JP4149531B2 - Metallic iron manufacturing method and manufacturing equipment - Google Patents

Metallic iron manufacturing method and manufacturing equipment Download PDF

Info

Publication number
JP4149531B2
JP4149531B2 JP25711896A JP25711896A JP4149531B2 JP 4149531 B2 JP4149531 B2 JP 4149531B2 JP 25711896 A JP25711896 A JP 25711896A JP 25711896 A JP25711896 A JP 25711896A JP 4149531 B2 JP4149531 B2 JP 4149531B2
Authority
JP
Japan
Prior art keywords
iron
heating
reduction
metallic iron
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25711896A
Other languages
Japanese (ja)
Other versions
JPH10102118A (en
Inventor
隆司 鯨井
脩 土屋
勲 小林
晶一 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP25711896A priority Critical patent/JP4149531B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to DE69717609T priority patent/DE69717609T2/en
Priority to ARP970100993A priority patent/AR006206A1/en
Priority to CZ982794A priority patent/CZ279498A3/en
Priority to HU99023399902339A priority patent/HUP9902339A3/en
Priority to PL97328812A priority patent/PL328812A1/en
Priority to EP97907310A priority patent/EP0888462B1/en
Priority to EA199800828A priority patent/EA001158B1/en
Priority to CN97194517A priority patent/CN1080315C/en
Priority to BR9707996-0A priority patent/BR9707996A/en
Priority to AT97907310T priority patent/ATE229083T1/en
Priority to SK1253-98A priority patent/SK125398A3/en
Priority to ES97907310T priority patent/ES2188900T3/en
Priority to TR1998/01833T priority patent/TR199801833T2/en
Priority to CA2694865A priority patent/CA2694865A1/en
Priority to NZ332283A priority patent/NZ332283A/en
Priority to CA2248273A priority patent/CA2248273C/en
Priority to IL12044097A priority patent/IL120440A0/en
Priority to AU19404/97A priority patent/AU715276C/en
Priority to PCT/JP1997/000806 priority patent/WO1997034018A1/en
Priority to KR10-1998-0707316A priority patent/KR100516507B1/en
Priority to PE1997000194A priority patent/PE21298A1/en
Priority to US08/818,954 priority patent/US6036744A/en
Priority to IDP970865A priority patent/ID16250A/en
Publication of JPH10102118A publication Critical patent/JPH10102118A/en
Priority to BG102721A priority patent/BG102721A/en
Priority to NO984161A priority patent/NO984161L/en
Priority to US09/478,409 priority patent/US6432533B1/en
Priority to CNB011179414A priority patent/CN1198945C/en
Priority to US09/891,653 priority patent/US6506231B2/en
Priority to US10/289,290 priority patent/US20030061909A1/en
Priority to US11/855,793 priority patent/US7938883B2/en
Publication of JP4149531B2 publication Critical patent/JP4149531B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄鉱石等の酸化鉄を炭材等の炭素質還元剤と共に加熱還元して金属鉄を得る技術の改良に関し、酸化鉄を金属鉄にまで効率よく還元すると共に、酸化鉄源中に脈石成分等として混入してくるスラグ成分をうまく溶融分離し、高純度の金属鉄を溶融鉄として効率よく製造することのできる方法および設備に関するものである。
【0002】
【従来の技術】
鉄鉱石や酸化鉄ペレット等の酸化鉄を炭材や還元性ガスにより直接還元して還元鉄を得る直接製鉄法としては、従来よりミドレックス法に代表されるシャフト炉法が知られている。この種の直接製鉄法は、天然ガス等から製造される還元ガスをシャフト炉下部の羽口より吹き込み、その還元力を利用し酸化鉄を還元して還元鉄を得る方法である。また最近では、天然ガスに代わる還元剤として石炭等の炭材を使用する還元鉄製造プロセスが注目されており、具体的には、鉄鉱石等の焼成ペレットを石炭粉と共にロータリーキルンで加熱還元する、所謂SL/RN法がすでに実用化されている。
【0003】
また他の還元鉄製造法として米国特許第3,443,931号公報には、炭材と粉状酸化鉄を混合して塊状化し、ロータリーハース上で加熱還元して還元鉄を製造するプロセスが開示されている。このプロセスは、粉鉱石と粉炭を混合して塊状化し、これを高温雰囲気下で加熱還元するものである。
【0004】
これらの方法で製造された還元鉄は、そのまま或はブリケット状等に成形してから電気炉へ装入し、鉄源として用いられる。近年、鉄スクラップのリサイクルが活発化するにつれて、上記方法によって得られる還元鉄はスクラップ中に混入してくる不純物元素の希釈剤として注目されている。
【0005】
ところが従来の還元製鉄法によって得られる還元鉄には、原料として用いた酸化鉄(鉄鉱石等)や炭材(石炭等)に含まれるSiO2 、Al23 、CaO等のスラグ成分がそのまま混入してくるため、製品の鉄品位(金属鉄としての純度)は低くなる。
【0006】
実用に当たっては、次の精錬工程でこれらのスラグ成分は分離除去されるが、スラグ量の増加は精錬溶湯の歩留りを低下させるばかりでなく電気炉の操業コストにも大きな影響を及ぼすので、鉄品位が高くスラグ成分含有量の少ない還元鉄が求められているが、前述の如き従来の還元鉄の製法でこうした要求に応えるには、還元鉄製造原料として鉄品位の高い鉄鉱石を使用しなければならず、実用可能な製鉄原料の選択の幅を大変狭めることになる。
【0007】
更に上記の様な従来法は、還元された固体製品を中間製品として得ることを最終の目的としており、実用化に当たっては、次の工程となる精練工程へ送るまでに搬送、貯蔵、ブリケット化あるいは冷却といった工程が必要であり、この間に大きなエネルギー損失が生じたり、ブリケット化のための余分のエネルギーや特殊な装置が必要になるといった欠点がある。
【0008】
他方、酸化鉄を直接還元して還元鉄を得る方法としてDIOS法等の溶融還元法も知られている。この方法は、酸化鉄を予め鉄純度で30〜50%程度にまで予備還元しておき、その後、鉄浴中で炭素との直接還元反応させることによって金属鉄にまで還元を行う方法であるが、この方法は予備還元と鉄浴中での最終還元の2工程が必須になるため作業が煩雑であるばかりでなくで、鉄浴中に存在する溶融酸化鉄(FeO)と耐火物が直接接触するため、耐火物の損耗が激しいという問題も指摘される。
【0009】
更に特公昭56−19366号公報には、金属酸化物と固体炭素質材料およびスラグ形成材料の集塊物を加熱・還元し、該集塊物の形状を保ちながら、還元により生成した金属をスラグシェルで包む様な状態を形成し、その後スラグシェルを溶融させて金属とスラグを分離する方法を開示している。ところがこの方法では、還元によって生成した金属鉄の再酸化を阻止するため、該金属鉄を完全に包み込むに足る量のスラグを生成させなければならず、スラグ形成材料の配合量を多くする必要がある。しかもこの方法ではFeO濃度の高いスラグが生成し易く、設備の内張り耐火物を著しく損傷するという、実用化する上で大きな問題も生じてくる。
【0010】
【発明が解決しようとする課題】
一方、スラグ成分含有量の少ない高純度の金属鉄を製造する方法の実現は、製品金属鉄としての付加価値を高めるばかりでなく、電気炉を用いた製鉄コストを低減し、更には金属鉄製造における使用原料の選択の柔軟性を高めることから極めて重要である。また、酸化鉄を多く含有したスラグは耐火物を溶損することから、加熱・還元により副生するスラグ中の酸化鉄含有量を極力少なくして耐火物の損傷を抑えることは、この種の製鉄法を工業的規模で実現可能にする上で極めて重要である。
【0011】
本発明者らはこうした状況に着目し、鉄成分含有量の高い酸化鉄はもとより鉄成分含有量の比較的低い鉄鉱石等からでも、耐火物の溶損などを生じることなく鉄純度の極めて高い金属鉄を、溶融鉄として簡単な処理で効率よく得ることのできる技術の開発を期してかねてより研究を進めており、その研究成果として下記の方法を開発し、先に特許出願を済ませた(特願平8−59801号)。
【0012】
この先願発明は、炭素質還元剤が存在する酸化鉄の成形体を加熱還元して金属鉄を製造する際に、
▲1▼加熱還元により金属鉄外皮を生成且つ成長させ、酸化鉄が実質的に存在しなくなるまで還元を進めると共に、内部に生成スラグの凝集物を形成する、
▲2▼加熱還元により金属鉄外皮を生成且つ成長させ、酸化鉄が実質的に存在しなくなるまで還元を進め、更に加熱を続けて内部に生成するスラグを金属鉄外皮の外側へ流出させる、
▲3▼加熱還元により金属鉄外皮を生成且つ成長させ、酸化鉄が実質的に存在しなくなるまで還元を進め、更に加熱を続けて金属鉄とスラグを溶融分離する、
或いは▲4▼加熱還元により金属鉄外皮を生成且つ成長させ、酸化鉄が実質的に存在しなくなるまで還元を進めると共に、内部に生成スラグの凝集物を形成させ、次いで生成スラグを金属鉄から分離する
ところに特徴を有している。
【0013】
上記▲2▼の方法を実施するに当たっては、金属鉄外皮の一部を溶融させることによって、内部の溶融スラグを金属鉄外皮外へ流出させれば良く、この際、あるいは前記▲3▼の方法を実施するに当たり、金属鉄外皮の一部もしくは全部を溶融させるには、金属外皮内に存在する炭素質還元剤による浸炭を進めて当該金属外皮の融点を降下させれば良い。
【0014】
また上記▲1▼〜▲4▼の発明を実施するに当たっては、加熱還元工程の最高加熱温度を、生成スラグの融点以上で且つ生成する金属鉄外皮の融点以下の温度に制御することによって、金属鉄生成反応をより効率よく進めることができ、この還元工程では、固相還元により酸化鉄を低減し、更に液相還元によりFeOを主体とする酸化鉄が実質的に存在しなくなるまで還元すれば、得られる金属鉄の品位をより効率よく高めることが可能となる。
【0015】
そして、固相状態での酸化鉄の還元をうまく進めるには、還元工程で生成するスラグが、還元によって生成する金属鉄よりも低い温度で溶融することが必要であり、そのためには、成形体中の酸化鉄や炭素質還元剤等の中に含まれるスラグ生成成分の含有組成を事前に調整し、生成スラグの融点が還元鉄の融点よりも低くなる様、成形体の成形工程で必要によりAl23 、SiO2 、CaOなどを追加調整することが望ましい。
【0016】
尚上記先願発明において、「金属鉄外皮内部に酸化鉄が実質的に存在しなくなるまで還元を進める」ことの好ましい定量的基準としては、加熱還元工程で、「FeOを主体とする酸化鉄の含有率が5重量%以下、より好ましくは2重量%以下となるまで還元を進めること」が好ましく、また別の観点からすると、還元反応によって生成する金属鉄から分離される生成スラグ中のFeOを主体とする酸化鉄の含有量が、5重量%以下、より好ましくは2重量%以下となるまで還元を進めることが望ましい。
【0017】
そして、この方法によって得られる高純度の金属鉄および生成スラグは、両者が加熱溶融した状態で比重差により分離すれば、金属化率で95%程度以上、更には98%以上といった非常に高純度の金属鉄を得ることができ、しかもこの先願発明によれば、生成スラグ中の酸化鉄含有量を可及的に少なくすることができるので、酸化鉄に起因する処理炉耐火物の溶損も起こらず、設備保全の観点からしても極めて実用性の高い技術として、その実用化が期待される。
【0018】
本発明は、上記先願発明の基本的な技術思想を活用し、これを工業的規模で効率よく実施することのできる製造方法および製造設備を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明に係る金属鉄の製造方法は、炭素質還元剤が存在する酸化鉄の粒状または塊状成形体(以下、単に成形体と称することがある)を加熱還元して金属鉄を製造するに当たり、上記成形体を水平方向に移送させながら加熱還元することにより、金属鉄外皮を生成且つ成長させて内部における酸化鉄の含有率が5重量%以下となるまで還元を進めると共に内部に生成スラグの凝集物を形成させ、上記移送終端部より排出させた後、更に加熱してこれを溶融し、次いで溶融スラグと溶融鉄に分離することを要旨とする。
【0020】
成形体内に炭素質還元剤を存在させることによって、成形体自身の中で還元を進行させ、金属鉄(外皮)とスラグ(内部)を生成していく。そしてその後加熱溶融することによって、比重差により金属鉄とスラグを分離することができる。
【0021】
上記成形体に存在する炭素質還元剤の量としては、少なくとも原料酸化鉄の還元に必要な量を存在させる。そして更に、還元された鉄の浸炭に必要な量の炭素質還元剤を存在させることが好ましく、これにより還元鉄(金属鉄)の生成につれて浸炭も行うことができる。また、外皮を形成している固体状態(未溶融)の還元鉄は、ポーラス状であるため再酸化を受け易いが、上記「原料酸化鉄の還元に必要な量+還元鉄の浸炭に必要な量」に加えて更に多くの炭素質還元剤を成形体に存在させておけば、該成形体からCOガスを発生し、このCOガスによってこの成形体周辺が非酸化性雰囲気になるので、上記再酸化を防ぐことができる。即ち最も好ましい炭素質還元剤の量としては、「原料酸化鉄の還元に必要な量+還元鉄の浸炭に必要な量+酸化損失量」である。
【0022】
また本発明においては、上記成形体の水平方向への移送を、この成形体を加熱還元装置内の炉床に載置して行うことが好ましい。
加えて本発明においては、上記成形体を水平方向に移送させながら加熱還元するに当たり、炭素質還元剤を補給しつつ加熱還元を行うことが好ましい。
上記では「還元鉄の浸炭に必要な量+酸化損失量」の炭素質還元剤を予め成形体に存在させておくことを提案したが、この様にする以外に、成形体に「原料酸化鉄の還元に必要な量」のみを含有させ、「還元鉄の浸炭に必要な量+酸化損失量」の炭素質還元剤を加熱還元時に外部から補給するようにしても良く、或いは成形体には「原料酸化鉄の還元に必要な量+還元鉄の浸炭に必要な量」を含有させ、「酸化損失量」の炭素質還元剤を加熱還元時に外部から補給するようにしても良い。この様に必要に応じて不足分を供給すると良い。尚これらの場合も「原料酸化鉄の還元に必要な量」の炭素質還元剤によって、金属外皮と内部のスラグが良好に生成することは言うまでもない。
【0023】
また供給する炭素質還元剤として粉体のものを用い、この粉体を成形体の表面に付着させる様にすれば、成形体同士の焼結付着による大塊状化、或いは炉壁への成形体の焼結付着を防止することができ、取扱い性が良くなる。
【0024】
尚、金属鉄(還元鉄)の溶融の際に、「還元鉄の浸炭に必要な量」や「酸化損失量」の炭素質還元剤を補給するようにしても良く、この場合は溶融の際に浸炭が進行したり、また炭素質還元剤からのCOガスによって成形体周辺が非酸化性雰囲気に保たれ、金属鉄の再酸化が防止できる。
更に本発明の製造方法において、予め上記成形体中のスラグ生成成分の組成を調整することにより、上記還元により生成するスラグの溶融温度を、上記還元により生成する金属鉄の溶融温度よりも低くすることが好ましい。
【0025】
また本発明に係る金属鉄の製造設備は、上記製造方法を実現するものであり、炭素質還元剤が存在する酸化鉄の粒状または塊状成形体を加熱還元して金属鉄を製造する設備であって、上記成形体を水平方向に移送させる移送部材と上記成形体を加熱する加熱還元機構を備えた加熱還元装置と、該加熱還元装置における前記移送部材の移送終端部より後方に、排出された成形体を加熱溶融する加熱溶融機構を備えて配設される溶融装置と、該溶融装置より後方に配設されて溶融スラグと溶融鉄に分離する分離装置とを備えてなることを要旨とする。
本発明の製造設備を用いれば成形体から溶融鉄を連続して製造することができる。
【0026】
更に本発明においては、上記成形体を水平方向に移送させる移送部材が、上記成形体を載置する炉床を備えたものであることが好ましい。更に移送部材がエンドレスベルト方式であることが好ましい。
【0027】
また本発明においては、前記炉床に、上記成形体の相互付着を防止する隔離部材を任意ピッチで設けたものであることが好ましく、該隔離部材としては耐火物製の板状のもの等が例示される。これにより成形体同士が焼結して付着し大塊状化することを防止することができ、取扱い性が良くなる。
【0028】
更に前記隔離部材を脱硫剤によって形成したものであることがより好ましく、この場合に炉床から該隔離部材(脱硫剤)が容易に離脱する構成とし、還元された成形体と共に該脱硫剤を溶融装置に投入することにより、そのまま溶融装置で脱硫を行うことができる。この隔離部材としては板状のものや粉体を盛ったもの等が例示される。
【0029】
また粉体の脱硫剤を用い、この粉体を成形体の表面に付着させる様にしても良く、これにより成形体同士の焼結付着による大塊状化を防止できることに加えて、炉壁への成形体の焼結付着を防止することができ、その上に、上述の様に還元された成形体と共に脱硫剤が溶融装置に投入されるから、そのまま溶融装置で脱硫を行うことができる。尚脱硫剤としては、石灰石等が挙げられる。
【0030】
加えて本発明においては、前記加熱還元機構として還元用バーナーを設けたものであり、前記加熱溶融機構として溶融用バーナーを設けたものであることが好ましい。
また本発明においては、前記加熱溶融機構より後方で、溶融スラグと溶融鉄に分離する様に構成したものであることが好ましい。
【0031】
【発明の実施の形態及び実施例】
以下、本発明にかかる製造方法および製造設備を、一実施例を示す図面を参照しつつ具体的に説明するが、本発明はもとより図示例に限定される訳ではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0032】
図1は本発明に係る金属鉄製造設備の一実施例を示す模式断面図である。
製造設備は加熱還元装置23、溶融装置12、及び分離装置13を備えており、加熱還元装置23には移送部材として、成形体4を載置する炉床46と該炉床46を水平移動させるローラー47が備えられている。この移送部材は、パレット式の炉床46がベルトコンベアに取付けられた構造であり、エンドレスベルト方式となっており、上記ローラー47が外部動力(図示せず)により回転するようになっている。また加熱還元装置23には加熱還元機構として還元用バーナー48が設けられ、耐火物の炉壁5で囲まれた加熱還元炉50内部を所望の加熱温度に調整する。上記炉床46は該加熱還元炉50の内部を通過する様になっており、成形体4がこの炉床46に載置されて、水平方向に移送される。尚、図1に示す例の加熱還元炉50は3室に分かれており、夫々還元段階に応じた所望の温度に調製できるようになっている。
【0033】
上記加熱還元装置23の炉床46(移送部材)の移送終端部(下流側)には溶融装置12が続いており、該溶融装置12には加熱溶融機構として溶融用バーナー61が設けられ、耐火物の炉壁6で囲まれた溶融装置12内部を所望の加熱温度に調整する。また溶融装置12には傾斜床51が備えられ、成形体4を後方(分離装置13)側へ導くようになっている。溶融装置12とその後方に設けられた分離装置13の境目には堰52が設けられている。分離装置13は溶融鉄54と溶融スラグ53が溜まるようになっており、スラグ出口55と溶融鉄出口56が設けられている。
尚上記加熱還元炉50や溶融装置12には排ガス排出口49,57が備えられている。
【0034】
次に金属鉄の製造過程について図1を用いて説明する。石炭等の炭素質還元剤と鉄鉱石等の酸化鉄の粉粒体を、例えば小球状に形作り、成形体を作製する。この成形体は「原料酸化鉄の還元に必要な量+還元鉄の浸炭に必要な量+酸化損失量」の炭素質還元剤を有しいる。
【0035】
この成形体4は加熱還元装置23の入り口側(図1に示す左側)から炉床46に載せられ、順次加熱還元炉50内を移動する(図1の右側に移動する)。加熱還元炉50内の温度は、生成する金属鉄外皮の溶融温度未満で且つ生成するスラグの溶融温度以上になる様に、還元用バーナー48の火力調節によって調整され、この加熱によって成形体4が還元される。
【0036】
この加熱還元工程では、まず成形体4の外周側で加熱還元が進行して金属鉄からなる外皮が形成され、その後、該外皮の内側で炭素質還元剤自体およびその熱分解により生成する一酸化炭素による還元作用によって、外皮内における酸化鉄の還元反応が効率よく進行し、生成する金属鉄は互いに付着し合って集合して外皮を成長させると共に、生成スラグも互いに融け合って集合する。その結果、この加熱還元工程での金属化率は著しく高まると共に、生成スラグ中の酸化鉄混入量も著しく少なくなる。
【0037】
この還元は成形体4内部に酸化鉄が実質的に存在しなくなるまで行われ、この還元に要する時間に応じて炉床46の移動速度が調節される。この様に還元を十分に行うことによって、スラグ中に混入する酸化鉄の量が低減できるから、次の溶融装置12で行う成形体4の溶融の際に、酸化鉄による耐火物(炉壁)の損傷を抑えることができる。尚必要とする還元時間と移動速度に応じて、炉床46の移動する加熱還元炉50の長さを決めると良い。
【0038】
尚加熱還元炉50内で還元する間に、前述の様に、成形体4に含有する炭素質還元剤によって生成還元鉄の浸炭が行われ、また成形体から発生するCOガスによってこの成形体周辺が非酸化性雰囲気になり、生成還元鉄の再酸化が防止される。
【0039】
還元が実質的に終了し、金属鉄外皮と内部のスラグ凝集物の構造となった成形体4は、少なくとも外皮が固体状態のまま、移動する炉床46によってその終端部から排出されて溶融装置12に導かれる。溶融装置12では、傾斜床51上を転動または滑動して後方側(分離装置13側)に向かいつつ、加熱を受けて溶融していく。尚溶融装置12内の温度は、生成したスラグだけでなく生成した金属鉄外皮も溶融する温度となっている。
【0040】
溶融装置12に導入された成形体4に仮に微量の未還元部分が残っていても(加熱還元炉50で金属鉄外皮内部に酸化鉄が実質的に存在しなくなるまで還元を進めるものの、5重量%以下、或いは2重量%以下の酸化鉄が含まれる場合がある)、溶融の際の加熱によって還元も進行して還元が完結する。尚この際、溶融装置12に炭素質還元剤の補給を行っても良い。
溶融が進行中の成形体4は堰52によって止められ、溶融して液状となった溶融物が堰52を越えて分離装置13に落ちて溜められていく。
【0041】
溶融スラグ53と溶融鉄54は比重が異なることから、分離装置13においてはスラグが上層、溶融鉄が下層に分離する。この分離したスラグ53のみをスラグ出口55から、また溶融鉄54のみを溶融鉄出口56から夫々取り出す。
【0042】
この様にして高度に還元された金属鉄が溶融鉄として効率良く得られる。この金属化率は95%以上、更には98%以上といった高いレベルにまで達する。しかも、該加熱還元工程で酸化鉄の還元が高度に進行する結果、副生する溶融スラグ中に混入する酸化鉄の量も極めて少なくなり、酸化鉄の混入による耐火物の溶損も可及的に抑えられる。
【0043】
尚、分離装置13にバーナー加熱や電気加熱設備を付設し、これによって溶融スラグ53や溶融鉄54を更に高温に加熱してそれらの流動性を高めてやれば、スラグと溶融鉄の分離・排出を一層容易にすることができるので好ましい。
【0044】
排ガス排出口49,57から排出された排ガスは、そのまま放出しても良いが、この排ガスは高温でしかも強い還元力を有しているので、バーナー48,61へ供給する燃料ガスとして有効利用しても良く、また成形体4の乾燥や予熱、または燃料や燃料用空気の予熱等に利用しても良い。
【0045】
尚本発明を実施するに当たっては、固相状態での酸化鉄の還元をうまく進めるため、前述の如く、加熱還元工程で生成するスラグが、還元によって生成する金属鉄よりも低い温度で溶融することが必要であり、そのためには、成形体中のスラグ生成成分(酸化鉄源として一般的に用いられる鉄鉱石や炭素質還元剤中に混入してくる脈石成分)の組成を事前に調整し、生成スラグの融点が還元鉄やその浸炭物の融点よりも低くなる様に制御することが必要となる。従って、上記脈石成分の組成によっては、成形体の成形工程で必要によりAl23 やSiO2 、CaO等を補給し、溶融温度の低いスラグを生成させることが望ましい。
【0046】
【発明の効果】
本発明は以上の様に構成されており、先願発明で提案した新しい金属鉄の製造技術を、実用規模で効率よく実現可能とし、鉄含有量の高い原料酸化鉄はもとより鉄含有量の低い鉄鉱石等の鉄源からでも、金属化率で95%以上、更には98%以上といった極めて高純度の金属鉄を、生産性良く極めて短時間で製造することができる。また、この方法および設備を使用すれば、加熱還元工程で副生するスラグに酸化鉄が混入する量も著しく低減するから、加熱還元装置や溶融装置,分離装置等の内張り耐火物への、溶融酸化鉄による溶損も可及的に抑えることが可能となる。
【図面の簡単な説明】
【図1】本発明に係る金属鉄製造装置の一実施例を示す模式断面図。
【符号の説明】
4 成形体
5,6 炉壁
12 溶融装置
13 分離装置
23 加熱還元装置
46 炉床
47 ローラー
48 還元用バーナー
49,57 排ガス排出口
50 加熱還元炉
51 傾斜床
52 堰
53 溶融スラグ
54 溶融鉄
55 スラグ出口
56 溶融鉄出口
60 溶融炉
61 溶融用バーナー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a technique for obtaining metallic iron by heating and reducing iron oxide such as iron ore together with a carbonaceous reducing agent such as a carbonaceous material, and efficiently reducing iron oxide to metallic iron, and in an iron oxide source. The present invention relates to a method and equipment capable of successfully melting and separating a slag component mixed as a gangue component or the like and efficiently producing high-purity metallic iron as molten iron.
[0002]
[Prior art]
As a direct iron manufacturing method for obtaining reduced iron by directly reducing iron oxide such as iron ore and iron oxide pellets with a carbonaceous material or a reducing gas, a shaft furnace method represented by the Midrex method has been known. This type of direct iron manufacturing method is a method in which reducing gas produced from natural gas or the like is blown from the tuyere at the bottom of the shaft furnace, and the reducing power is used to reduce iron oxide to obtain reduced iron. Recently, a reduced iron production process using a carbonaceous material such as coal as a reducing agent in place of natural gas has attracted attention. The so-called SL / RN method has already been put into practical use.
[0003]
As another method for producing reduced iron, U.S. Pat. No. 3,443,931 discloses a process for producing reduced iron by mixing a carbonaceous material and powdered iron oxide and agglomerating and reducing heat on a rotary hearth. It is disclosed. In this process, pulverized ore and pulverized coal are mixed and agglomerated, and this is heated and reduced in a high-temperature atmosphere.
[0004]
Reduced iron produced by these methods is used as an iron source after being formed into a briquette or the like as it is and then charged into an electric furnace. In recent years, as iron scrap recycling has become active, reduced iron obtained by the above method has attracted attention as a diluent for impurity elements mixed in scrap.
[0005]
However, in the reduced iron obtained by the conventional reduced iron manufacturing method, slag components such as SiO 2 , Al 2 O 3 , and CaO contained in iron oxide (iron ore etc.) and carbonaceous materials (coal etc.) used as raw materials are intact. Since it mixes, the iron quality (purity as metallic iron) of a product will become low.
[0006]
In practical use, these slag components are separated and removed in the next refining process. However, in order to meet these demands with the conventional methods for producing reduced iron as described above, high-quality iron ore must be used as a raw material for producing reduced iron. In other words, the range of practical steelmaking raw materials will be greatly reduced.
[0007]
Further, the conventional method as described above has the final purpose of obtaining a reduced solid product as an intermediate product. For practical use, it is transported, stored, briquetted or sent to the next scouring step. There is a disadvantage that a process such as cooling is necessary, and a large energy loss occurs during this period, and extra energy and special equipment are required for briquetting.
[0008]
On the other hand, a smelting reduction method such as the DIOS method is also known as a method for obtaining reduced iron by directly reducing iron oxide. In this method, iron oxide is preliminarily reduced to about 30 to 50% in terms of iron purity, and then reduced to metallic iron by direct reduction reaction with carbon in an iron bath. In this method, two steps of preliminary reduction and final reduction in an iron bath are indispensable, so the work is not only complicated, but the molten iron oxide (FeO) present in the iron bath is in direct contact with the refractory. Therefore, the problem that the wear of the refractory is severe is also pointed out.
[0009]
Furthermore, Japanese Patent Publication No. 56-19366 discloses heating and reducing agglomerates of a metal oxide, a solid carbonaceous material, and a slag forming material, and maintaining the shape of the agglomerates while reducing the metal produced by the reduction. A method is disclosed in which the state of wrapping with a shell is formed, and then the slag shell is melted to separate the metal and slag. However, in this method, in order to prevent reoxidation of metallic iron generated by reduction, it is necessary to generate an amount of slag sufficient to completely enclose the metallic iron, and it is necessary to increase the amount of the slag forming material. is there. In addition, this method easily generates slag having a high FeO concentration, and causes a serious problem in practical use in that the refractory lining the equipment is significantly damaged.
[0010]
[Problems to be solved by the invention]
On the other hand, the realization of a method for producing high-purity metallic iron with a low slag component content not only increases the added value as product metallic iron, but also reduces the cost of iron making using an electric furnace, and further produces metallic iron. It is extremely important because it increases the flexibility of selection of the raw materials used. In addition, since slag containing a large amount of iron oxide melts the refractory, it is this type of iron making that suppresses refractory damage by reducing the iron oxide content in the slag by-produced by heating and reduction as much as possible. It is extremely important to make the law feasible on an industrial scale.
[0011]
The inventors pay attention to such a situation, and not only iron oxide with a high iron component content but also iron ore with a relatively low iron component content, the iron purity is extremely high without causing refractory melting or the like. We have been working on the development of technology that can efficiently obtain metallic iron as molten iron with a simple process. As a result of this research, we developed the following method and filed a patent application first ( Japanese Patent Application No. 8-59801).
[0012]
This prior application invention, when producing iron metal by heat reduction of a molded body of iron oxide containing a carbonaceous reducing agent,
(1) A metallic iron skin is generated and grown by heat reduction, and the reduction is advanced until iron oxide is substantially absent, and an aggregate of generated slag is formed inside.
(2) Generate and grow metallic iron skin by heat reduction, proceed reduction until iron oxide is substantially absent, and continue heating to allow the slag produced inside to flow out to the outside of the metallic iron skin.
(3) Produces and grows a metallic iron shell by heat reduction, proceeds reduction until iron oxide is substantially absent, and further heats to melt and separate metallic iron and slag.
Or (4) heat reduction to produce and grow metallic iron skin, proceed reduction until iron oxide is substantially absent, form aggregates of produced slag, and then separate the produced slag from metallic iron It has a feature.
[0013]
In carrying out the method (2), the molten slag inside the metal iron shell may be allowed to flow out of the metal iron shell by melting a part of the metal iron shell. In order to melt part or all of the metal iron shell, the carburization with a carbonaceous reducing agent present in the metal shell is advanced to lower the melting point of the metal shell.
[0014]
In carrying out the above inventions (1) to (4), the maximum heating temperature in the heat reduction process is controlled to a temperature not less than the melting point of the produced slag and not more than the melting point of the produced metal iron shell. The iron production reaction can proceed more efficiently. In this reduction step, if iron oxide is reduced by solid-phase reduction and further reduced by liquid phase reduction until iron oxide mainly composed of FeO is substantially absent. Thus, the quality of the obtained metallic iron can be improved more efficiently.
[0015]
In order to successfully proceed with the reduction of iron oxide in the solid phase, it is necessary that the slag produced in the reduction process melts at a lower temperature than the metallic iron produced by the reduction. If necessary, adjust the composition of the slag-generating component contained in the iron oxide, carbonaceous reducing agent, etc., in advance so that the melting point of the generated slag is lower than the melting point of the reduced iron. It is desirable to additionally adjust Al 2 O 3 , SiO 2 , CaO or the like.
[0016]
In the prior application invention, as a preferable quantitative standard for “progressing reduction until iron oxide is substantially absent inside the metallic iron shell”, in the heating reduction step, “of iron oxide mainly composed of FeO” It is preferable to proceed the reduction until the content is 5% by weight or less, more preferably 2% by weight or less. From another viewpoint, FeO in the produced slag separated from the metallic iron produced by the reduction reaction is reduced. It is desirable to proceed the reduction until the content of the main iron oxide is 5% by weight or less, more preferably 2% by weight or less.
[0017]
The high-purity metallic iron and produced slag obtained by this method can be separated by a specific gravity difference in a state where both are heated and melted. In addition, according to the invention of the prior application, the iron oxide content in the generated slag can be reduced as much as possible. It does not happen and it is expected to be put into practical use as a highly practical technology from the viewpoint of equipment maintenance.
[0018]
An object of the present invention is to provide a manufacturing method and a manufacturing facility that can utilize the basic technical idea of the invention of the prior application and can efficiently implement this on an industrial scale.
[0019]
[Means for Solving the Problems]
The method for producing metallic iron according to the present invention is to produce metallic iron by heating and reducing a granular or massive shaped body of iron oxide in which a carbonaceous reducing agent is present (hereinafter sometimes simply referred to as a shaped body). by heating reduced while transferring the molded body in a horizontal direction, inside the product slag with advancing reduced to content of definitive iron oxide therein generated and grown metallic iron skin is 5 wt% or less The gist is to form agglomerates and discharge them from the transfer end, and then heat them to melt them, and then separate them into molten slag and molten iron.
[0020]
By allowing the carbonaceous reducing agent to be present in the molded body, the reduction proceeds in the molded body itself to produce metallic iron (outer skin) and slag (inside). Then, by heating and melting, metallic iron and slag can be separated by the specific gravity difference.
[0021]
The amount of the carbonaceous reducing agent present in the molded body is at least an amount necessary for the reduction of the raw iron oxide. Further, it is preferable that a carbonaceous reducing agent in an amount necessary for carburizing the reduced iron is present, so that carburization can be performed as reduced iron (metallic iron) is generated. In addition, the solid state (unmelted) reduced iron forming the outer skin is porous and easily reoxidized. However, the above-mentioned “amount necessary for reducing raw iron oxide + required for carburizing reduced iron” If a larger amount of carbonaceous reducing agent is present in the molded body in addition to the “quantity”, CO gas is generated from the molded body, and this CO gas creates a non-oxidizing atmosphere around the molded body. Reoxidation can be prevented. That is, the most preferable amount of the carbonaceous reducing agent is “amount required for reduction of raw iron oxide + amount required for carburization of reduced iron + amount of oxidation loss”.
[0022]
Moreover, in this invention, it is preferable to transfer the said molded object to the horizontal direction by mounting this molded object on the hearth in a heating reduction apparatus.
In addition, in the present invention, it is preferable to perform the heat reduction while replenishing the carbonaceous reductant when the molded body is heated and reduced while being transferred in the horizontal direction.
In the above, it was proposed that a carbonaceous reducing agent of “amount necessary for carburization of reduced iron + amount of oxidation loss” was previously present in the molded body. The amount of carbonaceous reductant of “required iron carburizing amount + oxidation loss amount” may be replenished from the outside during heat reduction, “Amount necessary for reduction of raw iron oxide + amount required for carburization of reduced iron” may be included, and an “oxidation loss amount” of carbonaceous reducing agent may be replenished from the outside during heating reduction. In this way, it is good to supply the shortage as necessary. In these cases, it is needless to say that the metal skin and the internal slag are satisfactorily produced by the “required amount of the raw iron oxide” for the carbonaceous reducing agent.
[0023]
In addition, if a powdery carbonaceous reducing agent is used and this powder is adhered to the surface of the molded body, it becomes a large block by sintering adhesion between the molded bodies, or a molded body on the furnace wall. Can be prevented from being sintered and the handleability is improved.
[0024]
In addition, when melting metallic iron (reduced iron), a carbonaceous reducing agent of “amount necessary for carburizing reduced iron” or “oxidation loss amount” may be replenished. Carburization proceeds, and the periphery of the molded body is kept in a non-oxidizing atmosphere by the CO gas from the carbonaceous reducing agent, so that reoxidation of metallic iron can be prevented.
Furthermore, in the production method of the present invention, by adjusting the composition of the slag generating component in the molded body in advance, the melting temperature of the slag generated by the reduction is made lower than the melting temperature of the metallic iron generated by the reduction. It is preferable.
[0025]
The metal iron production facility according to the present invention realizes the above production method, and is a facility for producing metal iron by heating and reducing a granular or massive shaped body of iron oxide in which a carbonaceous reducing agent is present. And a heating member provided with a transfer member for transferring the molded body in the horizontal direction, a heating reduction device for heating the molded body, and a discharge end portion of the transfer member in the heating reduction apparatus, which is discharged rearward. The gist of the invention is that it comprises a melting device provided with a heating and melting mechanism for heating and melting the molded body , and a separation device arranged behind the melting device and separated into molten slag and molten iron. .
If the manufacturing equipment of the present invention is used, molten iron can be continuously manufactured from a compact.
[0026]
Furthermore, in this invention, it is preferable that the transfer member which transfers the said molded object to a horizontal direction is provided with the hearth on which the said molded object is mounted. Furthermore, the transfer member is preferably an endless belt type.
[0027]
Further, in the present invention, it is preferable that the furnace floor is provided with an isolation member for preventing mutual adhesion of the molded bodies at an arbitrary pitch, and the isolation member is a plate made of refractory or the like. Illustrated. As a result, the compacts can be prevented from sintering and adhering to a large lump, and the handleability is improved.
[0028]
Further, it is more preferable that the separating member is formed of a desulfurizing agent. In this case, the separating member (desulfurizing agent) is easily detached from the hearth, and the desulfurizing agent is melted together with the reduced molded body. By putting it in the apparatus, desulfurization can be carried out in the melting apparatus as it is. Examples of the separating member include a plate-like member and a powdery member.
[0029]
In addition, a powder desulfurizing agent may be used so that the powder adheres to the surface of the molded body. In addition to preventing mass formation due to sintering adhesion between the molded bodies, Sintering adhesion of the molded body can be prevented, and further, the desulfurization agent is put into the melting apparatus together with the molded body reduced as described above, so that desulfurization can be performed in the melting apparatus as it is. Examples of the desulfurizing agent include limestone.
[0030]
In addition, in the present invention, it is preferable that a reducing burner is provided as the heating and reducing mechanism, and a melting burner is provided as the heating and melting mechanism.
Moreover, in this invention, it is preferable that it is comprised so that it may isolate | separate into molten slag and molten iron behind the said heating-melting mechanism.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the manufacturing method and the manufacturing equipment according to the present invention will be described in detail with reference to the drawings showing an embodiment. However, the present invention is not limited to the illustrated examples, and the purpose described above and below is intended. It is also possible to carry out with appropriate modifications within a range that can be adapted, and all of them are included in the technical scope of the present invention.
[0032]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a metal iron production facility according to the present invention.
The production facility includes a heating reduction device 23, a melting device 12, and a separation device 13. The heating reduction device 23 moves a hearth 46 on which the molded body 4 is placed as a transfer member and the hearth 46 horizontally. A roller 47 is provided. This transfer member has a structure in which a pallet type hearth 46 is attached to a belt conveyor, is an endless belt type, and the roller 47 is rotated by external power (not shown). Further, the heating reduction device 23 is provided with a reduction burner 48 as a heating reduction mechanism, and adjusts the inside of the heating reduction furnace 50 surrounded by the refractory furnace wall 5 to a desired heating temperature. The hearth 46 passes through the inside of the heat reduction furnace 50, and the molded body 4 is placed on the hearth 46 and transferred in the horizontal direction. In addition, the heating reduction furnace 50 of the example shown in FIG. 1 is divided into three chambers, and can be adjusted to a desired temperature according to the reduction stage.
[0033]
The melting device 12 is continued to the transfer terminal (downstream side) of the hearth 46 (transfer member) of the heating and reducing device 23, and the melting device 12 is provided with a melting burner 61 as a heating and melting mechanism, The inside of the melting apparatus 12 surrounded by the furnace wall 6 is adjusted to a desired heating temperature. The melting device 12 is provided with an inclined bed 51 so as to guide the molded body 4 to the rear side (separation device 13). A weir 52 is provided at the boundary between the melting device 12 and the separation device 13 provided behind the melting device 12. The separation device 13 is configured to accumulate molten iron 54 and molten slag 53, and is provided with a slag outlet 55 and a molten iron outlet 56.
The heating and reducing furnace 50 and the melting device 12 are provided with exhaust gas discharge ports 49 and 57.
[0034]
Next, the manufacturing process of metallic iron will be described with reference to FIG. A granular material of a carbonaceous reducing agent such as coal and iron oxide such as iron ore is formed into a small sphere, for example, to produce a compact. The molded body has a carbonaceous reductant in "amount + oxidation loss required for carburizing quantity + reduced iron required for the reduction of the raw material iron oxide".
[0035]
The molded body 4 is placed on the hearth 46 from the entrance side (left side shown in FIG. 1) of the heating and reducing device 23 and sequentially moves in the heating and reducing furnace 50 (moves to the right side in FIG. 1). The temperature in the heating and reducing furnace 50 is adjusted by adjusting the heating power of the reducing burner 48 so that the temperature is lower than the melting temperature of the generated metal iron shell and higher than the melting temperature of the generated slag. Reduced.
[0036]
In this heat reduction step, first, heat reduction proceeds on the outer peripheral side of the molded body 4 to form a skin made of metallic iron, and then the carbonaceous reducing agent itself and the monoxide generated by thermal decomposition thereof inside the skin. Due to the reducing action of carbon, the reduction reaction of iron oxide in the outer skin proceeds efficiently, and the produced metallic irons adhere to each other and gather to grow the outer skin, and the produced slag also melts together to gather. As a result, the metallization rate in this heat reduction process is remarkably increased, and the amount of iron oxide mixed in the generated slag is remarkably reduced.
[0037]
This reduction is performed until iron oxide is substantially not present in the molded body 4, and the moving speed of the hearth 46 is adjusted according to the time required for this reduction. Since the amount of iron oxide mixed in the slag can be reduced by sufficiently reducing in this way, a refractory (furnace wall) made of iron oxide is used when the molded body 4 is melted in the next melting apparatus 12. Damage can be suppressed. The length of the heating and reducing furnace 50 to which the hearth 46 moves may be determined according to the required reduction time and moving speed.
[0038]
During the reduction in the heating and reducing furnace 50, as described above, the produced reduced iron is carburized by the carbonaceous reducing agent contained in the molded body 4, and the periphery of the molded body is generated by the CO gas generated from the molded body. Becomes a non-oxidizing atmosphere, and reoxidation of the produced reduced iron is prevented.
[0039]
The molded body 4 in which the reduction is substantially finished and has a structure of a metallic iron shell and an internal slag agglomerate is discharged from its terminal portion by a moving hearth 46 while at least the shell remains in a solid state, and is melted. 12 leads to. The melting device 12 rolls or slides on the inclined bed 51 and moves toward the rear side (the separation device 13 side) while being heated and melted. The temperature in the melting device 12 is a temperature at which not only the generated slag but also the generated metallic iron skin is melted.
[0040]
Even if a small amount of unreduced portion remains in the molded body 4 introduced into the melting apparatus 12 (reduction proceeds until the iron oxide substantially does not exist inside the metal iron outer shell in the heating reduction furnace 50, 5 wt. % Or 2% by weight or less of iron oxide may be included), and the reduction proceeds by heating at the time of melting and the reduction is completed. At this time, the melting device 12 may be supplemented with a carbonaceous reducing agent.
The molded body 4 in the process of being melted is stopped by the weir 52, and the melted liquid that has been melted falls over the weir 52 and is stored in the separation device 13.
[0041]
Since the molten slag 53 and the molten iron 54 have different specific gravities, the slag is separated into the upper layer and the molten iron is separated into the lower layer in the separation device 13. Only the separated slag 53 is taken out from the slag outlet 55 and only the molten iron 54 is taken out from the molten iron outlet 56, respectively.
[0042]
In this way, highly reduced metallic iron can be efficiently obtained as molten iron. This metallization rate reaches a high level of 95% or more, and further 98% or more. In addition, as a result of the advanced reduction of iron oxide in the heat reduction process, the amount of iron oxide mixed into the molten slag as a by-product is extremely reduced, and refractory damage due to iron oxide contamination is also possible. Can be suppressed.
[0043]
If the separator 13 is provided with burner heating or electric heating equipment, and the molten slag 53 and the molten iron 54 are heated to a higher temperature to improve their fluidity, the slag and molten iron are separated and discharged. Is preferable because it can be made easier.
[0044]
The exhaust gas discharged from the exhaust gas outlets 49 and 57 may be released as it is, but since the exhaust gas is high temperature and has a strong reducing power, it is effectively used as fuel gas supplied to the burners 48 and 61. It may also be used for drying or preheating the molded body 4 or preheating fuel or fuel air.
[0045]
In carrying out the present invention, in order to facilitate the reduction of iron oxide in the solid phase, as described above, the slag produced in the heating reduction process must be melted at a lower temperature than the metallic iron produced by the reduction. For this purpose, the composition of the slag generating component in the molded body (the iron ore generally used as the iron oxide source and the gangue component mixed in the carbonaceous reducing agent) is adjusted in advance. Therefore, it is necessary to control the melting point of the generated slag so as to be lower than the melting point of reduced iron or its carburized material. Therefore, depending on the composition of the gangue component, it is desirable to replenish Al 2 O 3 , SiO 2 , CaO or the like as necessary in the molding process of the molded body to generate slag having a low melting temperature.
[0046]
【The invention's effect】
The present invention is configured as described above, and makes it possible to efficiently implement the new metallic iron manufacturing technology proposed in the invention of the prior application on a practical scale, and not only high iron content but also low iron content. Even from an iron source such as iron ore, extremely high purity metallic iron having a metallization rate of 95% or more, and further 98% or more can be produced in a very short time with high productivity. In addition, if this method and equipment are used, the amount of iron oxide mixed into the slag produced as a by-product in the heat reduction process will be significantly reduced, so melting to the lining refractories such as heat reduction equipment, melting equipment, separation equipment It is also possible to suppress melting damage due to iron oxide as much as possible.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of an apparatus for producing metallic iron according to the present invention.
[Explanation of symbols]
4 Molded bodies 5 and 6 Furnace wall 12 Melting device 13 Separating device 23 Heating and reducing device 46 Furnace floor 47 Roller 48 Reduction burners 49 and 57 Exhaust gas outlet 50 Heating and reducing furnace 51 Inclined bed 52 Weir 53 Molten slag 54 Molten iron 55 Slag Outlet 56 molten iron outlet 60 melting furnace 61 melting burner

Claims (11)

炭素質還元剤が存在する酸化鉄の粒状または塊状成形体を加熱還元して金属鉄を製造するに当たり、
上記成形体を水平方向に移送させながら加熱還元することにより、金属鉄外皮を生成且つ成長させて内部における酸化鉄の含有率が5重量%以下となるまで還元を進めると共に内部に生成スラグの凝集物を形成させ、
上記移送終端部より排出させた後、更に加熱してこれを溶融し、次いで溶融スラグと溶融鉄に分離することを特徴とする金属鉄の製造方法。
In producing metallic iron by heating and reducing a granular or massive shaped body of iron oxide containing a carbonaceous reducing agent,
By heating reduced while transferring the molded body in a horizontal direction, inside the product slag with advancing reduced to content of definitive iron oxide therein generated and grown metallic iron skin is 5 wt% or less Agglomerates are formed,
A method for producing metallic iron, characterized in that after being discharged from the transfer terminal portion, it is further heated to melt it, and then separated into molten slag and molten iron.
上記成形体の水平方向への移送を、この成形体を加熱還元装置内の炉床に載置して行う請求項1に記載の金属鉄の製造方法。  The method for producing metallic iron according to claim 1, wherein the forming body is transferred in the horizontal direction by placing the forming body on a hearth in a heating and reducing device. 上記成形体を水平方向に移送させながら加熱還元するに当たり、炭素質還元剤を補給しつつ加熱還元を行う請求項1または2に記載の金属鉄の製造方法。  The method for producing metallic iron according to claim 1 or 2, wherein the heat reduction is performed while replenishing a carbonaceous reductant when the compact is heated and reduced while being transported in the horizontal direction. 予め上記成形体中のスラグ生成成分の組成を調整することにより、上記還元により生成するスラグの溶融温度を、上記還元により生成する金属鉄の溶融温度よりも低くする請求項1〜3のいずれかに記載の金属鉄の製造方法。  The slag generation component in the molded body is adjusted in advance so that the melting temperature of the slag generated by the reduction is lower than the melting temperature of the metallic iron generated by the reduction. The manufacturing method of metallic iron as described in any one of. 前記加熱還元の温度を、生成する金属鉄外皮の溶融温度未満で且つ生成するスラグの溶融温度以上とする請求項1〜4のいずれかに記載の金属鉄の製造方法。  The method for producing metallic iron according to any one of claims 1 to 4, wherein the temperature of the heat reduction is lower than the melting temperature of the generated metallic iron skin and equal to or higher than the melting temperature of the generated slag. 請求項1〜5のいずれかに記載の金属鉄の製造方法を行う設備であって、
炭素質還元剤が存在する酸化鉄の粒状または塊状成形体を加熱還元して金属鉄を製造する設備であり、
上記成形体を水平方向に移送させる移送部材と上記成形体を加熱する加熱還元機構を備えた加熱還元装置と、
該加熱還元装置における前記移送部材の移送終端部より後方に、排出された成形体を加熱溶融する加熱溶融機構を備えて配設される溶融装置と、
該溶融装置より後方に配設されて溶融スラグと溶融鉄に分離する分離装置と
を備えてなることを特徴とする金属鉄の製造設備。
It is the equipment which performs the manufacturing method of metallic iron in any one of Claims 1-5,
It is a facility for producing metallic iron by heat reduction of a granular or massive shaped body of iron oxide containing a carbonaceous reducing agent,
A heating / reduction apparatus provided with a transfer member for transferring the molded body in the horizontal direction and a heating reduction mechanism for heating the molded body;
A melting apparatus disposed with a heating and melting mechanism that heats and melts the discharged molded body behind the transfer terminal portion of the transfer member in the heating and reducing apparatus;
An apparatus for producing metallic iron, comprising: a separation device disposed behind the melting device and separated into molten slag and molten iron.
上記成形体を水平方向に移送させる移送部材が、上記成形体を載置する炉床を備えたものである請求項6に記載の金属鉄の製造設備。  The metal iron manufacturing facility according to claim 6, wherein the transfer member that transfers the formed body in a horizontal direction includes a hearth on which the formed body is placed. 前記炉床には、上記成形体の相互付着を防止する隔離部材を任意ピッチで設けたものである請求項7に記載の金属鉄の製造設備。  The metal iron manufacturing facility according to claim 7, wherein the hearth is provided with separation members at arbitrary pitches to prevent the compacts from adhering to each other. 前記隔離部材を脱硫剤によって形成したものである請求項8に記載の金属鉄の製造設備。  The metal iron manufacturing facility according to claim 8, wherein the isolation member is formed of a desulfurizing agent. 前記加熱還元機構として還元用バーナーを設けたものであり、
前記加熱溶融機構として溶融用バーナーを設けたものである請求項6〜9のいずれかに記載の金属鉄の製造設備。
A reduction burner is provided as the heating reduction mechanism,
The facility for producing metallic iron according to any one of claims 6 to 9, wherein a melting burner is provided as the heating and melting mechanism.
前記加熱溶融機構より後方で、溶融スラグと溶融鉄に分離する様に構成したものである請求項6〜10のいずれかに記載の金属鉄の製造設備。  The facility for producing metallic iron according to any one of claims 6 to 10, wherein the facility is configured to separate into molten slag and molten iron behind the heating and melting mechanism.
JP25711896A 1996-03-15 1996-09-27 Metallic iron manufacturing method and manufacturing equipment Expired - Fee Related JP4149531B2 (en)

Priority Applications (31)

Application Number Priority Date Filing Date Title
JP25711896A JP4149531B2 (en) 1996-09-27 1996-09-27 Metallic iron manufacturing method and manufacturing equipment
AU19404/97A AU715276C (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
CZ982794A CZ279498A3 (en) 1996-03-15 1997-03-13 Process for producing iron and apparatus for making the same
ARP970100993A AR006206A1 (en) 1996-03-15 1997-03-13 METHOD FOR MANUFACTURING METALLIC IRON, DEVICE FOR ITS MANUFACTURE AND REDUCED CONGLOMERATE OBTAINED BY SUCH METHOD AND THROUGH SUCH DEVICE
PL97328812A PL328812A1 (en) 1996-03-15 1997-03-13 Method of and apparatus for obtaining metallic iron
PCT/JP1997/000806 WO1997034018A1 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
EA199800828A EA001158B1 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
CN97194517A CN1080315C (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
BR9707996-0A BR9707996A (en) 1996-03-15 1997-03-13 Method for making metallic iron, object and apparatus for the production of metallic iron
AT97907310T ATE229083T1 (en) 1996-03-15 1997-03-13 METHOD FOR PRODUCING REDUCED IRON-CONTAINING COMPACT BODY AND BODY SUCH
SK1253-98A SK125398A3 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
ES97907310T ES2188900T3 (en) 1996-03-15 1997-03-13 PROCEDURE FOR MANUFACTURING COMPACTED BODIES THAT INCLUDE IRON AND SUCH BODIES.
TR1998/01833T TR199801833T2 (en) 1996-03-15 1997-03-13 Method and apparatus for producing metallic iron.
CA2694865A CA2694865A1 (en) 1996-03-15 1997-03-13 Method for making metallic iron
NZ332283A NZ332283A (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
CA2248273A CA2248273C (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
DE69717609T DE69717609T2 (en) 1996-03-15 1997-03-13 Process for producing reduced iron-containing compact bodies and such bodies
HU99023399902339A HUP9902339A3 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron method and apparatus for making metallic iron
EP97907310A EP0888462B1 (en) 1996-03-15 1997-03-13 Method for making reduced compacts comprising iron and such compacts
KR10-1998-0707316A KR100516507B1 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
PE1997000194A PE21298A1 (en) 1996-03-15 1997-03-13 METHOD AND APPARATUS FOR MAKING METALLIC IRON
IL12044097A IL120440A0 (en) 1996-03-15 1997-03-13 Method and apparatus for making metallic iron
US08/818,954 US6036744A (en) 1996-03-15 1997-03-14 Method and apparatus for making metallic iron
IDP970865A ID16250A (en) 1996-03-15 1997-03-17 METHODS AND EQUIPMENT FOR MAKING METAL IRON (METALIC IRON).
BG102721A BG102721A (en) 1996-03-15 1998-08-24 Method and device for the production of metallic iron
NO984161A NO984161L (en) 1996-03-15 1998-09-10 Method and apparatus for producing metallic iron
US09/478,409 US6432533B1 (en) 1996-03-15 2000-01-06 Metallic iron containing slag
CNB011179414A CN1198945C (en) 1996-03-15 2001-05-08 Intermediate for producing metal iron, its making method and equipment
US09/891,653 US6506231B2 (en) 1996-03-15 2001-06-26 Method and apparatus for making metallic iron
US10/289,290 US20030061909A1 (en) 1996-03-15 2002-11-07 Method and apparatus for making metallic iron
US11/855,793 US7938883B2 (en) 1996-03-15 2007-09-14 Method and apparatus for making metallic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25711896A JP4149531B2 (en) 1996-09-27 1996-09-27 Metallic iron manufacturing method and manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH10102118A JPH10102118A (en) 1998-04-21
JP4149531B2 true JP4149531B2 (en) 2008-09-10

Family

ID=17301989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25711896A Expired - Fee Related JP4149531B2 (en) 1996-03-15 1996-09-27 Metallic iron manufacturing method and manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4149531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3854894A4 (en) * 2018-09-20 2022-05-18 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7293634B2 (en) * 2018-12-18 2023-06-20 住友金属鉱山株式会社 Method for smelting oxide ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3854894A4 (en) * 2018-09-20 2022-05-18 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore

Also Published As

Publication number Publication date
JPH10102118A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
US6036744A (en) Method and apparatus for making metallic iron
KR100325652B1 (en) Production method of metallic iron
US6210462B1 (en) Method and apparatus for making metallic iron
JP4231960B2 (en) Method and apparatus for producing carbon-containing iron using hearth rotary furnace
JP4267843B2 (en) Metal iron manufacturing method
JP2002528645A (en) Method of producing molten iron in a double furnace
EP1160336A1 (en) Method of and apparatus for manufacturing metallic iron
US6506231B2 (en) Method and apparatus for making metallic iron
TWI338716B (en) Method and apparatus for manufacturing granular metallic iron
JP4540172B2 (en) Production of granular metallic iron
JP2002517607A (en) Sustained iron production and solid waste minimization by enhanced direct reduction of iron oxide
JP4149531B2 (en) Metallic iron manufacturing method and manufacturing equipment
JP3845893B2 (en) Metal iron manufacturing method
JP4572435B2 (en) Method for producing reduced iron from iron-containing material
JP2000045007A (en) Production of metallic iron and device therefor
JP4341139B2 (en) Method for producing reduced metal from metal-containing material
JPH10102116A (en) Production of metallic iron and production equipment thereof
JPH10102117A (en) Production of metallic iron and production equipment thereof
JPH10251724A (en) Production of metallic iron and producing equipment therefor
JPH10102114A (en) Production of metallic iron and production equipment thereof
JPH10251725A (en) Production of metallic iron and producing equipment thereof
JPH10102115A (en) Production of metallic iron and production equipment thereof
JPH0314889B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees