素系固体還元剤の流
動層の高温領域中を滴下する間に溶融還元されて炉床に
貯溜し、適宜に炉外に取出される。このような竪型炉を
用いる溶融還元法の開発により、粉粒状鉱石の精錬を極
めて効果的に行うことができるようになった。
In the above method, the preheated charge charged into the vertical furnace is melted and reduced while dropping through the high temperature region of a fluidized bed of carbon-based solid reducing agent formed in the lower part of the furnace. It is stored in the hearth and taken out from the hearth as appropriate. The development of the smelting reduction method using such a vertical furnace has made it possible to refine granular ores extremely effectively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記の溶融還元法においては、竪型炉内が
高温雰囲気化に曝されるため、該炉内壁の損耗が多く、
従って炉のプロフィル変化によって炉操業が変調を来た
す恐れがあり、また補修回数が増大するところに問題を
残していたのである。
However, in the above-mentioned smelting reduction method, since the inside of the vertical furnace is exposed to a high temperature atmosphere, there is a lot of wear and tear on the furnace inner wall.
Therefore, the furnace operation may be affected by changes in the furnace profile, and there remains a problem in that the number of repairs will increase.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の問題を有利に解決するもので、粉粒状固
体還元剤の流動層を竪型炉内部に形成する−・方、この
竪型炉の下部胴壁に設けた羽目群を通して酸素を含む気
体の吹込みを行い、予備還元した、または予@還元なし
の粉粒状鉱石を竪型炉内に装入することにより、粉粒状
鉱石の溶融還元を行う竪型溶融還元炉において、該竪型
炉の炉壁胴周に沿って設けた複数のガス供給口から、冷
却ガスを炉内に導入し、炉壁を冷却することをもって、
炉内壁損耗の解決の手段とするものである。
The present invention advantageously solves the above problems by forming a fluidized bed of a granular solid reducing agent inside a vertical furnace, and by introducing oxygen through a group of panels provided on the lower body wall of the vertical furnace. In a vertical smelting reduction furnace, the granular ore is smelted and reduced by blowing a gas containing it into the vertical furnace and charging the granular ore which has been pre-reduced or not pre-reduced into the vertical furnace. By introducing cooling gas into the furnace from multiple gas supply ports provided along the furnace wall circumference of the mold furnace and cooling the furnace wall,
This is a means of solving the problem of furnace inner wall wear.

本発明で用いる冷却ガスとしては、常温程度の低温であ
って、炉内反応に極端な悪影響を及ぼさないものであれ
ば、いずれでもよく、予4a還元炉排ガスまたは窒ぶガ
スなどが好適であり、またその供給量は排ガス場の1〜
5容量%程度で十分である。また冷却ガスとしてスチー
ムを使用することもできる。
As the cooling gas used in the present invention, any gas may be used as long as it is at a low temperature of about room temperature and does not have an extremely adverse effect on the reaction in the furnace, and preferable examples include pre-4a reduction furnace exhaust gas or nitrogen gas. , and the supply amount is 1 to 1 at the exhaust gas field.
About 5% by volume is sufficient. Steam can also be used as the cooling gas.

〔作用〕[Effect]

以下本発明を作用と共に具体的に説明する。 The present invention will be specifically explained below along with its operation.

第1図に、本発明の実施に適合する竪型溶融還元炉を模
式的に示す。
FIG. 1 schematically shows a vertical melting reduction furnace suitable for carrying out the present invention.

竪型溶融還元炉3には粉状鉱石供給羽口1から原料粉状
篤石を炭素系固体還元剤の流動層に供給し、炭素系固体
還元剤供給装置4から炭素系固体還元剤1例えば粉コー
クスを装入して、炉内部に流動層9と充填層11とを形
成する。また竪型溶融還元炉3の胴周下部には複数の羽
口5が配置され、この羽口5から酸素を含むガスを吹き
込んでいる。このガスはまた流動層9の流動化ガスでも
ある。そして竪型炉内に胴周にわたって冷却ガスの供給
口6が配設されている。
In the vertical smelting reduction furnace 3, raw material powdered atsushi is supplied from a powdered ore supply tuyere 1 to a fluidized bed of a carbon-based solid reducing agent, and a carbon-based solid reducing agent 1 is supplied from a carbon-based solid reducing agent supply device 4, for example. Coke powder is charged to form a fluidized bed 9 and a packed bed 11 inside the furnace. Further, a plurality of tuyeres 5 are arranged at the lower part of the circumference of the vertical melting reduction furnace 3, and gas containing oxygen is blown into the tuyeres 5. This gas is also the fluidizing gas for the fluidized bed 9. A cooling gas supply port 6 is provided in the vertical furnace over the circumference of the body.

羽目群5を通して酸素を含む気体を吹込むことによりそ
の上部に流動層を形成させ、竪型炉3内で発生する排ガ
ス2を、排気ロアから排出する。
By blowing gas containing oxygen through the wall group 5, a fluidized bed is formed in the upper part thereof, and the exhaust gas 2 generated in the vertical furnace 3 is discharged from the exhaust lower.

竪型炉3内に形成された充填層11は羽目5の先端近傍
で、高炉の羽口先におけると同様なレースウェイを生成
して、2500℃以上の高温領域が形成され、この充填
層の上部に、炭素系固体還元剤の流動層を生成して15
00−1600℃の高温領域が形成され、この領域内に
装入される予備−元部等の粉状鉱石は直ちに加熱され、
容易に溶融し、竪型炉3の下部に向は滴下する間に還元
されて溶融金属13と溶融スラグ12が生成する。
The packed bed 11 formed in the vertical furnace 3 generates a raceway similar to that at the tip of the tuyere of a blast furnace near the tip of the siding 5, and a high temperature region of 2500°C or more is formed, and the upper part of this packed bed 15 by creating a fluidized bed of carbon-based solid reducing agent.
A high temperature region of 00-1600°C is formed, and powdered ore such as preliminary ores charged into this region is immediately heated.
It melts easily and is reduced while dropping into the lower part of the vertical furnace 3, producing molten metal 13 and molten slag 12.

炉床部に貯溜した溶融金属13とスラグ12は出湯口1
0より適時炉外に取り出される。
The molten metal 13 and slag 12 stored in the hearth are discharged from the tap 1
0, and is taken out of the furnace in a timely manner.

炭素系固体還元剤としては、粉粒状コークスが好適であ
るが、粉粒状のチャーや石炭をもって代え、またそれら
を併用することもできる。
As the carbon-based solid reducing agent, granular coke is suitable, but granular char or coal may be used instead, or they may be used in combination.

また予@還元鉱は、流動層部において、加熱されるほか
その保有熱が竪型炉3内に持ち込まれるので有利である
Further, the pre-reduced ore is advantageous because it is heated in the fluidized bed section and its retained heat is brought into the vertical furnace 3.

ざらに予@還元率は鉱石の種類その他により異なるが、
30〜80%の範囲内のとき最も良い結果を得ることが
できる。
The reduction rate varies depending on the type of ore, etc.
Best results can be obtained within the range of 30-80%.

ところで前述したように竪型炉3内の流動層部では15
00〜1600℃に達する高温望域が形成されるため、
必然的に、この領域で高温のガスが生成する。従ってこ
の高温ガスが炉内を上昇するために、炉壁は著しい浸食
を受け、甚しい場合には炉内のプロフィルが変化して炉
操業に変調を来たすほか、熱損失が増大するなどの弊害
が生じていたのである。
By the way, as mentioned above, in the fluidized bed section in the vertical furnace 3, 15
Because a high temperature range reaching 00 to 1600 degrees Celsius is formed,
Inevitably, hot gas is generated in this region. Therefore, as this high-temperature gas rises inside the furnace, the furnace wall undergoes significant erosion, and in severe cases, the profile inside the furnace changes, causing fluctuations in furnace operation, as well as other negative effects such as increased heat loss. was occurring.

そこで本発明では、この高温ガスによる炉内壁の浸食を
防止するために、第1図に示したように、竪型炉3に、
羽口群5と同様に炉壁胴周にわたって冷却ガス供給口6
.6aを設2tL、この供給口6,6aから冷却ガス例
えば冷却袋こ15で常温まで冷却された予@還元炉排ガ
ス7または不活性ガス、スチームを炉内に導入する。こ
のような冷却ガスは炉内ではほとんどが炉壁に沿って上
昇するため、冷却ガス量は少量であっても炉内壁は効果
的に冷却され、従って炉操業に支障を来たすことなしに
炉壁の損耗を有利に防止することができる。
Therefore, in the present invention, in order to prevent the inner wall of the furnace from being eroded by this high-temperature gas, as shown in FIG.
Similar to the tuyere group 5, cooling gas supply ports 6 are provided along the circumference of the furnace wall.
.. A cooling gas such as a pre-reduction furnace exhaust gas 7 cooled to room temperature in a cooling bag 15, an inert gas, or steam is introduced into the furnace through the supply ports 6 and 6a. In the furnace, most of this cooling gas rises along the furnace wall, so even if the amount of cooling gas is small, the furnace inner wall is effectively cooled, and the furnace wall can be cooled without interfering with furnace operation. wear and tear can be advantageously prevented.

なお、冷却ガスの供給口としては、第2図に例示したよ
うに炉壁を兼ねる多孔性の耐火物14を用いれば、冷却
効果はより向上する。
Note that the cooling effect is further improved by using a porous refractory 14 that also serves as a furnace wall as illustrated in FIG. 2 as a cooling gas supply port.

因みに、炉内ガス平均温度が1500℃の場合に、炉内
ガス量に対し、1〜5容量%の冷却ガスを炉内に導入し
たところ、炉内壁近傍のガス温度は1340℃〜900
℃程度まで低下し、炉内壁の損耗が従来に比べ大幅に軽
減された。
Incidentally, when the average gas temperature in the furnace is 1500°C, when cooling gas of 1 to 5% by volume is introduced into the furnace based on the amount of gas in the furnace, the gas temperature near the furnace inner wall is 1340°C to 900°C.
℃, and wear and tear on the inner walls of the furnace was significantly reduced compared to before.

なお冷却ガスの供給量は、少なすぎると炉内壁の冷却効
果に乏しく、一方多すぎると竪型炉の炉頂ガス温度が低
下して予@還元炉への導入に支障が出るので、炉内ガス
量に対し1〜5容量%程度とするのが望ましい。
If the amount of cooling gas supplied is too small, the effect of cooling the inner wall of the furnace will be poor, while if it is too large, the temperature of the top gas of the vertical furnace will drop and it will be difficult to introduce it into the pre-reduction furnace. It is desirable that the amount is about 1 to 5% by volume based on the amount of gas.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

第1図に示した実施例の試験炉を以下の操業条件下で操
業した。
The test furnace of the example shown in FIG. 1 was operated under the following operating conditions.

■)鉱石 銘柄:MBR鉱石 粒径:2mm以下 供給量+48kg/H 2)炭素系固体還元剤 銘柄ニ一般炭(F C75,1%) 粒径:20mm以下 供給量:36kg/H 3)竪型還元炉への送風 気体:酸素90%、窒素10% 風量:18Nrn’/H 4)鉱石の予4Ia還元率:65% 5)銑鉄生産量:27kg/H 6)スラグ排出量:8kg/H 7)冷却ガス 種類:予@還元炉排ガス 温度=70℃ 供給量: 0.5 Nm’/ H(排ガス量に対して1
.5%) 以上の条件で操業を行ったところ、従来のように冷却ガ
スの導入のない場合には約1490℃であった炉内ガス
温度が、炉内壁近傍で約1230℃まで低下し、炉壁の
補修回数を従来の1/3に低減することができた。
■) Ore brand: MBR Ore particle size: 2 mm or less Supply rate + 48 kg/H 2) Carbon-based solid reducing agent brand - Steam coal (FC75, 1%) Particle size: 20 mm or less Supply rate: 36 kg/H 3) Vertical type Blow gas to the reduction furnace: 90% oxygen, 10% nitrogen Air volume: 18Nrn'/H 4) Pre-4Ia reduction rate of ore: 65% 5) Pig iron production: 27kg/H 6) Slag discharge amount: 8kg/H 7 ) Cooling gas type: Pre-reduction furnace exhaust gas temperature = 70℃ Supply amount: 0.5 Nm'/H (1 for exhaust gas amount
.. 5%) When operating under the above conditions, the gas temperature in the furnace, which was approximately 1490°C when no cooling gas was introduced as in the past, decreased to approximately 1230°C near the furnace inner wall, and the furnace We were able to reduce the number of wall repairs to 1/3 compared to conventional methods.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、溶融還元炉操業に支
障を来たすことなしに、竪型炉内壁近傍の炉内ガス温度
を効果的に低下させて該ガスによる炉内壁の浸食を大幅
に低減させることができるので、炉内壁損耗に伴う炉内
プロフィルの変化に起因した炉操業の変調防止や補修回
数の削減を達成することができる。
As described above, according to the present invention, the temperature of the gas in the furnace near the inner wall of the vertical furnace can be effectively lowered, and the erosion of the inner wall of the furnace due to the gas can be significantly reduced, without causing any hindrance to the operation of the smelting reduction furnace. Therefore, it is possible to prevent fluctuations in furnace operation due to changes in the furnace profile due to wear and tear on the furnace inner walls, and to reduce the number of repairs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いる竪型溶融還元炉の模式縦
断面図、第2図は他の好適竪型炉の縦断面図である。 1・・・粉状鉱石供給羽口 2・・・排ガス 3・・・竪型溶融還元炉 4・・・炭素系固体還元剤供給装置 5・・・羽目 6.6a・・・冷却ガス供給口 9・・・流動層 lO・・・出湯口 11・・・充填層 12・・・溶融スラグ 13・・・溶融金属 14・・・多孔性耐火物 15・・・冷却装置
FIG. 1 is a schematic vertical cross-sectional view of a vertical melting reduction furnace used for carrying out the present invention, and FIG. 2 is a vertical cross-sectional view of another preferred vertical furnace. 1... Powdered ore supply tuyere 2... Exhaust gas 3... Vertical melting reduction furnace 4... Carbon-based solid reducing agent supply device 5... Tuyere 6.6a... Cooling gas supply port 9... Fluidized bed lO... Tap port 11... Filled bed 12... Molten slag 13... Molten metal 14... Porous refractory 15... Cooling device

Claims (1)

【特許請求の範囲】[Claims] 1 竪型溶融還元炉を用いて、炭素系固体還元剤の充填
層とその上方に流動層とを同一炉内に維持し、粉状鉱石
を炭素系固体還元剤の流動層に装入し、酸素を含む気体
を炭素系固体還元剤の充填層に吹込む粉状鉱石の溶融金
属製造方法において、該竪型炉の炉壁胴周にわたって設
けたガス供給口から冷却ガスを炉内に導入し炉壁を冷却
することを特徴とする竪型溶融還元炉の操業方法。
1 Using a vertical smelting reduction furnace, maintaining a packed bed of a carbon-based solid reducing agent and a fluidized bed above it in the same furnace, charging powdered ore into the fluidized bed of the carbon-based solid reducing agent, In a method for producing molten metal from powdered ore in which a gas containing oxygen is blown into a packed bed of a carbon-based solid reducing agent, a cooling gas is introduced into the furnace from a gas supply port provided over the circumference of the furnace wall of the vertical furnace. A method of operating a vertical smelting reduction furnace characterized by cooling the furnace wall.
JP7388486A 1986-03-31 1986-03-31 Operating method for vertical type melt reduction furnace Pending JPS62230922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7388486A JPS62230922A (en) 1986-03-31 1986-03-31 Operating method for vertical type melt reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7388486A JPS62230922A (en) 1986-03-31 1986-03-31 Operating method for vertical type melt reduction furnace

Publications (1)

Publication Number Publication Date
JPS62230922A true JPS62230922A (en) 1987-10-09

Family

ID=13531081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7388486A Pending JPS62230922A (en) 1986-03-31 1986-03-31 Operating method for vertical type melt reduction furnace

Country Status (1)

Country Link
JP (1) JPS62230922A (en)

Similar Documents

Publication Publication Date Title
JPH10195513A (en) Production of metallic iron
JP2001158906A (en) Direct smelting method
JP2732522B2 (en) Equipment for producing iron or non-ferrous metals from self-soluble or non-self-soluble, self-reducing ores ores
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JP3236737B2 (en) Operating method of vertical iron scrap melting furnace
JPS62230922A (en) Operating method for vertical type melt reduction furnace
JP3516793B2 (en) How to load raw fuel such as dust agglomerate, self-reducing ore, iron scrap, solid fuel, etc. into vertical furnace
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
JPH0130888B2 (en)
JP4005683B2 (en) Vertical furnace operation method for treating powdered waste
JPS59110711A (en) Method for cooling furnace wall of shaft type fusion reduction furnace
JPH0242884B2 (en)
JPH0726161B2 (en) Method for recovering valuable metals from by-products during stainless steel production
JPS63118026A (en) Operating method for zinc blast furnace
JPH0372127B2 (en)
JPS59110712A (en) Reduction of powdery granular ore
JPS61199009A (en) Iron making method by melt reduction
JPH01252712A (en) Method for operating smelting reduction furnace
JPH0310030A (en) Treating furnace for by-product in process for producing stainless steel
JPS6131166B2 (en)
JPS6248749B2 (en)
JPH01319620A (en) Method of operating smelting reduction furnace
JPS5980703A (en) Melt reduction method of powder and granular ore by vertical type furnace
JPH0314889B2 (en)
JPS5918453B2 (en) Method for producing molten metal from powdered ore containing metal oxides