JPH09263812A - Operation of vertical type scrap melting furnace - Google Patents

Operation of vertical type scrap melting furnace

Info

Publication number
JPH09263812A
JPH09263812A JP7453696A JP7453696A JPH09263812A JP H09263812 A JPH09263812 A JP H09263812A JP 7453696 A JP7453696 A JP 7453696A JP 7453696 A JP7453696 A JP 7453696A JP H09263812 A JPH09263812 A JP H09263812A
Authority
JP
Japan
Prior art keywords
carbonaceous material
furnace
melting furnace
scrap
scrap melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7453696A
Other languages
Japanese (ja)
Inventor
Hiromasa Iijima
寛昌 飯嶋
Hideji Takeuchi
秀次 竹内
Nagayasu Bessho
永康 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7453696A priority Critical patent/JPH09263812A/en
Publication of JPH09263812A publication Critical patent/JPH09263812A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the solution loss and to reduce the unit requirement of carbonaceous material by previously coating the charging carbonaceous material with a material hardly being oxidized with high-temp. CO2 and H2 O and capable of being eliminated by burning, vaporizing or melting at the lower part of a melting furnace at the time of melting scrap. SOLUTION: At the time of charging the carbonaceous material 2 into a vertical type scrap melting furnace provided with multi-step type blasting tuyeres 4-6 at the lower part of the furnace, the carbonaceous material 2 and iron source 3 are separated from each other in the cross sectional plane of the furnace. At the same time, the carbonaceous material 2 covered with one or more kinds of compounds selected from group consisting of oxides, carboxides, hydroxides and sulfides of alkali metals or alkaline-earth metals or with an ore containing these compounds on this surface is used. As the carbonaceous material to be used, lump coal or formed coal of fine coal and granular coal is used, and the surface coating material is applied spreading the slurry of the powdery and granular material thereof or by being dipped into the slurry.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スクラップと炭材
を原材料として溶銑を製造するに際し、これらの炉内装
入物分布を制御し、炭材を被覆してソリューション反応
を抑制して炭材原単位を減少させる竪型スクラップ溶解
炉の操業方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when producing hot metal from scrap and carbon materials as raw materials, controls the distribution of the contents of the furnace interior of these materials, coats the carbon materials and suppresses the solution reaction, and The present invention relates to a method for operating a vertical scrap melting furnace that reduces the unit.

【0002】[0002]

【従来の技術】そもそもキュポラに代表される竪型スク
ラップ溶解炉は、比較的簡単な構造の筒型炉で炉上方か
ら鉄源と、コークス等の炭材とを装入し、装入した鉄源
は常に炭材と接触しながら降下し、炉下部に設置された
羽口から送られる空気中の酸素とコークス中の炭素との
燃焼反応熱によって予熱溶解される。
2. Description of the Related Art A vertical scrap melting furnace represented by cupola is a cylindrical furnace having a relatively simple structure, and an iron source and a carbonaceous material such as coke are charged from the upper side of the furnace and the iron is charged. The source always descends while being in contact with the carbonaceous material, and is preheated and melted by the heat of combustion reaction between oxygen in the air sent from the tuyere installed in the lower part of the furnace and carbon in the coke.

【0003】羽口先では炭材中のCと、羽口から吹き込
まれた空気中のO2 が下記式によって反応し、CO2
生成する。この反応は発熱反応である。 C + O2 =CO2 +97000kcal/kmol
・C この反応によって生成したCO2 は、炉の上方から降下
して来る鉄源及び炭材と熱交換しながら炉内を上昇する
が、その際に、炭材と下記のソリューションロス反応と
呼ばれる吸熱反応を生じ、これがキュポラのエネルギー
効率を悪くしていた。
At the tuyere, C in the carbonaceous material reacts with O 2 in the air blown from the tuyere according to the following formula to produce CO 2 . This reaction is exothermic. C + O 2 = CO 2 +97,000 kcal / kmol
・ C The CO 2 produced by this reaction rises in the furnace while exchanging heat with the iron source and the carbonaceous material falling from above the furnace. At that time, it is called the solution loss reaction with the carbonaceous material. An endothermic reaction occurred, which made the energy efficiency of the cupola poor.

【0004】C + CO2 =2CO−38200kc
al/kmol・C
C + CO 2 = 2CO-38200kc
al / kmol C

【0005】[0005]

【発明が解決しようとする課題】したがって、キュポラ
のエネルギー効率を向上するうえで、このソリューショ
ンロス反応をいかにして抑制するかが重要な課題となっ
ている。この課題を解決しようとする従来技術として、
例えば特開平7−70625号公報に記載された発明で
は、炉壁周辺部にコークスを装入し、炉中心部に鉄源を
装入し、炉内を上昇するCO2 を極力炭材に接触させ
ず、鉄源、との熱交換に利用し、ソリューションロス反
応を低減することを開示している。
Therefore, in order to improve the energy efficiency of cupola, how to suppress this solution loss reaction is an important issue. As a conventional technique to solve this problem,
For example, in the invention described in Japanese Patent Laid-Open No. 7-70625, coke is charged in the peripheral portion of the furnace wall, an iron source is charged in the central portion of the furnace, and CO 2 rising in the furnace is contacted with carbonaceous material as much as possible. It is disclosed that the solution loss reaction is reduced by utilizing it for heat exchange with the iron source without performing it.

【0006】しかし、この従来技術を実際の操業に適用
してみると未だ、下記の問題を有することがわかった。
すなわち、炭材自体の安定した降下や排ガス中へのロス
を勘案すると、炭材部分の通気性を事実上ゼロにするよ
うな著しい微粉状の炭材の使用は好ましくなく、ある程
度の大きさの粒度の炭材の使用が避けられない。このこ
とは炭材部側へのガスの回り込みを招き、結果として、
ソリューションロス反応を充分に抑制しえない結果をも
たらす。そして、一旦ソリューションロス反応が起きる
と、炭材がCO2 ガスによって燃焼し体積が収縮するた
めに空隙が増大してCO2 ガスの通気抵抗が小さくなる
ため、より一層CO2 ガスが炭材充填部側に回り込みソ
リューションロス反応が促進される結果となり、前述し
た問題を解決するに到っていない。
However, when this conventional technique was applied to an actual operation, it was found that the following problems were still present.
In other words, considering the stable drop of the carbonaceous material itself and the loss into the exhaust gas, it is not preferable to use a remarkably fine carbonaceous material that makes the air permeability of the carbonaceous material portion practically zero, and the carbonaceous material has a certain size. The use of carbonaceous material with a grain size is inevitable. This causes gas to wrap around to the carbonaceous material side, and as a result,
The result is that the solution loss reaction cannot be suppressed sufficiently. Then, once solutions the loss reaction occurs, since the gap for carbonaceous material volume to the combustion is contracted by CO 2 gas is increased ventilation resistance of the CO 2 gas becomes smaller, more CO 2 gas carbonaceous material filled As a result, the solution loss reaction that wraps around to the department side is promoted, and the above-mentioned problems have not been solved.

【0007】一方、本発明者らは、先に特開平8−13
015号公報において、炭材表面を予め、高温のCO2
やH2 Oによって酸化されにくくかつ溶解炉の下部にお
いて燃焼、蒸発、溶融等により焼失する物質で被覆する
ことにより、溶解炉上部でのソリューションロス反応を
防止する技術を開示した。この従来技術では、生産性を
上げるために装入物高さを高くしたり、あるいは、装入
する重量の大きいスクラップを原料として装入した場合
には、炭材の摩耗や圧壊によって炭材そのものの表面が
露出し、その露出部を起点としてソリューションロス反
応が生じる問題が生じた。
On the other hand, the inventors of the present invention previously disclosed in Japanese Patent Laid-Open No. 8-13
In Japanese Patent No. 015, the surface of the carbonaceous material is previously subjected to high temperature CO 2
Disclosed is a technique for preventing a solution loss reaction in the upper part of the melting furnace by coating with a substance that is hard to be oxidized by H 2 O and H 2 O and is burned down by burning, evaporation, melting, etc. in the lower part of the melting furnace. In this conventional technique, when the height of the charge is increased to increase productivity, or when a heavy scrap to be charged is charged as a raw material, the carbon material itself is worn or crushed due to abrasion or crushing of the carbon material. The surface of was exposed, and the problem of a solution loss reaction occurred starting from the exposed part.

【0008】本発明は、上記の従来技術のもつ問題点を
解決し、炭材の燃焼エネルギーを最大限有効に使いき
り、鉄源溶解に必要な炭材原単位を大幅に低減する竪型
スクラップ溶解炉の操業方法を提供するものである。
The present invention solves the above problems of the prior art, uses the combustion energy of the carbonaceous material to the maximum extent, and reduces the carbonaceous material unit required for melting the iron source to a large extent. A method for operating a melting furnace is provided.

【0009】[0009]

【課題を解決するための手段】本発明は、竪型スクラッ
プ溶解炉の操業方法について、熱源(炭材)の使用量削
減の検討をした結果、1次羽口で生成したCOガスを発
熱反応である CO+(1/2)O2 →CO2 によりCO2 に燃焼させ、炉内で炭材のエネルギーを完
全に使い切ることと、この反応で生成したCO2 ガスに
よる炉上部で CO2 +C→2CO の吸熱反応の抑制の双方を同時に達成する技術を開発し
完成したものである。すなわち、上記吸熱反応の抑制方
法として、炉の横断面図を模式的に図2、図3、図4、
図5に示すように、炉の横断面内で鉄源と炭材が互いに
分離して分布するような装入方法とし、図1に示すよう
に、炉壁高さ方向に設けた多段羽口を活用して2次燃焼
が完全に行なわれるようにすることとしたものである。
As a result of the examination of the reduction of the amount of heat source (carbonaceous material) used in the operation method of the vertical scrap melting furnace, the present invention makes CO gas generated at the primary tuyere an exothermic reaction. CO + (1/2) O 2 → CO 2 burns CO 2 to completely exhaust the energy of the carbonaceous material in the furnace, and CO 2 gas generated by this reaction causes CO 2 + C → We have developed and completed a technology that simultaneously achieves both suppression of the endothermic reaction of 2CO 2. That is, as a method of suppressing the above endothermic reaction, cross-sectional views of the furnace are schematically shown in FIGS.
As shown in FIG. 5, the charging method was such that the iron source and the carbonaceous material were distributed separately from each other in the cross section of the furnace, and as shown in FIG. 1, the multi-stage tuyere provided in the height direction of the furnace wall. Is used to ensure that secondary combustion is completely performed.

【0010】本発明は、炉下部に多数段の送風羽口を設
けた竪型スクラップ溶解炉を用いてスクラップを溶解
し、溶銑あるいは溶鋼を製造する際に、炭材と鉄源を炉
横断面内で互いに分離させて装入すると共に、炭材は、
高温のCO2 やH2 Oによって酸化されにくくかつ竪型
スクラップ溶解炉の下部で燃焼、蒸発、もしくは溶解に
より消失する物質により表面を予め被覆したものを使用
することを特徴とする竪型スクラップ溶解炉の操業方法
である。
According to the present invention, when a vertical scrap smelting furnace is provided in the lower part of the furnace with a large number of blast tuyere, the scrap is melted to produce hot metal or molten steel, a carbon material and an iron source are cross-sectioned in the furnace. Separately from each other and charged, the carbonaceous material is
Vertical scrap melting characterized by using a material whose surface is preliminarily coated with a substance which is hard to be oxidized by high temperature CO 2 or H 2 O and which disappears by burning, evaporation or melting in the lower part of the vertical scrap melting furnace. This is the operating method of the furnace.

【0011】すなわち、本発明は、炭材と鉄源とのいず
れか一方を炉中心部に装入し、他方を炉型側に互いに分
離させて装入すると共に、炭材は、酸化されにくくかつ
溶解炉の下部で消失する物質により表面を予め被覆して
おくものである。この場合において、前記多数段の羽口
から酸素富化空気を送風することによってさらに効率よ
く操業することが可能となり好ましい。
That is, according to the present invention, one of the carbonaceous material and the iron source is charged into the central portion of the furnace and the other is charged into the furnace mold side separately from each other, and the carbonaceous material is hardly oxidized. Moreover, the surface is previously coated with a substance that disappears in the lower part of the melting furnace. In this case, it is preferable that the oxygen-enriched air is blown from the tuyeres of the plurality of stages to enable more efficient operation.

【0012】炭材の表面を被覆する物質としては、アル
カリ金属またはアルカリ土類金属の酸化物、炭酸化物、
水酸化物、硫化物からなる群から選ばれたいずれか1種
以上あるいはこれらを含む鉱物からなるものを用いる
と、好適である。そして、これらの炭材の表面を被覆す
る物質の塗布方法として、その物質の粉粒体を液状媒体
を用いてスラリー化した後に炭材の表面にスラリーを散
布して塗布するか、あるいはこのスラリー中に炭材を浸
漬させることにより炭材の表面に塗布することとすれば
よい。
As the substance for coating the surface of the carbonaceous material, oxides or carbonates of alkali metals or alkaline earth metals,
It is preferable to use any one or more selected from the group consisting of hydroxides and sulfides, or those composed of minerals containing these. Then, as a method of applying a substance for coating the surface of these carbonaceous materials, a powdery or granular material of the substance is slurried using a liquid medium and then a slurry is applied to the surface of the carbonaceous material, or the slurry is applied. The carbonaceous material may be dipped into the surface of the carbonaceous material for application.

【0013】また、上記操業方法において、使用する炭
材が塊石炭、あるいは粉、粒状の石炭を成形した成形炭
であるとコークスに比べて安価に操業をすることができ
る。
Further, in the above operating method, when the carbonaceous material used is agglomerated coal, or formed coal formed by molding powder or granular coal, it can be operated at a lower cost than coke.

【0014】[0014]

【発明の実施の形態】本発明の技術は、竪型炉内におい
て起こる炭材中の炭素と高温排ガスに含まれるCO2
スとの吸熱反応の抑制による熱効率向上を実現するもの
である。すなわち、竪型炉下部に設置された羽口から送
られる空気によって、 C+O2 →CO2 の反応が起こり、CO2 ガスが炉内を上昇し炉外に排出
される過程で、一部は充填層中の炭材と接触し炭材中の
炭素と CO2 +C→2CO の反応を起こす。この反応は、吸熱反応であり、炉全体
としては、炉外に排出されるガス中のCO分だけは潜熱
分として捨てられることになり、炭材の消費量が増加す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The technique of the present invention realizes improvement of thermal efficiency by suppressing an endothermic reaction between carbon in carbonaceous material and CO 2 gas contained in high-temperature exhaust gas that occurs in a vertical furnace. That is, C + O 2 → CO 2 reaction occurs due to the air sent from the tuyere installed in the lower part of the vertical furnace, and CO 2 gas rises inside the furnace and is discharged outside the furnace. It comes into contact with the carbonaceous material in the bed and causes a reaction of carbon in the carbonaceous material and CO 2 + C → 2CO. This reaction is an endothermic reaction, and in the entire furnace, only the CO content in the gas discharged to the outside of the furnace is discarded as a latent heat content, and the consumption of carbonaceous materials increases.

【0015】図1は、本発明を好適に実施することがで
きる竪型スクラップ溶解炉の模式的概略縦断面図であ
る。装入原料であるスクラップ2を鉄源の装入管9の頂
部のスクラップ装入箇所から装入し、また炭材3として
のコークスおよび副原料の石灰石を炭材の装入管8の頂
部のコークス装入箇所から溶解炉シャフト部1内に装入
する。溶解炉シャフト部1下部に設置した1次羽口4か
ら空気を送風し、2次羽口5、3次羽口6より送風し、
2次燃焼を精度よく行わせる。この2次燃焼によりスク
ラップ2の予熱を行い、装入原料を連続的に装入し、溶
解して溶銑11を取鍋12に得る。
FIG. 1 is a schematic vertical sectional view of a vertical scrap melting furnace in which the present invention can be preferably implemented. Scrap 2, which is a charging raw material, is charged from a scrap charging point at the top of the iron source charging pipe 9, and coke as the carbonaceous material 3 and limestone as an auxiliary raw material are charged at the top of the carbonaceous charging pipe 8. Charge into the melting furnace shaft portion 1 from the coke charging position. Air is blown from the primary tuyere 4 installed at the bottom of the melting furnace shaft portion 1, and is blown from the secondary tuyere 5 and the third tuyere 6,
Accurately perform secondary combustion. By this secondary combustion, the scrap 2 is preheated, the charging raw material is continuously charged, and the molten pig iron 11 is obtained in the ladle 12 by melting.

【0016】そこで、炭材3の持つエネルギーを炉内で
完全に使い切るために、上述の吸熱反応を抑制する方法
として、竪型炉内のスクラップ2と炭材3の装入方法
と、炭材3の表面を被覆することに着目した。すなわ
ち、竪型炉横断面におけるスクラップ2と炭材3を、図
2〜図5に示すように、炉の横断面内でスクラップ2と
炭材3が互いに分離して分布するように装入する。図2
〜図5はそれぞれ図1のA−A矢視断面図の模式図であ
る。図2では溶解炉シャフト部1の炉周側に鉄源(スク
ラップ)2、中心側に炭材3を装入している。図3では
逆に中心側に鉄源(スクラップ)2、炉周側に炉材3を
装入している。図4では炉周側に円周方向に不連続に炭
材3を装入し、中心側から炉周に至る間に鉄源(スクラ
ップ)2を装入している。図5は鉄源と炭材の分布が図
4と丁度逆の関係にある。
Therefore, in order to completely use up the energy of the carbonaceous material 3 in the furnace, as a method of suppressing the above-mentioned endothermic reaction, a method of charging the scrap 2 and the carbonaceous material 3 in the vertical furnace, Attention was paid to coating the surface of No. 3. That is, as shown in FIGS. 2 to 5, the scrap 2 and the carbonaceous material 3 in the vertical furnace cross section are charged so that the scrap 2 and the carbonaceous material 3 are separated and distributed in the cross section of the furnace. . FIG.
5 is a schematic view of a cross-sectional view taken along the line AA of FIG. In FIG. 2, an iron source (scrap) 2 is charged on the furnace peripheral side of the melting furnace shaft portion 1, and a carbonaceous material 3 is charged on the center side. In FIG. 3, conversely, an iron source (scrap) 2 is charged on the center side and a furnace material 3 is charged on the furnace peripheral side. In FIG. 4, the carbonaceous material 3 is charged discontinuously in the circumferential direction on the furnace circumference side, and the iron source (scrap) 2 is charged between the center side and the furnace circumference. In FIG. 5, the distribution of the iron source and the carbonaceous material is exactly the opposite of that in FIG.

【0017】図2〜図5の装入ではそれぞれ、炭材3部
分の横断面積が減少し、炭材3の部分の通気抵抗がスク
ラップ2の部分と比較して大きいことと相まって、炭材
3部分の通気ガス流量を大幅に減少させることが可能で
ある。また、コークス、石炭等の炭材3の表面を、アル
カリ金属の炭酸化物であるNaCO3 等あるいはアルカ
リ土類金属の酸化物であるCaO等で被覆することによ
って、炉の中上部でのCO2 と炭材3とのソリューショ
ンロス反応を低下させることができる。
In the charging shown in FIGS. 2 to 5, the cross-sectional area of the carbonaceous material 3 portion is reduced, and the ventilation resistance of the carbonaceous material 3 portion is larger than that of the scrap 2 portion. It is possible to significantly reduce the ventilation gas flow rate of the part. Further, by coating the surface of the carbonaceous material 3 such as coke or coal with NaCO 3 which is a carbonate of an alkali metal or CaO which is an oxide of an alkaline earth metal, CO 2 in the middle and upper parts of the furnace The solution loss reaction between the carbonaceous material 3 and the carbonaceous material 3 can be reduced.

【0018】この条件下で、図1に示すように、ベッド
コークスの上部およびさらに上段に多数段の羽口5、6
を設置することにより、2次燃焼を向上させることがで
き、装入物充填層部の高さ方向の温度分布を適正に制御
することができ、スクラップ2の融着が起こらない最適
な予熱を行うことができる。すなわち、上記のような装
入方法の改善、操業方法の改善により、炭材とCO2
スとの反応量を低減させることができ、2次燃焼を向上
させ、炭材の持つエネルギーを有効にスクラップの予
熱、溶解に利用することができる。
Under these conditions, as shown in FIG. 1, a large number of tuyeres 5, 6 are provided on the upper portion of the bed coke and further on the upper portion thereof.
The secondary combustion can be improved and the temperature distribution in the height direction of the charged material packed bed can be properly controlled by installing the, so that optimum preheating that does not cause fusion of the scrap 2 can be performed. It can be carried out. That is, by improving the charging method and the operating method as described above, the reaction amount of the carbonaceous material and CO 2 gas can be reduced, the secondary combustion can be improved, and the energy of the carbonaceous material can be effectively used. It can be used for preheating and melting scrap.

【0019】この発明で用いる炭材の表面被覆材として
は、石灰石(CaCO3 が主成分以下同様)、生石灰
(CaO)、消石灰(Ca(OH)2 )、石膏(CaS
4 )、ドロマイト(MgCO3 ・CaCO3 )、焼成ド
ロマイト(MgO・CaO)、ソーダ灰(Na2 CO
3 )、炭酸バリウム、硫酸バリウム等が挙げられる。但
し、これらの選択条件として、炉壁を構成する耐火物や
鋼製構造物(原材料装入部の金物等)を溶損、腐食しな
いことが必要である。また、通常のキュポラ操業では造
滓補助材として石灰石を添加するが、本発明の場合にも
この働きと同様の造滓作用をする材料を用いることが望
ましい。一方、被覆方法としては、単純に粉状の表面被
覆材を炭材に「まぶす」ことでもよいが、被覆の効果を
高めるためには粉状材料を水、油、有機溶剤等の液状媒
体によりスラリーとし、これを炭材に散布して塗布する
か、スラリー状の浴の中に炭材を浸漬するかのいずれか
の方法で塗布するのが望ましい。
The surface coating material of the carbonaceous material used in the present invention includes limestone (CaCO 3 is the same as the main component hereinafter), quick lime (CaO), slaked lime (Ca (OH) 2 ), gypsum (CaS).
O 4 ), dolomite (MgCO 3 · CaCO 3 ), calcined dolomite (MgO · CaO), soda ash (Na 2 CO)
3 ), barium carbonate, barium sulfate and the like. However, as a selection condition for these, it is necessary not to melt or corrode the refractory and the steel structure (metals of the raw material charging part) that constitute the furnace wall. In addition, limestone is added as a slag aid in the ordinary cupola operation, but in the case of the present invention, it is desirable to use a material having a slag action similar to this function. On the other hand, as the coating method, it is also possible to simply "spray" the powdery surface coating material on the carbon material, but in order to enhance the coating effect, the powdery material is treated with a liquid medium such as water, oil or an organic solvent. It is desirable to form a slurry and apply it by spraying it on a carbonaceous material or by immersing the carbonaceous material in a slurry-like bath.

【0020】また、使用する炭材種として通常の鋳物用
コークスでもよいが、より経済的な高炉用コークス、あ
るいは塊石炭又は粉・粒状石炭を塊成化したいわゆる成
形炭を用いることも可能である。特に石炭を使用する場
合は、揮発物の多い銘柄を用いると、炉内で加熱される
時に多量のガスを発生し、炭材表面の被覆層を破壊した
り、塊そのものの崩壊を引き起こすこともあるので、注
意が必要である。
Further, as the carbonaceous material used, ordinary coke for foundry may be used, but more economical blast furnace coke, or so-called formed coal obtained by agglomerating agglomerated coal or powder / granular coal can also be used. is there. Especially when using coal, if a brand with a large amount of volatiles is used, a large amount of gas is generated when it is heated in the furnace, which may destroy the coating layer on the surface of the carbonaceous material or cause the collapse of the lump itself. Be careful because it exists.

【0021】[0021]

【実施例】【Example】

(実施例−1)本発明の1実施例として、竪型溶解炉と
して3t/hの能力を有するキュポラを用いて100t
のスクラップを溶解した。この実施例において使用した
スクラップはサイズが25〜150mmのシュレッダー
スクラップであり、炭材として生石灰を被覆したサイズ
が30〜75mmの高炉用コークスを使用した。被覆は
コークスの表面に、水100gに対して生石灰粉を25
0gの割合で生石灰粉を混練機を用いて混合して、作製
した溶液(スラリー)を塗布した。この塗布した生石灰
を含めた全体の装入生石灰量は従来と同様の120kg
/hrで行った。なお、溶解炉シャフト部1の内径は6
00mmである。操業条件としては、キュポラへのスク
ラップとコークスの装入を図2に示すようにキュポラ横
断面図において、炉中心にコークス、炉壁周辺にスクラ
ップを装入し、得られる溶銑温度が1540±10℃、
溶銑中炭素濃度が3.5±0.5%となるように炉頂か
ら、表面を被覆したコークス装入量を調整した。一方送
風量は、1次羽口4から、1400Nm3 /hr、2次
羽口5から、300Nm3 /hr,3次羽口6から10
0Nm3 /hrの割合で供給した。以上の実施例1にお
ける操業の結果、コークス原単位は92kg/tとなっ
た。
(Embodiment 1) As one embodiment of the present invention, a cupola having a capacity of 3 t / h is used as a vertical melting furnace for 100 t.
Was dissolved. The scrap used in this example was shredder scrap having a size of 25 to 150 mm, and blast furnace coke having a size of 30 to 75 mm coated with quicklime was used as a carbonaceous material. The coating is 25 g of quicklime powder on 100 g of water on the surface of the coke.
Quick lime powder was mixed at a rate of 0 g using a kneader, and the prepared solution (slurry) was applied. The total amount of quick lime charged including this quick lime applied is 120 kg, which is the same as the conventional one.
/ Hr. The inner diameter of the melting furnace shaft portion 1 is 6
00 mm. As for the operating conditions, as shown in Fig. 2, the charging of scrap and coke into the cupola is shown in Fig. 2. In the cross section of the cupola, the coke is charged in the center of the furnace and the scrap is charged in the vicinity of the furnace wall. ℃,
The amount of coke charged on the surface was adjusted from the furnace top so that the carbon concentration in the hot metal was 3.5 ± 0.5%. Meanwhile blowing amount from the primary tuyeres 4, from 1400Nm 3 / hr, 2 tuyeres 5, from 300 Nm 3 / hr, 3 tuyeres 6 10
It was supplied at a rate of 0 Nm 3 / hr. As a result of the operation in Example 1 above, the coke basic unit was 92 kg / t.

【0022】(実施例−2)実施例2として、上記の実
施例−1と同様の設備を用い、操業条件としては、キュ
ポラへのスクラップと表面を被覆したコークスの装入分
布が図3、図4、図5に示すように装入しても、同様な
結果が得られた。 (実施例−3)多段羽口から酸素富化を行った。操業条
件としては、鉄源と炭材を図2に示す分布になるように
装入して、送風量は1次羽口4より1400Nm3 /h
r、2次羽口5からは空気を200Nm3 /hr、酸素
を15Nm3 /hr、3次羽口6からは空気を80Nm
3 /hr、酸素を10Nm3 /hrの割合で供給した。
操業の結果、コークス原単位は89kg/tとなった。
(Example 2) As Example 2, the same equipment as in Example 1 above was used, and the operating conditions were as follows: the distribution of the scrap and the coke charged on the surface of the cupola was as shown in FIG. Similar results were obtained by charging as shown in FIGS. 4 and 5. (Example-3) Oxygen was enriched from the multi-tuyer. The operating conditions are as follows: an iron source and carbonaceous material are charged so as to have the distribution shown in FIG. 2, and the air flow rate is 1400 Nm 3 / h from the primary tuyere 4.
r, 2 tuyeres 200Nm air from 5 3 / hr, the air oxygen from 15Nm 3 / hr, 3 tuyeres 6 80 Nm
3 / hr and oxygen were supplied at a ratio of 10 Nm 3 / hr.
As a result of the operation, the basic unit of coke was 89 kg / t.

【0023】(実施例−4)実施例−1と同様の設備を
用い、操業条件としては、キュポラへのスクラップと表
面を被覆したコークスの装入分布が図3、図4、図5に
示すように装入し、送風量は実施例−3と同一条件で行
い、同様な結果が得られた。表1に操業条件を示す。
(Embodiment 4) Using the same equipment as in Embodiment 1, the operating conditions are shown in FIG. 3, FIG. 4 and FIG. 5 as the distribution of the charge of scrap and the coke coated on the surface of the cupola. As described above, the blowing rate was the same as in Example-3, and similar results were obtained. Table 1 shows the operating conditions.

【0024】(比較例−1)従来法のキュポラ操業にお
いて、炭材の装入管を用いず、鉄源の装入管からスクラ
ップとコークスを各々層状となるようにして炉内に装入
し、溶解能力は実施例−1と同様に3t/h、生産量1
00tとして操業した。使用したスクラップ、炭材のサ
イズ、種類は実施例−1で使用したものと同一のものを
使用し、装入生石灰量120kg/hrの条件下で、得
られる溶銑温度が1540±10℃、溶銑中炭素濃度が
3.5±0.5%となるように炉頂からのコークス装入
量を調整した。操業条件を表1に併記した。以上の比較
例−1における操業の結果、コークス原単位は140k
g/tとなった。
(Comparative Example-1) In a cupola operation of a conventional method, a scrap tube and a coke tube were charged into the furnace in a layered manner from the iron source charging tube without using a carbon material charging tube. , The dissolution capacity is 3t / h, the production amount is 1 as in Example 1.
It was operated as 00t. The scrap and carbon materials used are the same in size and type as those used in Example-1, and the obtained hot metal temperature is 1540 ± 10 ° C. under the condition of the amount of quicklime to be charged of 120 kg / hr. The amount of coke charged from the furnace top was adjusted so that the medium carbon concentration was 3.5 ± 0.5%. The operating conditions are also shown in Table 1. As a result of the operation in Comparative Example 1 above, the coke basic unit is 140 k.
It became g / t.

【0025】(比較例−2)比較例1において、装入コ
ークスの表面に水100gに対して生石灰粉を250g
の割合で生石灰粉を混練機を用いて混合して、作製した
溶液を塗布したコークスを使用した結果、コークス原単
位は126kg/tとなった。 (比較例−3)従来の特表平1−501401号公報の
装置と同設備のものを使用し溶解能力は実施例−1と同
様に3t/h、生産量100tとして操業した。スクラ
ップサイズは25〜150mm、炭材サイズは30〜7
5mmとした。その結果、コークス原単位は130kg
/tであった。次に操業上では、1日当たりの操業で3
〜4回の棚吊りが生じるのに対し、本発明では棚吊りは
起しておらずに順調な操業を行うことができた。
(Comparative Example 2) In Comparative Example 1, 250 g of quicklime powder was added to 100 g of water on the surface of the charging coke.
As a result of using the coke coated with the solution prepared by mixing the quicklime powder at a ratio of 1 using a kneader, the coke basic unit was 126 kg / t. (Comparative Example-3) The same equipment as that of the conventional Japanese Patent Publication No. 1-501401 was used, and the dissolving capacity was 3 t / h and the production amount was 100 t, as in Example 1. Scrap size is 25 to 150 mm, carbon material size is 30 to 7
5 mm. As a result, the basic unit of coke is 130 kg.
Was / t. Next, in terms of operation, 3 per day
In contrast to the case of hanging the rack up to 4 times, the present invention was able to perform the operation smoothly without hanging the rack.

【0026】(比較例−4)従来の特開平7−7062
5号公報に記載されている装置と同設備のものを使用
し、比較例−3と同様に操業した結果、コークス原単位
は110kg/tであった。次に操業上では、多段羽口
の突き出し部での棚吊りが1日当たりの操業で2〜3回
生じた。
(Comparative Example 4) Conventional Japanese Patent Laid-Open No. 7-7062
As a result of operating in the same manner as in Comparative Example 3 using the same equipment as the apparatus described in Japanese Patent Publication No. 5, the coke unit was 110 kg / t. Next, in operation, the hanging at the protruding portion of the multi-stage tuyere occurred 2-3 times in the operation per day.

【0027】以上の実施例、比較例のコークス原単位を
まとめて表1に示した。表1から明らかなように、従来
コークス原単位が溶銑生産量に対して110〜140k
g/トンであったが、本発明によれば、85〜95kg
/トンという画期的な低炭材原単位でのスクラップの溶
解が可能となった。
Table 1 shows the coke basic units of the above Examples and Comparative Examples. As is apparent from Table 1, the conventional unit of coke is 110 to 140 k with respect to the hot metal production amount.
g / ton, according to the invention 85-95 kg
It has become possible to melt scrap in an epoch-making unit of low carbonaceous material.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明によれば、竪型スクラップ溶解炉
内横断面に鉄源と炭材の装入物分布制御装入において、
コークス、石炭等の炭材の表面を被覆し、炉内でのソリ
ューションロス反応を抑制し、多段羽口により、2次燃
焼を向上させ、高さ方向でスクラップの温度分布を制御
することができ、炉内で炭材のエネルギーを完全に使い
切り、エネルギー効率向上、すなわち炭材原単位の大幅
な減少を可能にした。
EFFECTS OF THE INVENTION According to the present invention, in the charge distribution control charging of the iron source and the carbonaceous material in the transverse section of the vertical scrap melting furnace,
It is possible to coat the surface of carbon materials such as coke and coal, suppress the solution loss reaction in the furnace, improve secondary combustion with multi-stage tuyere, and control the temperature distribution of scrap in the height direction. , The energy of the carbonaceous material was completely used up in the furnace, and the energy efficiency was improved, that is, the unit consumption of carbonaceous material was greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に使用した竪型スクラップ溶解炉
の模式的縦断面図である。
FIG. 1 is a schematic vertical sectional view of a vertical scrap melting furnace used for carrying out the present invention.

【図2】図1のA−A矢視断面図であり、装入された鉄
源と炭材の竪型炉の半径方向の分布状況の例を示す図で
ある。
FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, showing an example of the radial distribution of the charged iron source and carbonaceous material in the vertical furnace.

【図3】図1のA−A矢視断面図であり、装入された鉄
源と炭材の竪型炉の半径方向の分布状況の例を示す図で
ある。
FIG. 3 is a cross-sectional view taken along the line AA of FIG. 1, showing an example of the radial distribution of the charged iron source and carbonaceous material in the vertical furnace.

【図4】図1のA−A矢視断面図であり、装入された鉄
源と炭材の竪型炉の半径方向の分布状況の例を示す図で
ある。
FIG. 4 is a cross-sectional view taken along the line AA of FIG. 1, showing an example of the radial distribution state of the charged iron source and carbonaceous material in the vertical furnace.

【図5】図1のA−A矢視断面図であり、装入された鉄
源と炭材の竪型炉の半径方向の分布状況の例を示す図で
ある。
5 is a cross-sectional view taken along the line AA in FIG. 1, showing an example of the radial distribution of the charged iron source and carbonaceous material in the vertical furnace.

【符号の説明】[Explanation of symbols]

1 溶解炉シャフト部 2 スクラップ
(鉄源) 3 炭材(コークス) 4 1次羽口 5 2次羽口 6 3次羽口 7 溶融鉄の取り出し口 8 炭材の装入
管 9 鉄源の装入管 10 排ガス 11 溶銑 12 取鍋 13 竪型シャフト部
1 Melting furnace shaft part 2 Scrap (iron source) 3 Carbon material (coke) 4 Primary tuyere 5 Secondary tuyere 6 Tertiary tuyere 7 Molten iron take-out port 8 Charcoal material loading pipe 9 Iron source loading Inlet pipe 10 Exhaust gas 11 Hot metal 12 Ladle 13 Vertical shaft

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炉下部に多数段の送風羽口を設けた竪型
スクラップ溶解炉を用いてスクラップを溶解し、溶銑あ
るいは溶鋼を製造する際に、炭材と鉄源を炉横断面内で
互いに分離させて装入すると共に、該炭材は、高温のC
2 やH2 Oによって酸化されにくくかつ竪型スクラッ
プ溶解炉の下部で燃焼、蒸発、もしくは溶解により消失
する物質により表面を予め被覆したものを使用すること
を特徴とする竪型スクラップ溶解炉の操業方法。
1. A method for melting scrap by using a vertical scrap melting furnace having a multi-stage blower tuyere at the bottom of the furnace to produce hot metal or molten steel, a carbonaceous material and an iron source within the cross section of the furnace. The carbonaceous materials are charged separately from each other, and
A vertical scrap melting furnace characterized in that the surface of the vertical scrap melting furnace is preliminarily coated with a substance that is not easily oxidized by O 2 or H 2 O and disappears by combustion, evaporation or melting in the lower part of the vertical scrap melting furnace. Operating method.
【請求項2】 前記多数段の送風羽口から酸素富化空気
を送風することを特徴とする請求項1記載の竪型スクラ
ップ溶解炉の操業方法。
2. The method for operating a vertical scrap melting furnace according to claim 1, wherein oxygen-enriched air is blown from the multi-stage blowing tuyere.
【請求項3】 炭材の表面を被覆する物質がアルカリ金
属又はアルカリ土類金属の酸化物、炭酸化物、水酸化
物、硫化物からなる群から選ばれた何れか1種以上、あ
るいはこれらを含む鉱物からなることを特徴とする請求
項1記載の竪型スクラップ溶解炉の操業方法。
3. A material for coating the surface of the carbonaceous material, which is selected from the group consisting of oxides, carbonates, hydroxides and sulfides of alkali metals or alkaline earth metals, or a combination thereof. The method for operating a vertical scrap melting furnace according to claim 1, wherein the operating method is a mineral containing iron.
【請求項4】 炭材の表面を被覆する物質の塗布方法と
して、その物質の粉粒体を液状媒体を用いてスリラー化
した後に炭材の表面に該スラリーを散布して塗布する
か、あるいは該スラリー中に炭材を浸漬させることによ
り炭材の表面に塗布することを特徴とする請求項1又は
2記載の竪型スクラップ溶解炉の操業方法。
4. A method of applying a substance for coating the surface of a carbonaceous material, which comprises pulverizing a powder or granular material of the substance using a liquid medium and then spraying the slurry on the surface of the carbonaceous material, or The method for operating a vertical scrap melting furnace according to claim 1 or 2, wherein the carbonaceous material is applied to the surface of the carbonaceous material by immersing the carbonaceous material in the slurry.
【請求項5】 使用する炭材が塊石炭あるいは、粉、粒
状の石炭を成形した成形炭であることを特徴とする請求
項1〜4の何れかに記載の竪型スクラップ溶解炉の操業
方法。
5. The operating method of a vertical scrap melting furnace according to claim 1, wherein the carbonaceous material used is agglomerated coal, or coal formed by molding powder or granular coal. .
JP7453696A 1996-03-28 1996-03-28 Operation of vertical type scrap melting furnace Withdrawn JPH09263812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7453696A JPH09263812A (en) 1996-03-28 1996-03-28 Operation of vertical type scrap melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7453696A JPH09263812A (en) 1996-03-28 1996-03-28 Operation of vertical type scrap melting furnace

Publications (1)

Publication Number Publication Date
JPH09263812A true JPH09263812A (en) 1997-10-07

Family

ID=13550111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7453696A Withdrawn JPH09263812A (en) 1996-03-28 1996-03-28 Operation of vertical type scrap melting furnace

Country Status (1)

Country Link
JP (1) JPH09263812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052074A (en) * 2007-08-24 2009-03-12 Jfe Steel Kk Molten iron production method using vertical scrap melting furnace
KR101459728B1 (en) * 2012-12-21 2014-11-07 주식회사 포스코 Reaction tube for heat reduction for smelting magnesium and method for producing magnesium crown using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052074A (en) * 2007-08-24 2009-03-12 Jfe Steel Kk Molten iron production method using vertical scrap melting furnace
KR101459728B1 (en) * 2012-12-21 2014-11-07 주식회사 포스코 Reaction tube for heat reduction for smelting magnesium and method for producing magnesium crown using the same

Similar Documents

Publication Publication Date Title
US8088195B2 (en) Method for manufacturing titanium oxide-containing slag
RU2447164C2 (en) Method of producing pellets from recovered iron and method of producing cast iron
AU776002B2 (en) Method and facilities for metal smelting
US4936908A (en) Method for smelting and reducing iron ores
JPH07216426A (en) Converter iron manufacture
JPH08337827A (en) Method for reducing metal oxide in rotary hearth furnace heated with oxidizing flame
WO1999016913A1 (en) Rotary hearth furnace for reducing oxides, and method of operating the furnace
CN111235338A (en) Method for producing ultra-low trace element molten iron by using smelting reduction furnace
CZ200975A3 (en) Refining technology of metalline zinc-containing waste in revolving furnace
JPH11172312A (en) Operation of movable hearth type furnace and movable hearth type furnace
JP2004503681A (en) Direct smelting method and equipment
US4756748A (en) Processes for the smelting reduction of smeltable materials
JP6729073B2 (en) Reduction/dissolution method of iron raw material containing iron oxide
JPH09263812A (en) Operation of vertical type scrap melting furnace
CA2659559C (en) A method for the commercial production of iron
JP4779585B2 (en) Solid fuel for vertical scrap melting furnace and operating method of vertical scrap melting furnace
JP2000045008A (en) Production of reduced metal
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
JPS5918452B2 (en) Method for producing molten metal from powdered ore
US3471283A (en) Reduction of iron ore
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
US4412862A (en) Method for the production of ferrochromium
JP3451901B2 (en) Operating method of mobile hearth furnace
Carpenter Use of coal in direct ironmaking processes
JPH06108132A (en) Cylindrical furnace and production of molten iron using this furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603