JPS59162213A - Operating furnace of melt reduction furnace - Google Patents

Operating furnace of melt reduction furnace

Info

Publication number
JPS59162213A
JPS59162213A JP58034461A JP3446183A JPS59162213A JP S59162213 A JPS59162213 A JP S59162213A JP 58034461 A JP58034461 A JP 58034461A JP 3446183 A JP3446183 A JP 3446183A JP S59162213 A JPS59162213 A JP S59162213A
Authority
JP
Japan
Prior art keywords
furnace
flux
slag
ore
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58034461A
Other languages
Japanese (ja)
Other versions
JPH0314889B2 (en
Inventor
Shiko Takada
高田 至康
Nobuo Tsuchitani
槌谷 暢男
Hisao Hamada
浜田 尚夫
Toshihiro Inatani
稲谷 稔宏
Eiji Katayama
英司 片山
Mitsuo Kadoto
角戸 三男
Tsutomu Fujita
勉 藤田
Shunji Hamada
浜田 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58034461A priority Critical patent/JPS59162213A/en
Publication of JPS59162213A publication Critical patent/JPS59162213A/en
Publication of JPH0314889B2 publication Critical patent/JPH0314889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To accelerate reduction with a min. amt of flux and to discharge smoothly slag in a method for charging powder ore and flux to a titled furnace contg. a C contg. solid reducing agent and provided with plural upper and lower stages positioned near a tuyere by blowing specifically the flux. CONSTITUTION:A C contg. solid reducing agent is charged into a vertical melt reduction furnace 1 to form a packed bed. Powder ore and a flux for accelerating the reduction thereof are supplied by a device 7 to a fluidized preliminary reduction furnace 6, where the ore is preliminarily reduced and heated by using the high temp. waste gas generated in the furnace 1. The preliminarily reduced ore and flux are transferred through a discharging port 8 to the upper and middle tuyeres 3, 4 in the lower part of the furnace and are blown together with the hot air from a hot stove 11 into the furnace 1. These materials are immediately melted, and while the molten material drops in the reducing agent packed bed in the lower part of the furnace 1, the materials are reduced and the molten metal and slag are formed. A flux for adjusting the final slag component in the hopper 9 is blown together with the hot air through a tuyere 5 into the furnace 1 to discharge the slag smoothly. The molten metal is melted together with the flux and is finally accumulated in the hearth part. The molten metal is properly tapped through a discharging port 10.

Description

【発明の詳細な説明】 本発明は炭素系固体還元剤の充填層を内部に内蔵すると
ともに上下方向に2段もしくは必要により3段に設けら
れたそれぞれ複数の羽目を有する竪型の溶融還元炉を用
いて、粉状鉱石を羽口から吹き込むことにより溶融金属
を製造する溶融還元炉の操業方法において、最少量のフ
ラックス吹き込みで粉状鉱石の還元を促進し、かつスラ
グの排滓を円滑に維持することのできる、溶融還元炉の
羽口からの7ラフクス吹き込み方法に係る溶融還元炉の
操業方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a vertical smelting reduction furnace which contains a packed bed of a carbon-based solid reducing agent and has a plurality of slats arranged vertically in two or, if necessary, three stages. In the operating method of a smelting reduction furnace that produces molten metal by blowing powdered ore through the tuyeres, the reduction of powdery ore is promoted with the minimum amount of flux injection, and the slag is smoothly discharged. The present invention relates to a method of operating a smelting and reducing furnace, which allows for a method of blowing 7 lux from the tuyere of the smelting and reducing furnace.

近年、鉄鉱石をはじめ各種の金属酸化物より成る原料鉱
石は、塊状鉱石よりはむしろ、粉粒鉱石の方が多くなり
つつあり、今後もますますその比率が増加する傾向にあ
るとみられる。従来、粉粒状鉱石による製錬方法として
は、流動層を用いて粉粒状鉱石を予備還元したのち、こ
の予備還元鉱を電炉、転炉、その他の溶解炉で溶融還元
する方式が一般的である。
In recent years, the raw material ores made of various metal oxides, including iron ore, have become more granular ores than lumpy ores, and the proportion is expected to continue to increase in the future. Conventionally, the common method for smelting using powdery ore is to pre-reduce the powdery ore using a fluidized bed, and then melt and reduce the pre-reduced ore in an electric furnace, converter, or other melting furnace. .

この場合、予備還元鉱にバインダーを添加して塊成化し
、その塊成物を溶解炉で溶融還元する製錬方式が多い。
In this case, there are many smelting methods in which a binder is added to the pre-reduced ore to agglomerate it, and the agglomerate is melted and reduced in a melting furnace.

しかし、このような方式によれば、塊成化のための資材
、処理費および処理エネルギーなどを必要とするだけで
なく、塊成化したのち焼成を必要とする場合には、その
際に焼成炉から排出されるガス中のNOx 、SOxお
よびダストなどを処理するための費用が多大となるとこ
ろにも難点を伴う。
However, this method not only requires materials for agglomeration, processing costs, and processing energy, but also requires firing after agglomeration. Another drawback is that the cost for treating NOx, SOx, dust, etc. in the gas discharged from the furnace is large.

また上記の方式の他に、アーク炉やプラズマまたは純酸
素を利用する炉を用いて、予備還元鉱を塊成や焼成を経
ずに溶融還元する方式も企てられてはいるが、アーク炉
を用いる方式によれば電力消費が莫大であるばかりでな
く、立地条件にも制約があり、またプラズマを利用する
炉を用いる方式も電力消費が甚だしく現在のところ工業
的規模での適用が困難であり、さらに純酸素を利用する
炉を用いる方式によれば、高温雰囲気を得ることは容易
であっても還元雰囲気の維持が難かしくまた酸素使用量
が嵩むなど、何れも技術的に解決を要する問題をはらん
でいる。
In addition to the above-mentioned methods, methods have also been proposed in which the pre-reduced ore is melted and reduced without agglomeration or calcination using an arc furnace or a furnace that uses plasma or pure oxygen. The method using plasma not only consumes a huge amount of power, but also has restrictions on location, and the method using a furnace that uses plasma consumes so much power that it is currently difficult to apply on an industrial scale. Furthermore, with the method using a furnace that uses pure oxygen, even though it is easy to obtain a high-temperature atmosphere, it is difficult to maintain a reducing atmosphere and the amount of oxygen used increases, all of which require technical solutions. It's fraught with problems.

ところで本発明者らは先に、上記の諸問題を有利に解決
するものとして、特願昭56−63294号明細書にお
いて炭素質固体還元剤の充填層を竪型炉内部で不断に形
成する一方、この竪型炉の下部胴壁にト下2段にわたり
配設したそれぞれ複数の羽(コ群を通して、該竪形炉か
ら排出される還元性の排ガスを用いて粉、粒状鉱石を予
備還元した部分還元鉱を、必要ならばさらにフラックス
を加えて300〜1300°Cの高温の空気または酸素
富化空気からなる熱風をもってする気!&搬送下に竪型
炉内に吹込んで、ト記部分還元鉱を溶融還元する粉、粒
状鉱石の竪型炉溶融還元方法を提案した。
By the way, the present inventors have previously proposed in Japanese Patent Application No. 56-63294, in which a packed bed of a carbonaceous solid reducing agent is continuously formed inside a vertical furnace, in order to advantageously solve the above-mentioned problems. Powder and granular ore were pre-reduced using the reducing exhaust gas discharged from the vertical furnace through a plurality of blades (groups of blades) arranged on the lower body wall of the vertical furnace in two lower stages. The partially reduced ore is heated with hot air consisting of high-temperature air or oxygen-enriched air at a temperature of 300 to 1300°C, with additional flux added if necessary. We proposed a method for melting and reducing powder and granular ores using a vertical furnace.

上記の方法において、予熱下の酸化性カス気流にて搬送
し、羽目群から竪型溶融還元炉内に吹込み装入を行う装
入物は、羽口先端部周辺で該炉内部に形成された炭素系
固体還元剤の充填層の高熱領域中を滴下する間に溶融還
元されて炉床に蓄溜し、適宜に炉外に取り出されるしく
みとされ、このような竪型溶融還元炉を用いる溶融還元
法の開発により、粉、粒状鉱石の製錬が極めて効果的に
行えるようになった。
In the above method, the charge is transported by a preheated oxidizing gas stream and blown into the vertical melting reduction furnace from the tuyere group. The carbon-based solid reducing agent is dropped into the high-temperature region of a packed bed, and is melted and reduced, stored in the hearth, and taken out of the furnace as appropriate. The development of the smelting reduction method has made it possible to smelt powder and granular ores extremely effectively.

上記竪型溶融還元炉で粉状鉱石を溶融還元する場合、適
当なフラックスを添加し、炭素系固体還元剤充填層内で
のこれらの鉱石の溶融を容易にし、還元しやすくすると
共に、充填層内で十分に還元されるための充填層内滞留
時間を確保することと、還元後のスラグが容易に排滓さ
れる条件を確保することが必要である。
When powdered ores are smelted and reduced in the vertical smelting reduction furnace described above, an appropriate flux is added to facilitate the melting of these ores in the carbon-based solid reducing agent packed bed to facilitate reduction. It is necessary to ensure a residence time in the packed bed for sufficient reduction within the slag and to ensure conditions under which the reduced slag can be easily slaged off.

すなわち−に記溶融還元法においては、上段羽目から炉
床にかけて形成された炭素系固体還元剤の充填層におい
て、フランクスを添加した溶融鉱石が直接還元され溶融
滴下し排滓される過程において、ρ元率をにげ、添加す
るフラックス着を出来るだけ少なくすること、およびス
ラグの排滓を常に円滑に維持する操業方法の開発が必要
であった。この場合スラグ比を下げることは直接的に溶
融金属製造の際の所要エネルギーをrげることになる。
In other words, in the smelting reduction method described in -, in the process in which the molten ore to which Franks has been added is directly reduced in the packed bed of carbon-based solid reducing agent formed from the upper layer to the hearth, melted and dripped, and the slag is removed. It was necessary to reduce the base rate, reduce the amount of added flux as much as possible, and develop an operating method that would constantly maintain smooth slag drainage. In this case, lowering the slag ratio directly reduces the energy required to produce molten metal.

しかし、」−記溶融還元炉の操業条件を確保する問題は
、実験室での高温シミュレーション実験およυ小型操業
炉での広範な実験から、非常に複雑な問題であることが
分っている。
However, the problem of ensuring operating conditions for smelting reduction reactors has been shown to be a very complex problem, based on high-temperature simulation experiments in the laboratory and extensive experiments in small operating reactors. .

例えば、フラックス組成を変化させた場合、その還元性
が変化し、それに伴ってガスフォーミングが変化し、炭
素系固体還元剤充填層内における滞留時間が犬きく変化
する。
For example, when the flux composition is changed, its reducing property changes, gas foaming changes accordingly, and the residence time in the carbon-based solid reducing agent packed bed changes significantly.

また、高温のため、スラグ分の5i02 やMgOやA
文203はかなり気化蒸発し、スラグ組成が変化する。
In addition, due to the high temperature, 5i02, MgO, and A
Texture 203 is considerably vaporized and the slag composition changes.

さらに、溶融鉱石の還元率の推移に従って初期・中期ス
ラグの特性値、特に表面張力や接触角、粘度等が変化し
、滴下挙動を大きく変える等、複雑な問題がある。
Furthermore, there are complex problems such as the characteristic values of the initial and intermediate slag, especially the surface tension, contact angle, viscosity, etc., changing as the reduction rate of the molten ore changes, which greatly changes the dripping behavior.

本発明者らは、溶融還元法におけるこれらの非常に複雑
な現象の中から (1)フラックスを添加した溶融鉱石が非常に溶けやす
いものであれば、充填層を速く滴下し操業度は向上する
が、還元率が低下すること(2)溶融鉱石が非常に溶け
にくいものであれば充填層をより高温にしなければなら
ず、エネルギー消費が上昇しかつ生産性が低下すること
(3)添加するフラックスが多くなればスラグの顕然損
失が多くなると共に溶融鉱石の還元率が低下すること (4)高温の炭素系固体還元剤からなる充填層の下部に
滞った最終スラグが円滑に定常排滓される為には、この
最終スラグの溶融温度が155゜°C以下であること、
およびその粘性が1550 ’0において10ポアズ以
下であることが望ましいこと(スラグの粘性が1550
℃においてloポアズを越えると排滓が非常に困難とな
る事、が本発明者らによって確かめられている。) (5)充填層内での溶融鉱石の滴下状態を制御し還元率
を上昇させるフラックス組成と、スラグの排滓を円滑に
するために添加しなければならないフラックス組成とは
、組成が異なることの5点を発見した。
The present inventors found that among these very complicated phenomena in the smelting reduction method, (1) If the molten ore to which flux is added is very easily soluble, the packed bed can be dropped quickly and the operating efficiency can be improved. However, the reduction rate decreases (2) If the molten ore is extremely difficult to melt, the packed bed must be heated to a higher temperature, which increases energy consumption and reduces productivity. (3) Addition As the amount of flux increases, the apparent loss of slag increases and the reduction rate of molten ore decreases. In order to be used, the melting temperature of this final slag must be below 155°C;
It is desirable that the viscosity of the slag is 10 poise or less at 1550'0 (the viscosity of the slag is 1550
The inventors have confirmed that when the temperature exceeds lo poise, it becomes very difficult to remove the slag. ) (5) The composition of the flux that controls the dripping state of molten ore in the packed bed and increases the reduction rate is different from the composition of the flux that must be added to smooth the removal of slag. I discovered 5 points.

本発明者らは以上の発見をもとにさらに実験を続け、本
発明を完成するに至った。5 本発明の要旨とするところは、炭素系固体還元剤の充填
層を内蔵するとともに羽目群を上下方向複数段に設けた
竪型の溶融還元炉中に、熱風と共に粉状鉱石と7ラツク
スとを吹込むことにより溶融金属を製造する溶融還元炉
の操業方法において、L部の羽目から還元促進用フラッ
クスを吹込み、最下段の羽口からスラグの排滓を円滑に
させるフラックスを吹込むことを特徴とする溶融還元炉
の操業方法にある。
The present inventors further continued experiments based on the above discovery and completed the present invention. 5 The gist of the present invention is that powdered ore and 7 lux are mixed together with hot air in a vertical melting reduction furnace containing a packed bed of a carbon-based solid reducing agent and provided with a plurality of layers in the vertical direction. In a method of operating a smelting reduction furnace that produces molten metal by blowing in molten metal, a flux for promoting reduction is injected from the tuyeres in the L section, and a flux for smoothing the slag removal from the bottom tuyere is injected. A method of operating a smelting reduction furnace is provided.

本発明は、前記溶融還元炉で粉状鉱石およびフラックス
を均等に上段あるいは上段・中段羽口より吹き込む操業
方法に比ベフラックスの吹込量が著しく少くなる。すな
わちフラックスの吹き込み方法を、最下段の羽口を除く
」二部の羽口から吹き込まれた粉状鉱石が羽口先の高温
で溶解し、かつ炭素系固体還元剤の充填層を滴下する間
に充分還元され・、かつそのフラックス吹き込み量が最
小になるようにし、一方、最下段の羽目からはスラグの
排滓が円滑に行われる条件を満足し、かつそのフラック
ス吹き込み量が最小となるようにした場合の方が、全体
としてのフラ・ンクス吹き込み量が減少しかつ溶融鉱石
の還元率が上昇することになるのである。上部の羽目す
なわち最下段の羽口を除く羽目から吹き込む還元促進用
フラックスとしてはCaO系フシックスを用い、最下段
の羽目から吹込むスラグの粘度を低下させ排滓が円滑に
行われるようにするフラックスとしては5inz系フラ
・ンクスを用いる操業方法によって、上記全体としての
フラックス吹込み量が減少しかつ還元率か上昇する結果
を容易に得ることができる。
In the present invention, the amount of flux blown into the melting reduction furnace is significantly reduced compared to the operating method in which powdered ore and flux are evenly blown into the tuyere from the upper stage or from the upper/middle stage tuyeres. In other words, we changed the method of injecting flux by excluding the bottom tuyere, while the powdered ore injected from the two tuyeres melts at the high temperature at the tip of the tuyere, and the packed bed of carbon-based solid reducing agent is dropped. Ensure that sufficient reduction is achieved and that the amount of flux blown into the slag is minimized, and at the same time, the conditions for smooth removal of slag from the bottom layer are satisfied and the amount of blown flux is minimized. In this case, the total amount of flax injected will decrease and the reduction rate of the molten ore will increase. CaO-based fusix is used as the reduction promoting flux that is injected from the upper tuyere, that is, the tuyeres except for the bottom tuyere, and is a flux that lowers the viscosity of the slag that is blown in from the bottom tuyere and allows for smooth slag removal. For example, by using an operating method using a 5-inch flux, it is possible to easily obtain results in which the overall amount of flux blown is reduced and the reduction rate is increased.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明方法の実施に用いる装置の系統図である
。竪型溶融還元炉1内には装入装置2を経て、炭素系固
体還元剤、好ましくは塊コークスが装入され、竪型溶融
還元炉l内には還元剤充填層が形成される。竪型溶融還
元炉lの下部には羽目が2〜3段に設けられている。−
ヒ、中段羽lコは予備還元鉱とその還元を促進させるフ
ラックスを熱風とともに吹込む羽口3,4、最下段は排
滓を円滑にするために添加するフラックスと熱風とを吹
込む羽口5である。
FIG. 1 is a system diagram of the apparatus used to carry out the method of the present invention. A carbon-based solid reducing agent, preferably lump coke, is charged into the vertical smelting reduction furnace 1 via a charging device 2, and a reducing agent packed layer is formed in the vertical smelting reduction furnace 1. In the lower part of the vertical melting reduction furnace 1, there are 2 to 3 tiers of slats. −
H. The middle stage has tuyeres 3 and 4 for blowing the pre-reduced ore and the flux that promotes its reduction together with hot air, and the bottom stage has tuyeres for blowing in flux and hot air to be added to smooth the removal of slag. It is 5.

粉状鉱石とその還元を促進させる為に添加するフラック
スは流動予備還元炉6に供給装置7によって供給され、
この予備還元炉6内において、竪型溶融還元炉l内で発
生した高温排ガスを用いて予備還元・加熱される。
Powdered ore and flux added to promote its reduction are supplied to a fluidized pre-reduction furnace 6 by a supply device 7,
In this preliminary reduction furnace 6, preliminary reduction and heating is performed using the high temperature exhaust gas generated in the vertical melting reduction furnace 1.

予備還元鉱石とフラックスは予備還元炉6の排出口8か
ら上、中段羽口3,4へ、重力輸送および気体輸送の原
理を応用して移送される。
The pre-reduced ore and flux are transferred from the outlet 8 of the pre-reduction furnace 6 to the upper and middle tuyeres 3 and 4 by applying the principles of gravity transport and gas transport.

竪型溶融還元炉1内の上段羽1コ3、中段羽口4、最下
段羽口5の羽口先端近傍には、熱風炉11から送風され
る熱風により、高炉の羽口先端近傍と同様に、レースウ
ェイが生成し、2000〜2500℃の高温領域が形成
されており、この領域内に熱風あるいは付加される酸素
とともに吹込まれる予備還元鉱石とフラックスは直ちに
加熱され容易に溶融する。そして溶融還元炉lの下部の
炭素系固体還元剤充填層を滴下する間に還元されて溶融
金属と溶融スラグが生成して製錬が行われる。最下段羽
口5には、最終スラグ成分調整用フラックスホッパー9
からスラグの排滓−を円滑にさせるフラックスを供給す
る。溶融金属は最下段羽口5より吹込まれたフラックス
と共に溶解して最終的に炉床部に蓄溜され、出湯口10
より適時炉外に出湯される。
The vicinity of the tuyere tips of the upper tuyere 1 3, middle tuyere 4, and bottom tuyere 5 in the vertical melting reduction furnace 1 are heated by the hot air blown from the hot blast furnace 11, similar to the vicinity of the tuyere tips of a blast furnace. A raceway is formed and a high temperature region of 2000 to 2500° C. is formed, and the pre-reduced ore and flux blown into this region together with hot air or added oxygen are immediately heated and easily melted. Then, while dropping the carbon-based solid reducing agent packed bed at the lower part of the melting reduction furnace 1, it is reduced to produce molten metal and molten slag, and smelting is performed. A flux hopper 9 for adjusting the final slag component is installed in the lowermost tuyere 5.
Supplies flux to facilitate smooth removal of slag. The molten metal is melted together with the flux injected from the lowermost tuyere 5, and is finally accumulated in the hearth, and is then passed through the tap hole 10.
The hot water is discharged outside the furnace in a more timely manner.

次に本発明の実施例をあげてその効果を具体的に説明す
る。
Next, the effects of the present invention will be specifically explained using examples.

実施例 第1図に示す系統方式により、本発明を試験炉で実施し
た。製造金属はコレマナイト鉱石よりFe −B−5i
 −C系合金を製造した。
EXAMPLE The present invention was carried out in a test reactor using the system system shown in FIG. The manufacturing metal is Fe-B-5i from colemanite ore.
-A C-based alloy was produced.

比較例としてフラックスを各羽目から均一に供給する操
業方法も実施した。
As a comparative example, an operating method was also implemented in which flux was uniformly supplied from each layer.

操業条件は次の通りである。The operating conditions are as follows.

(1)硼素含有鉱石:コレマナイト 粒径  :200メツシユ以下 L11中羽口への供給ji : l 70 kg/hr
(2)鉄鉱石 銘柄  :ブラジルMBR鉱石 粒径  :2mm以下 予備還元炉への供給量: 740 kg/hr1−1中
段羽目への供給量: 600 kg/hr予備還元率 
=65% (3)フラフクス (A)均一供給方式(比較例) 石灰石   : 150 kg/hr ケイ石   : 126 kg/hr 吹込み羽目 ・上、中段羽目 合計のフラックス吹込み% : 276 kg/hr(
B)分割供給方式(本発明方法) ■ 石灰石 + 35 kg/hr 吹込み羽目:上、中段羽口 ■ 石灰石 : 35 kg/hr ケイ石 : 82 kg/hr 吹込み羽口 :最下段羽口 合計のフラックス吹込み量: 152 kg/hr(4
)炭素系固体還元剤の種類:コークス粒径  :20〜
30mm 供給%  + 603kg/hr (5)竪型溶融還元炉への送風i:180ONrrf/
hr 送風温度 :900°C 送風羽目 :L段、下段、最下段各4本計12木 (6)Fe −B−3i −C系溶融金属生産量および
スラグ排出量 (A)フラックス均一供給方式(比較例)430 kg
/hr  (成分B = 3.0%、5i=2.8%、
 C= 3.0%、 Fe=Bal)スラグ排出量: 
434kg/hr (B)フラックス分割供給方式(本発明方法)450 
kg/hr  (成分B = 5.1%、Si −2,
1%、C= 2.8%、Fe=Bal)スラグ排出量:
 351 kg/hr 以にのように多段の羽目より溶融還元炉にフラックスを
吹込む場合、最下段以外の羽口からは充填層での溶融還
元に好ましいフラックスを吹き込み、最下段の羽目から
排滓に必要な条件を満足するように最終スラグを調整す
るフラフクスを吹込む溶融還元炉の操業方法によって合
計のフラックス吹込み量を減らし溶融金属製造のエネル
ギーコストを低下させるだけでなくその還元率も上昇さ
せるという効果を持つことが明らかとなった。
(1) Boron-containing ore: Colemanite Particle size: 200 mesh or less Supply to the L11 tuyere: l 70 kg/hr
(2) Iron ore brand: Brazil MBR Ore particle size: 2 mm or less Amount supplied to the preliminary reduction furnace: 740 kg/hr Amount supplied to the 1-1 middle stage: 600 kg/hr Preliminary reduction rate
= 65% (3) Flux (A) uniform supply method (comparative example) Limestone: 150 kg/hr Silica stone: 126 kg/hr Blow-in siding ・Flux injection percentage of upper and middle siding total: 276 kg/hr (
B) Split supply method (method of the present invention) ■ Limestone + 35 kg/hr Blow tuyeres: Upper and middle tuyere ■ Limestone: 35 kg/hr Silica stone: 82 kg/hr Blow tuyeres: Total of bottom tuyere Flux injection amount: 152 kg/hr (4
) Type of carbon-based solid reducing agent: Coke particle size: 20~
30mm Supply % + 603kg/hr (5) Air blowing i to the vertical melting reduction furnace: 180ONrrf/
hr Air blowing temperature: 900°C Air blowing size: L stage, lower stage, bottom stage each 4 each, total 12 pieces (6) Fe -B-3i -C molten metal production amount and slag discharge amount (A) Uniform flux supply method ( Comparative example) 430 kg
/hr (Component B = 3.0%, 5i = 2.8%,
C=3.0%, Fe=Bal) Slag discharge amount:
434kg/hr (B) Flux divided supply method (method of the present invention) 450
kg/hr (component B = 5.1%, Si -2,
1%, C=2.8%, Fe=Bal) Slag discharge amount:
351 kg/hr When injecting flux into the smelting reduction furnace through the multi-stage tuyeres as described below, the flux suitable for melting and reduction in the packed bed is injected from the tuyeres other than the lowest stage, and the slag is discharged from the lowest stage tuyeres. Adjust the final slag to meet the requirements for slag.Inject flux.By operating the smelting reduction furnace, the total amount of flux injected is reduced, which not only lowers the energy cost of molten metal production but also increases the reduction rate. It has become clear that it has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いる装置の系統図である
。 1・・・竪型溶融還元炉、2・・・原料供給装置、3.
4.5・・・羽目、6・・・予備還元炉、7・・・鉱石
・フラックス供給装置、 8・・・予備還元鉱・フラックス排出口、9・・・18
.4”スラグ成分調整用フランクスホッパー、10・・
・溶融金属・スラグの排出口、11・・・熱風炉 出願人 川崎製鉄株式会社 代理人 弁理士  小杉佳男 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内 [相]発 明 者 浜田俊二 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内
FIG. 1 is a system diagram of the apparatus used to carry out the method of the present invention. 1... Vertical melting reduction furnace, 2... Raw material supply device, 3.
4.5... Window, 6... Preliminary reduction furnace, 7... Ore/flux supply device, 8... Preliminary reduced ore/flux discharge port, 9... 18
.. 4” Franks hopper for adjusting slag components, 10...
・Molten metal/slag discharge port, 11...Hot stove applicant: Kawasaki Steel Corporation Agent Patent attorney: Yoshio Kosugi, 1 Kawasaki-cho, Chiba City, Kawasaki Steel Corporation, Chiba Works [phase] Inventor: Shunji Hamada, Chiba City Kawasakicho 1 Kawasaki Steel Corporation Chiba Works

Claims (1)

【特許請求の範囲】[Claims] ■ 炭素系固体還元剤の充填層を内蔵するとともに羽目
群を上下方向複数段に設けた竪型の溶融還元炉中に、熱
風と共に粉状鉱石とフラックスとを吹込むことにより溶
融金属を製造する溶融還元炉の操業方法において、上部
の羽口から還元促進用フラックスを吹込み、最下段の羽
口からスラグの排滓を円滑にさせるフラックスを吹込む
ことを特徴とする溶融還元炉の操業方法。
■ Molten metal is produced by blowing powdered ore and flux together with hot air into a vertical smelting reduction furnace that contains a packed bed of carbon-based solid reducing agent and has multiple layers of panels in the vertical direction. A method for operating a smelting and reducing furnace, characterized in that a flux for promoting reduction is injected from an upper tuyere, and a flux for smoothing slag removal is injected from a tuyere at the bottom. .
JP58034461A 1983-03-04 1983-03-04 Operating furnace of melt reduction furnace Granted JPS59162213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58034461A JPS59162213A (en) 1983-03-04 1983-03-04 Operating furnace of melt reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58034461A JPS59162213A (en) 1983-03-04 1983-03-04 Operating furnace of melt reduction furnace

Publications (2)

Publication Number Publication Date
JPS59162213A true JPS59162213A (en) 1984-09-13
JPH0314889B2 JPH0314889B2 (en) 1991-02-27

Family

ID=12414879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58034461A Granted JPS59162213A (en) 1983-03-04 1983-03-04 Operating furnace of melt reduction furnace

Country Status (1)

Country Link
JP (1) JPS59162213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157807A (en) * 1986-12-22 1988-06-30 Kawasaki Steel Corp Operation of smelting reduction furnace with carbonic material packing layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198205A (en) * 1981-04-28 1982-12-04 Kawasaki Steel Corp Production of molten metal from powder and granular ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198205A (en) * 1981-04-28 1982-12-04 Kawasaki Steel Corp Production of molten metal from powder and granular ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157807A (en) * 1986-12-22 1988-06-30 Kawasaki Steel Corp Operation of smelting reduction furnace with carbonic material packing layer

Also Published As

Publication number Publication date
JPH0314889B2 (en) 1991-02-27

Similar Documents

Publication Publication Date Title
KR100325652B1 (en) Production method of metallic iron
CN102337369B (en) High-wind-temperature rotational flow injection disturbance melting reduction and prereduction combination device and method
CN112410494B (en) Iron-making device and method capable of applying suspension melting reduction of fine-grained fine ores
CN101265510B (en) Fusion reduction reaction furnace and fusion smelting method for metal
CN106086281A (en) The ironmaking of a kind of flash and the integrated apparatus of coal gas and method
CN101956035B (en) Iron-containing material slag bath smelting reduction steelmaking technical method and device
JPS5877509A (en) Production of molten fe-b metal
CN102409126A (en) Integrated reduction ironmaking furnace and integrated reduction ironmaking process
JPS59162213A (en) Operating furnace of melt reduction furnace
CN109929957B (en) Device and method for producing molten iron by high-temperature smelting of pre-reduced iron ore
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JP4149531B2 (en) Metallic iron manufacturing method and manufacturing equipment
JP2827451B2 (en) Blast furnace tuyere powder injection operation method
JPH0130888B2 (en)
JP2024530217A (en) Apparatus and method for direct steelmaking from iron-containing powder materials in a reducing atmosphere
JP2000510536A (en) Direct charging device for direct charging of reduced fine iron ore to melt vaporizer
JPS59110712A (en) Reduction of powdery granular ore
JPS6248749B2 (en)
CN114774612A (en) Method for vanadium-titanium ore gas-based shaft furnace reduction-electric furnace melting reduction
JPH0242884B2 (en)
CN108411057A (en) A kind of method of the direct blast furnace ironmaking of Iron concentrate
JPS59113107A (en) Melt reduction device
JPS58197208A (en) Melt reduction method of metallic oxide ore
JPS59110711A (en) Method for cooling furnace wall of shaft type fusion reduction furnace
KR20030018318A (en) Process for coal based ironmaking to reduce loss of fine ore