JPS597327B2 - Low-Si operation method for blast furnace by mixed injection of pulverized coal and basic substance - Google Patents

Low-Si operation method for blast furnace by mixed injection of pulverized coal and basic substance

Info

Publication number
JPS597327B2
JPS597327B2 JP2136481A JP2136481A JPS597327B2 JP S597327 B2 JPS597327 B2 JP S597327B2 JP 2136481 A JP2136481 A JP 2136481A JP 2136481 A JP2136481 A JP 2136481A JP S597327 B2 JPS597327 B2 JP S597327B2
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
pig iron
furnace
operation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2136481A
Other languages
Japanese (ja)
Other versions
JPS57137403A (en
Inventor
尚夫 浜田
暢男 槌谷
寿光 小板橋
稔宏 稲谷
侠児 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2136481A priority Critical patent/JPS597327B2/en
Publication of JPS57137403A publication Critical patent/JPS57137403A/en
Publication of JPS597327B2 publication Critical patent/JPS597327B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part
    • C21B5/026Injection of the additives into the melting part of plastic material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part

Description

【発明の詳細な説明】 本発明は、微粉炭を送風羽口から炉内に吹込む高炉操業
法において、出銑する銑鉄中のSi含有量とS含有量を
ともに減少させるための高炉操業法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a blast furnace operating method for reducing both the Si content and the S content in pig iron to be tapped, in a blast furnace operating method in which pulverized coal is blown into the furnace from a blowing tuyere. It is related to.

高炉で銑鉱石から銑鉄を製造する燃料としては主として
コークスが使用されている他に、重油や石炭も使用され
ている。
In addition to coke, heavy oil and coal are also used as fuel for producing pig iron from pig ore in blast furnaces.

従来の高炉操業法においては、高価なコークスの消費量
(コークス比)を減少させるために、送風羽口から安価
な重油やタールを吹込む方法が採用されていた。
In conventional blast furnace operating methods, in order to reduce the consumption of expensive coke (coke ratio), a method was adopted in which cheap heavy oil or tar was injected through the blast tuyeres.

しかし、最近の石油価格の高騰により、コークスと重油
の価格が逆転し、重油を少な《した低重油比操業か、あ
るいは、重油を使用しないオイルレス操業やオールコー
クス操業カ行われるようになっている。
However, due to the recent rise in oil prices, the prices of coke and heavy oil have reversed, leading to low-heavy-oil ratio operations that use less heavy oil, oil-less operations that do not use heavy oil, and all-coke operations. There is.

オールコークス操業では羽口先温度の上昇によるスリッ
プの発生などの操業異常が起こり易い。
All-coke operation is prone to operational abnormalities such as slippage due to increased tuyere tip temperature.

また重油に比べてコークス中の水素含有量が少ないこと
から炉内ガス中H2%の減少によって、炉頂ガス利用率
が低下し、重油の減少量以上にコークス比が大巾に増加
するなどの問題点が発生している。
In addition, since the hydrogen content in coke is lower than in heavy oil, a decrease in H2% in the furnace gas will reduce the furnace top gas utilization rate, and the coke ratio will increase significantly more than the decrease in heavy oil. A problem has occurred.

このような状況において、送風羽目から微粉炭を吹込む
方法は、石炭に含有される水素分によって、炉内ガス中
H2%が上昇して炉頂ガス利用率が増加し、燃料比が減
少することと、微粉炭の原料となる石炭は重油やコーク
スよりも安価であることから、高炉の燃料コストの低減
に有効な手段とみなされている。
Under these circumstances, the method of injecting pulverized coal from the air blower causes the H2% in the furnace gas to rise due to the hydrogen content in the coal, increasing the top gas utilization rate and decreasing the fuel ratio. In addition, coal, which is the raw material for pulverized coal, is cheaper than heavy oil or coke, so it is considered an effective means of reducing fuel costs for blast furnaces.

しかし、微粉炭吹込みは、次のように溶銑中のSiを増
加させるという問題点を有している。
However, pulverized coal injection has the following problem of increasing Si in the hot metal.

送風羽口から吹込まれた微粉炭は、羽口先の2000℃
以上の高炉内で最も温度の高い燃焼帯で燃焼するので、
石炭中の灰分の中のSiO2が、 Si02+C−+SiO+CO (1)
の反応でSiOが発生し、SiOは炉下部の高温帯を上
昇する間にCによって還元されてSiとなり、銑鉄中に
吸収され銑鉄中のSiを増加させる。
The pulverized coal blown through the tuyeres reaches a temperature of 2000℃ at the tip of the tuyere.
Since combustion occurs in the combustion zone with the highest temperature in the blast furnace,
SiO2 in the ash in coal is Si02+C-+SiO+CO (1)
This reaction generates SiO, which is reduced by C while rising through the high-temperature zone at the bottom of the furnace to become Si, which is absorbed into the pig iron and increases the Si content in the pig iron.

銑鉄中のSi%については、溶銑を製鋼で精錬する場合
の有利性や高炉の低燃料比操業指向から、銑鉄中のSi
を低《安定させる必要性が特に高まっているので、上述
のような現象は大きな問題点である。
Regarding the Si% in pig iron, the Si% in pig iron is
The above-mentioned phenomenon is a major problem as there is a growing need to stabilize the

高炉装入物中に含有されるsi,Mn,Sなどの不純物
は、炉内での各種反応を経て、最終的には炉外へ排出さ
れるスラグと銑鉄に分配される。
Impurities such as Si, Mn, and S contained in the blast furnace charge undergo various reactions within the furnace, and are eventually distributed into slag and pig iron that are discharged outside the furnace.

Siの銑鉄への移行は、羽口先や炉下部の高温帯で発生
するSiO を介して、鉱石の溶融位置から炉床湯溜り
のスラグ浴表面までの領域で起こることが知られている
It is known that the transfer of Si to pig iron occurs in the region from the melting position of the ore to the surface of the slag bath in the hearth sump via SiO 2 generated at the tip of the tuyere and in the high-temperature zone at the bottom of the furnace.

したがって、銑鉄中のSiを低下させるためには、Si
Oの発生を抑制するか、鉱石溶融位置を下方に移動させ
、炉下部へのFeO量を増加させる必要がある。
Therefore, in order to reduce Si in pig iron, Si
It is necessary to suppress the generation of O or move the ore melting position downward to increase the amount of FeO to the lower part of the furnace.

従来の低Si操業法は、熱流比(固体とガスの熱流量の
比)を増加させて、鉄鉱石の溶融位置を下方に移動させ
ることにより低Si化するものであり、装入物が炉頂か
ら装入されてから炉下部へ降下するまで長時間を要する
ことから、即効性に乏しい。
The conventional low-Si operation method increases the heat flow ratio (ratio of solid heat flow rate to gas heat flow rate) and moves the melting position of iron ore downward to reduce Si. Since it takes a long time to descend to the bottom of the furnace after it is charged from the top, it is not effective immediately.

また熱流比をあげることは、炉熱を低《おさえることに
なるので、操業トラブルを起こし易い。
In addition, increasing the heat flow ratio reduces the furnace heat, which can easily cause operational troubles.

本発明の目的は、微粉炭の吹込みにおける高炉操業法に
おいて発生する前述のごとき問題点を解消させて、出銑
する銑鉄中のSi含有量とS含有量をともに低下させる
ことにある。
An object of the present invention is to eliminate the above-mentioned problems that occur in the blast furnace operation method in which pulverized coal is injected, and to reduce both the Si content and the S content in the pig iron to be tapped.

本発明は、微粉炭の吹込みにおける高炉操業法において
、微粉炭とともに石灰石、ドロマイトあるいは、それら
の焼成物またはカルシウム、マグネシウムの水酸化物な
どの塩基性物質を送風羽口から高炉内に吹込み、これに
より出銑する銑鉄中のSi含有量及びS含有量を同時に
減少させることを特徴とする、微粉炭と塩基性物質との
混合吹込みによる高炉の低Si操業方法を要旨とするも
のである。
The present invention is a blast furnace operation method for injecting pulverized coal, in which limestone, dolomite, or their calcined products, or basic substances such as calcium and magnesium hydroxides are blown into the blast furnace through the blast tuyeres. , the gist of which is a method for operating a blast furnace with low Si levels by injecting a mixture of pulverized coal and basic substances, which is characterized by simultaneously reducing the Si content and S content in the pig iron being tapped. be.

本発明の操業方法を図面によって説明する。The operating method of the present invention will be explained with reference to the drawings.

図面は、本発明の方法を実施するため、高炉に付設した
、微粉炭と塩基性物質の吹込み設備に係るものであって
、微粉炭と塩基性物質のそれぞれを羽口に導《ための各
供給系統を示すものである。
The drawings relate to the injection equipment for pulverized coal and basic substances attached to a blast furnace in order to carry out the method of the present invention, and show the equipment for introducing pulverized coal and basic substances into the tuyeres. This shows each supply system.

高炉1の炉頂から主として鉄鉱石とコークスとからなる
装入物が装入され、炉下部から銑鉄とスラグが排出され
る。
A charge mainly consisting of iron ore and coke is charged from the top of the blast furnace 1, and pig iron and slag are discharged from the bottom of the furnace.

コークスと燃焼させる高温の空気は、環状管2を経由し
て、多数の送風羽口3から炉内へ導入される。
High-temperature air to be combusted with coke is introduced into the furnace through a large number of blowing tuyeres 3 via an annular pipe 2.

微粉炭は、石炭を気体輸送に適する水分まで乾燥して粉
砕し、原料ホンパー4から中間タンク5と介して圧送タ
ンク6から輸送管10に送り込み、空気や各種のガスを
搬送気体として、送風羽口3に設けられた吹込みノズル
11から炉内へ吹込む。
Pulverized coal is produced by drying and pulverizing coal to a moisture content suitable for gas transportation, and feeding it from a raw material pumper 4 to an intermediate tank 5, a pressure tank 6 to a transport pipe 10, and a blower using air or various gases as a carrier gas. The air is blown into the furnace through a blow nozzle 11 provided at the port 3.

石灰石、ドロマイトなどの塩基性物質は、微粉炭と同程
度まで紛砕したものをホッパ−7、中間タンク8、圧送
タンク9を介して輸送管10に送り込み、微粉炭と混合
されて吹込みノズル11から炉内へ吹込まれる。
Basic substances such as limestone and dolomite are crushed to the same level as pulverized coal and sent to the transport pipe 10 via the hopper 7, intermediate tank 8, and pressure tank 9, where they are mixed with the pulverized coal and sent to the blowing nozzle. 11 into the furnace.

塩基性物質は、予め微粉炭と混合してから、ホンパー4
、中間タンク5、圧送タンク6を経由して送り込むこと
もできるが、添加物質は、石炭よりも密度が太きいため
に、ホ7パーやタンク内で分級を起こし易い。
The basic substance should be mixed with pulverized coal in advance and then passed through the homper 4.
, intermediate tank 5, and pressure tank 6, but since the additive substance has a higher density than coal, it is likely to cause classification in the hopper or tank.

中間タンク5,8は常圧の原料ホッパー4,7と高圧の
圧送タンク6,9との各々の中間の弁の開閉動作に応じ
て均圧または排圧の機能をもっている。
The intermediate tanks 5, 8 have a pressure equalization or exhaust pressure function according to the opening/closing operation of intermediate valves between the normal pressure raw material hoppers 4, 7 and the high pressure pressure feeding tanks 6, 9, respectively.

圧送タンク6,9はいわゆる粉体用インジュクションタ
ンクであり、粉体を定量的に輸送管10中に送り込む機
能をもっている。
The pressure tanks 6 and 9 are so-called injection tanks for powder, and have the function of quantitatively feeding powder into the transport pipe 10.

微粉炭吹込み量を一定に保ちながら添加物質量を変更し
て銑鉄のSi%を制御する場合は、前記のとおりの別々
の原料供給系統にした方が便利である。
When controlling the Si% of pig iron by changing the amount of added substances while keeping the amount of pulverized coal injected constant, it is more convenient to use separate raw material supply systems as described above.

なお、添加物質のみを気体輸送して吹込むこともできる
が、微粉炭との混合吹込みの方が効果が太きい。
Note that although it is also possible to inject only the additive substance by gas transport, it is more effective to inject a mixture with pulverized coal.

次に高炉内へ吹き込まれた石灰石、ドロマイトあるいは
それらの焼成物、水酸化物などの塩基性物質の作用を述
べる。
Next, we will discuss the effects of basic substances such as limestone, dolomite, their calcined products, and hydroxides that are blown into the blast furnace.

焼成物としてはCab,MgOがあり、水酸化物として
はCa(OH)2、Mg(OH)2がある。
The fired products include Cab and MgO, and the hydroxides include Ca(OH)2 and Mg(OH)2.

石灰石、ドロマイトの場合は、羽口先の高温帯で加熱さ
れて分解し、 CaC03=CaO+CO2 (2)
MgC03=MgO+CO2 (3)の
形で002を放出する。
In the case of limestone and dolomite, they are heated and decomposed in the high temperature zone at the tip of the tuyere, resulting in CaC03=CaO+CO2 (2)
002 is released in the form MgC03=MgO+CO2 (3).

Ca,Mgの水酸化物の場合は、加熱されて分解し、 Ca (OH) 2=CaO+H20 (4
)Mg(OK)2=MgO+H20 (5)
の反応でH20を放出する。
In the case of Ca and Mg hydroxides, they are heated and decomposed to form Ca (OH) 2=CaO+H20 (4
)Mg(OK)2=MgO+H20 (5)
H20 is released in the reaction.

?2)〜(5)式で生成するか、焼成物として吹込まれ
るCab,MgOは、羽口先の高温帯で、FeOおよび
SiOと反応して溶融する。
? Cab and MgO produced by formulas 2) to (5) or injected as a fired product react with FeO and SiO and melt in the high temperature zone at the tip of the tuyere.

Cab,MgOは塩基性物質であり、スラグの塩基度が
上がるとスラグ中SiO2の活量は低下して、SiOの
発生が抑制されるので銑鉄中のSi%は減少する。
Cab and MgO are basic substances, and as the basicity of slag increases, the activity of SiO2 in the slag decreases and the generation of SiO is suppressed, so the Si% in pig iron decreases.

(2)、(3)式で発生するCOはコークスと反応して
ブードアル反応として知られる吸熱反応を起こして、羽
口先温度を幾分減少させるとともに、(4)、(5)式
で発生するH20は、 C+H O=CO+H2 2 の形で炉内ガス中H2 %を増加させる。
The CO generated in equations (2) and (3) reacts with coke to cause an endothermic reaction known as the Boudouard reaction, reducing the tuyere tip temperature somewhat, and the CO generated in equations (4) and (5). H20 increases the H2% in the furnace gas in the form C+H2O=CO+H22.

このため炉頂ガス利用率が上昇し、コークス比が低下し
て熱流比が上がるので、間接的にも銑鉄中のSiを低下
させる作用がある。
For this reason, the utilization rate of the furnace top gas increases, the coke ratio decreases, and the heat flow ratio increases, which indirectly reduces the Si content in the pig iron.

また、溶銑中のSは、 Ca++orMg+++S→CaS orMgSによっ
て脱硫されることはよ《知られている。
Furthermore, it is well known that S in hot metal is desulfurized by the following process: Ca++orMg+++S→CaS orMgS.

本発明においては、炉床部に降下する溶銑は、羽口から
吹込まれた石灰石、ドロマイトなどの塩基性物質によっ
て効果的に脱硫される。
In the present invention, the hot metal that descends to the hearth is effectively desulfurized by basic substances such as limestone and dolomite that are blown into the tuyere.

すなわち、本発明による塩基性物質は、銑鉄中のSi
%ばかりでな《、S%をも減少することができる。
That is, the basic substance according to the present invention is Si in pig iron.
It is possible to reduce not only %, but also S%.

しかも塩基性物質は、送風羽口から吹込まれるので、炉
頂からの装入と比べて即効性があり、制御性もある。
Furthermore, since the basic substance is blown in through the blast tuyeres, it is more effective and more controllable than charging from the top of the furnace.

添加物質としては、各々を単独に用いることもできるが
、状況によって適宜混合して使用することもできる。
As additive substances, each can be used alone, but depending on the situation, they can also be used as a mixture as appropriate.

通常の微粉炭吹込み量が銑鉄トンあたり30〜150k
g程度であるのに対して、添加物質の吹込み量は5〜5
0kg程度でよい。
Normal pulverized coal injection amount is 30-150k per ton of pig iron.
The injection amount of the additive substance is about 5 to 5 g.
Approximately 0 kg is sufficient.

微粉炭に対する添加物質の割合は少ないので、添加物質
単独に比べて輸送管の摩耗は少ない。
Since the ratio of additives to pulverized coal is small, there is less wear on the transport pipes than with additives alone.

したがって、吹込み設備としては、既存の微粉炭吹込み
設備の一部を改造するのみでよく、これによって微粉炭
と添加物質を一緒に吹込むことができる。
Therefore, as the blowing equipment, it is only necessary to modify a part of the existing pulverized coal blowing equipment, and thereby the pulverized coal and the additive can be blown together.

実施例 高炉において、本発明の方法による吹込みの試験を行っ
たところ、出銑した銑鉄t当りの微粉炭、塩基性物質の
各々の吹込み量に対して、以下のとおりのSi含有量と
S含有量の銑鉄が製造された。
When an injection test was conducted using the method of the present invention in an example blast furnace, it was found that the following Si content and Pig iron with S content was produced.

(1)(微粉炭十石灰石)の場合 微粉炭(一般炭):55kg/t一銑鉄 石灰石: 39kg/t一銑鉄 銑鉄中のSi%:O、39 S %:0.033 (2)(微粉炭+焼成ドロマイト)の場合微粉炭(一般
炭): 6 0kg/t〜銑鉄焼成ドロマイト:34k
g/t一銑鉄 銑鉄中のSi%:0.37 S %:0.026 (3)(微粉炭+消石灰)の場合 微粉炭(一般炭)二53kg/t一銑鉄 消石灰(Ca(OH)2):29kg/t一銑鉄銑鉄中
のSi%:0.45 S %:0.038 上記の吹込みに対して、微粉炭のみ40〜80kg/t
一銑鉄吹込みの場合の銑鉄中のSi%は、0.5〜0.
7%、同じ《S%は、0.04〜0、08%であったの
で、本発明による効果は明らかである。
(1) In the case of (pulverized coal and limestone) Pulverized coal (steam coal): 55 kg/t single pig iron limestone: 39 kg/t single pig iron Si% in pig iron: O, 39 S%: 0.033 (2) (fine powder In the case of charcoal + calcined dolomite) Pulverized coal (steam coal): 60kg/t ~ Pig iron calcined dolomite: 34k
Si% in g/t pig iron: 0.37 S%: 0.026 (3) (pulverized coal + slaked lime) pulverized coal (steam coal) 253 kg/t pig iron slaked lime (Ca(OH)2 ): 29 kg/t single pig iron Si% in pig iron: 0.45 S%: 0.038 For the above injection, only pulverized coal is 40 to 80 kg/t
In the case of single pig iron injection, the Si% in the pig iron is 0.5 to 0.
7%, and the same <<S% was 0.04 to 0.08%, so the effect of the present invention is clear.

以上詳細に述べてきたとおり、本発明の方法によれば、
高炉の熱流比などの他の操業条件に関係なしに、SiO
の発生を抑制することによって銑鉄中のSi%を低下さ
せ、同時に脱硫作用によって、銑鉄中のS%を減少させ
ることができる。
As described in detail above, according to the method of the present invention,
SiO
By suppressing the occurrence of , the Si% in the pig iron can be reduced, and at the same time, the S% in the pig iron can be reduced by the desulfurization effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の方法を実施するための高炉に付設した
、微粉炭と塩基性物質の吹込み設備に係るもので、微粉
炭と塩基性物質のそれぞれを高炉羽口に導《ための、各
供給系統を示したものである。 1・・・・・・高炉、2・・・・・・送風環状管、3・
・・・・・送風羽目、4・・・・・・微粉炭ホツパー、
5・・・・・・中間タンク、6・・・・・・圧送タンク
、7・・・・・・塩基性ホツパー、8・・・・・・中間
タンク、9・・・・・・圧送タンク、10・・・・・・
輸送管、11・・・・・・吹込みノズル。
The drawings relate to the blowing equipment for pulverized coal and basic substances attached to a blast furnace for carrying out the method of the present invention. This shows each supply system. 1... Blast furnace, 2... Air blowing annular pipe, 3.
...Air blower, 4...Pulverized coal hopper,
5...Intermediate tank, 6...Pressure tank, 7...Basic hopper, 8...Intermediate tank, 9...Pressure tank , 10...
Transport pipe, 11...Blow nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 微粉炭の吹込みにおける高炉の操業法において、微
粉炭とともに石灰石、ドロマイトあるいは、それらの焼
成物またはカルシウム、マグネシウムの水酸化物などの
塩基性物質を送風羽口から高炉内へ吹込み、これにより
出銑する銑鉄中のSi含有量及びS含有量を同時に減少
させることを特徴とする、微粉炭と塩基性物質との混合
吹込みによる高炉の低Si操業方法。
1. In the blast furnace operation method for injecting pulverized coal, limestone, dolomite, or their calcined products, or basic substances such as calcium and magnesium hydroxides are injected into the blast furnace through the blast tuyeres, and this 1. A method for operating a blast furnace with low Si by injecting a mixture of pulverized coal and a basic substance, characterized by simultaneously reducing the Si content and S content in pig iron that is tapped.
JP2136481A 1981-02-18 1981-02-18 Low-Si operation method for blast furnace by mixed injection of pulverized coal and basic substance Expired JPS597327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2136481A JPS597327B2 (en) 1981-02-18 1981-02-18 Low-Si operation method for blast furnace by mixed injection of pulverized coal and basic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2136481A JPS597327B2 (en) 1981-02-18 1981-02-18 Low-Si operation method for blast furnace by mixed injection of pulverized coal and basic substance

Publications (2)

Publication Number Publication Date
JPS57137403A JPS57137403A (en) 1982-08-25
JPS597327B2 true JPS597327B2 (en) 1984-02-17

Family

ID=12053032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2136481A Expired JPS597327B2 (en) 1981-02-18 1981-02-18 Low-Si operation method for blast furnace by mixed injection of pulverized coal and basic substance

Country Status (1)

Country Link
JP (1) JPS597327B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609806A (en) * 1983-06-28 1985-01-18 Kawasaki Steel Corp Operating method of blast furnace by which powder is blown through tuyere
JPS61149403A (en) * 1984-12-25 1986-07-08 Nippon Kokan Kk <Nkk> Method for carrying out low-s operation of blast furnace
JP4768921B2 (en) * 2001-02-07 2011-09-07 株式会社神戸製鋼所 High pulverized coal injection low Si blast furnace operation method
JP2007239014A (en) * 2006-03-08 2007-09-20 Nippon Steel Corp Method for operating blast furnace
CN100351396C (en) * 2006-04-10 2007-11-28 刘虎生 Chemical additive for pulverized coal injection in blast furnace

Also Published As

Publication number Publication date
JPS57137403A (en) 1982-08-25

Similar Documents

Publication Publication Date Title
US4566904A (en) Process for the production of iron
CA2107544C (en) Method of providing fuel for an iron making process
US4849015A (en) Method for two-stage melt reduction of iron ore
CN101445848B (en) Process and device for continuous steelmaking from ferriferous material
US20160168652A1 (en) Desulfurization of gases in the production of pig iron
JPH0778252B2 (en) Improvements in or related to iron making with a melting shaft furnace
CA2873706A1 (en) Method and device for introducing fine particulate material into the fluidized bed of a fluidized bed reduction unit
AU597520B2 (en) Smelting reduction process
JPH01246311A (en) Production of gas and molten iron in iron bath reactor
HU184306B (en) Process and equipment for reducing granular iron oxide and for producing iron melt
JPS6286107A (en) Method and apparatus for producing molten iron
CA2408720C (en) Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore
US2928730A (en) Iron ore reduction process
CN102242230A (en) Method for blowing quicklime powder
JPS597327B2 (en) Low-Si operation method for blast furnace by mixed injection of pulverized coal and basic substance
US2795497A (en) Method and apparatus for producing molten iron
JPS649376B2 (en)
US3038795A (en) Process for smelting and reducing powdered or finely divided ores
US2650161A (en) Production of iron in a blast furnace
US5320676A (en) Low slag iron making process with injecting coolant
US6197088B1 (en) Producing liquid iron having a low sulfur content
MXPA97007698A (en) Procedure to make arra
JPS58126908A (en) Operating method of blast furnace for casting pig by mixed blowing of pulverized coal and silica or siliceous material
JPS5856721B2 (en) Low-Si operation method for blast furnace in pulverized coal injection
US4566902A (en) Process for removing sulfur during melting of pig iron