JPH01246311A - Production of gas and molten iron in iron bath reactor - Google Patents

Production of gas and molten iron in iron bath reactor

Info

Publication number
JPH01246311A
JPH01246311A JP1007876A JP787689A JPH01246311A JP H01246311 A JPH01246311 A JP H01246311A JP 1007876 A JP1007876 A JP 1007876A JP 787689 A JP787689 A JP 787689A JP H01246311 A JPH01246311 A JP H01246311A
Authority
JP
Japan
Prior art keywords
iron
gas
bath
oxygen
iron bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1007876A
Other languages
Japanese (ja)
Other versions
JPH0762162B2 (en
Inventor
Ludwig Von Bogdandy
ルートヴイヒ・フオン・ボークダンデイ
Karl Brotzmann
カール・ブロツツマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner CRA Technologie GmbH
Original Assignee
Kloeckner CRA Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner CRA Technologie GmbH filed Critical Kloeckner CRA Technologie GmbH
Publication of JPH01246311A publication Critical patent/JPH01246311A/en
Publication of JPH0762162B2 publication Critical patent/JPH0762162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/57Gasification using molten salts or metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/305Afterburning
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2250/00Specific additives; Means for adding material different from burners or lances
    • C21C2250/02Hot oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE: To inexpensively produce gaseous fuel and to produce molten iron by supplying a carbonaceous material and iron oxide to an iron bath in an iron bath reactor and blowing gas jets contg. oxygen to the surface of the iron bath through the gas chamber in the reactor.
CONSTITUTION: Powdery coal 24 or liquid fuel contg. carbon is supplied from a nozzle 23 into the reaction vessel 20 where about half amt. of the molten iron bath 21 exists. Ores and slag forming agents are charged together with the oxygen from a nozzle 25. Further, gases 28 at least partly consisting of the oxygen are introduced from nozzles 26, 27 installed in the upper part of the reaction vessel 20 to form the gas jets 29. These gases jets are blown to the bath surface 22 of the iron bath 21 through the gas chamber 30 delineated in the reaction vessel 20. The gas jets 29 suck the gaseous fuel 31 produced from the coal, etc., and partly burn the fuel at the time of passing the gas chamber 30. The combustion heat generated by this combustion is transmitted to the iron bath 21 and is used for reducing the iron oxide in the ores. As a result, the molten iron and the gaseous fuel are obtd. without requiring the addition of the high-calorie fuel.
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉄浴反応器内で燃焼可能なガス及び溶鉄を製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing combustible gas and molten iron in an iron bath reactor.

従来の技術 スラグ層を有する鉄浴または鋼浴反応器内で石炭その他
の炭素含有燃料をほぼCOおよびH2からなるガスに連
続的にガス化することはすでに古くから公知である。西
独公開特許公報第2952434号の方法によれば鉄浴
の浴面上方にある吹製ランスから酸素を浴面に吹付け、
それによって高温吹付部が形成される。この高温吹付部
へ固体の炭素含有粉末をキャリヤガスとともに吹込む。
BACKGROUND OF THE INVENTION The continuous gasification of coal or other carbon-containing fuels into a gas consisting essentially of CO and H2 in iron or steel bath reactors with a slag bed has been known for a long time. According to the method disclosed in West German Patent Publication No. 2952434, oxygen is blown onto the bath surface from a blowing lance located above the bath surface of the iron bath.
A hot spray section is thereby formed. A solid carbon-containing powder is blown into this high-temperature blowing section together with a carrier gas.

また、西独特許第2520883号公報により石炭その
他の炭素含有燃料を浴面より下の鉄浴へ吹込む方法が公
知である。少なくとも1部酸素からなるガス噴流も浴面
より下の鉄浴へ吹込まれ、その際炭化水素によるジャケ
ットがそのノズルの保護に役立つ。
Furthermore, a method is known from German Patent No. 2,520,883 in which coal or other carbon-containing fuel is blown into an iron bath below the bath surface. A gas jet consisting at least in part of oxygen is also blown into the iron bath below the bath surface, the hydrocarbon jacket serving to protect the nozzle.

さらに、西独特許明細書第2520868号により鉄浴
に付加的に高カロリー石炭、結合していない炭素、アル
ミニウム、ケイ素、炭化カルシウムまたはこれらの混合
物を場合によりガス化用石炭とは別個に供給する方法が
公知である。それによって石炭ガス化過程に熱が供給さ
れる。
Furthermore, according to German Patent Specification No. 2520868, a method is provided in which the iron bath is additionally supplied with high-calorie coal, unbound carbon, aluminum, silicon, calcium carbide or mixtures thereof, optionally separately from the gasifying coal. is publicly known. Heat is thereby supplied to the coal gasification process.

これら公知法の欠点は低品位燃料とくに低カロリー炭の
ガス化が現在まで経済的に可能でないことである。とい
うのは低品位燃料はこの種の燃料の場合鉄浴の温度を維
持するため、高カロリー燃料の添加を必要とするからで
ある。さらに公知法の場合、安価に入手しうる酸化用ガ
スたとえば空気を使用し得ない。
A disadvantage of these known methods is that the gasification of low-grade fuels, especially low-calorie coal, is not economically possible to date. This is because low grade fuels require the addition of high calorie fuel in order to maintain the temperature of the iron bath with these types of fuels. Furthermore, the known method does not allow the use of inexpensively available oxidizing gases, such as air.

また、西独公開特許公報第2401909号によれば鉄
鉱石を還元して溶鉄を製造する公知多投法が開示されて
いる。しかしこの方法によると発生したガスがその低い
発熱量のため価格的に不利な高カロリーガスの混合なし
には限定された用途にしか使用できない欠点を有する。
Furthermore, West German Published Patent Application No. 2401909 discloses a known multi-throw method for producing molten iron by reducing iron ore. However, this method has the disadvantage that the gas generated can only be used for limited purposes without mixing with a high calorie gas which is disadvantageous in terms of cost due to its low calorific value.

この方法の場合、鉄1tの製造に石炭約650kgが必
要である。
In this method, approximately 650 kg of coal is required to produce 1 ton of iron.

C041%、CO230%、82018%、H210%
の大略組成および1100Kcal/m’の発熱IH,
を有するガスが発生する。
C041%, CO230%, 82018%, H210%
Rough composition and exothermic IH of 1100 Kcal/m',
A gas with .

発明の目的 本発明の目的は公知方法の欠点を避け、摩砕した固体ま
たは液体の形の炭素及び/又は炭化水素を含むカロリー
の低い燃料から鉄浴反応器内で安価な酸化性ガスを使用
して燃料ガスを安価に製造すると同時に鉄を少なくとも
一部酸化物の形で含む物質から溶鉄を製造することがで
き、その際とくにガス化過程の熱バランスを補償するた
め高カロリー燃料の添加を必要としない方法を提供する
ことである。
OBJECTS OF THE INVENTION It is an object of the invention to avoid the disadvantages of known processes and to use inexpensive oxidizing gases in iron bath reactors from low-calorie fuels containing carbon and/or hydrocarbons in ground solid or liquid form. This makes it possible to produce fuel gas inexpensively and at the same time to produce molten iron from materials containing at least some iron in the form of oxides, in particular by adding high-calorie fuel to compensate for the thermal balance of the gasification process. The goal is to provide a method that does not require it.

発明の構成 本発明によれば、溶融鉄浴が存在する鉄浴反応器内に炭
素を含む固体または液体燃料を供給するとともに、鉄を
少なくとも一部酸化物の形で含む物質を供給し、該溶融
鉄浴の浴面に少なくとも一部酸素からなるガス噴流を前
記鉄浴反応器内に画成されたガス室を通して吹付け、ガ
ス室を通過する際にガス噴流が製造されたガスを吸引し
、一部燃焼させ、かつ製造したガスの燃焼によって発生
した熱が鉄浴へ伝達されるように製造されたガスを浴面
すで同伴し、前記一部燃焼により発生した熱が前記鉄を
少なくとも一部酸化物の形で含む物質の還元に少なくと
も一部使用されることを鋼に精錬する鉄浴反応器内でガ
ス及び溶鉄を製造する方法が提供される。
According to the invention, a solid or liquid fuel containing carbon is supplied into an iron bath reactor in which a molten iron bath is present, and a substance containing iron at least partially in the form of an oxide is supplied. Blowing a gas jet consisting at least partially of oxygen onto the bath surface of the molten iron bath through a gas chamber defined in said iron bath reactor, the gas jet sucking in the produced gas as it passes through the gas chamber. , the produced gas is entrained at the bath surface so that the heat generated by the combustion of the produced gas is transferred to the iron bath, and the heat produced by said partial combustion burns at least the iron. A method is provided for producing gas and molten iron in an iron bath reactor for smelting steel to be used at least in part for the reduction of materials containing partially in oxide form.

すなわち本発明方法によれば、反応容器内の溶湯に鉄を
結合した形または結合していない形で含む物質たとえば
鉱石を供給し、溶鉄(銑鉄)を製造すると同時にガスを
製造する。本発明の方法のこの特徴によれば鉄浴反応器
内で製造したガスの部分的2次燃焼により発生した熱は
鉄を含む物質とくに鉱石の還元に少なくとも一部使用さ
れる。
That is, according to the method of the present invention, a substance containing iron in bound or unbound form, such as ore, is supplied to the molten metal in the reaction vessel, and molten iron (pig iron) is produced at the same time as gas is produced. According to this feature of the process of the invention, the heat generated by the partial secondary combustion of the gas produced in the iron bath reactor is at least partially used for the reduction of iron-containing materials, especially ores.

反応器内の溶鉄には炭素を含む固体または液体燃料なら
びに酸素および造滓剤のほかに、鉄を少なくとも1部酸
化物の形で含む付加的物質たとえば鉱石が供給される。
In addition to a carbon-containing solid or liquid fuel as well as oxygen and a slag-forming agent, the molten iron in the reactor is supplied with additional substances, such as ore, which contain at least some iron in the form of oxides.

この本発明方法の大きい経済的利点は小さい工業的費用
をもって鉱石を比較的少量の石炭で直接還元し、同時に
多方面に使用しうるガスが得られることである。鉄鉱石
の還元による鉄1tの製造には石炭(C78%、H25
%、H2O3%、灰分5%、025%、81%の組成お
よび発熱IHu  7500 K c a l / m
’)約1゜1tを必要とする。同時に概略組成C○57
%、C0214%、H214%、82014%およびH
8約2100Kcal/、71’の工業的に使用シラる
ガスが発生する。
The great economic advantage of the process according to the invention is that the ore can be reduced directly with a relatively small amount of coal with low industrial outlay, and at the same time a gas is obtained which can be used in many ways. Coal (C78%, H25
%, H2O3%, ash 5%, 025%, 81% composition and exotherm IHu 7500 K cal / m
') Requires approximately 1°1t. At the same time, the approximate composition C○57
%, C0214%, H214%, 82014% and H
8 Approximately 2100 Kcal/71' of industrially used silica gas is generated.

したがって本発明の方法によれば鉄浴反応器内のガス製
造との組合せにより製鉄の経済化が達成される。
Therefore, according to the method of the present invention, economical steel production is achieved in combination with gas production in an iron bath reactor.

たとえば同様の過程を、鉄浴中で製造したガスの部分的
2次燃焼によるエネルギーの本発明による再伝達なしに
実施する場合、同じ石炭を使用して鉄鉱石から鉄1を製
造するために石炭約3tを必要とする。その際排ガスは
C070%、CO21%、H227%、H2O1%の組
成を有し、発熱11HUは約2700Kc a l/m
’である。
For example, if a similar process is carried out without retransfer according to the invention by partial secondary combustion of the gas produced in an iron bath, then the same coal is used to produce iron 1 from iron ore. Approximately 3 tons are required. At that time, the exhaust gas has a composition of 70% CO, 21% CO, 27% H2, and 1% H2O, and the heat generation of 11 HU is approximately 2700 Kcal/m.
'is.

本発明の方法の場合、鉱石は鉄浴へ底部ノズルから直接
導入し、または上から浴へ吹込むことができる。本発明
の有利な実施例によれば鉱石は少なくとも一部は浴へ吹
付ける酸素といっしょに添加される。この作業法によれ
ばダスト状鉱石はガス室内ですでに予熱および前還元さ
れ、それによって方法の熱効率が上昇する。この効果を
さらに改善するため、鉱石粒子を含む噴流の拡大に役立
つ装置たとえば噴流が旋回してノズルを去る装置を使用
するのが有利である。
In the method of the invention, the ore can be introduced directly into the iron bath through the bottom nozzle or blown into the bath from above. According to an advantageous embodiment of the invention, the ore is added at least in part together with the oxygen which is blown into the bath. With this method of operation, the dusty ore is already preheated and prereduced in the gas chamber, which increases the thermal efficiency of the process. In order to further improve this effect, it is advantageous to use devices that serve to widen the jet containing the ore particles, such as devices in which the jet swirls and leaves the nozzle.

鉄を少なくとも一部酸化物の形で含む装人材科としては
種々の品位の鉱石のほかに、とくに不完全に還元した鉱
石からなるペレットおよびブリケットが適する。
In addition to ores of various grades, pellets and briquettes of incompletely reduced ores are suitable as materials containing at least some iron in the form of oxides.

本発明の方法は製造したガスを至近場所で燃料ガスたと
えば天然ガスの代用として使用しうる場合にとくに有利
に適用することができる。本発明の方法により製造した
1部2次燃焼したガスは主として比較的高い00分のた
め天然ガスとほぼ同じフレーム温度を有し、それゆえ炉
の装置の大きい改造なしに天然ガスの代用として使用す
ることができる。
The method of the invention can be applied particularly advantageously when the gas produced can be used in the immediate vicinity as a substitute for fuel gas, for example natural gas. The partially secondary combusted gas produced by the method of the present invention has approximately the same flame temperature as natural gas, mainly due to its relatively high 00 min, and can therefore be used as a substitute for natural gas without major modification of the furnace equipment. can do.

本発明方法においては、ガス噴流は浴面上のガス室をで
きるだけ大きい区間通過する。ジェット効果によってガ
ス室内にある燃料ガス化によって製造されたガスは吸込
まれ、同伴される。この効果はたとえば水ジエツトポン
プの場合にも生ずる。
In the method according to the invention, the gas jet passes through the gas chamber above the bath surface over as large a distance as possible. Due to the jet effect, the gas produced by the fuel gasification in the gas chamber is sucked in and entrained. This effect also occurs, for example, in the case of water jet pumps.

浴面へ向くガス噴流は酸素を含むので、発生した可燃ガ
スの1部は燃焼する。その際発生する熱は鉄浴へ伝達さ
れる。というのはガス噴流は高温の燃焼生成物を浴面の
方向へ向けるので、高温の燃焼生成物は浴面と接触し、
その熱を浴に与えるからである。
Since the gas jet directed toward the bath surface contains oxygen, a portion of the combustible gas generated is combusted. The heat generated in this process is transferred to the iron bath. This is because the gas jet directs the hot combustion products toward the bath surface, so that the hot combustion products come into contact with the bath surface and
This is because it imparts that heat to the bath.

酸化に作用するガス(酸素、空気等)の噴流を本発明に
より浴面へ吹付けることによって鉄浴反応器内の熱バラ
ンスを著しく改善することができる。
By spraying jets of oxidizing gases (oxygen, air, etc.) onto the bath surface according to the invention, the thermal balance within the iron bath reactor can be significantly improved.

本発明の方法によりガス噴流として空気を使用すること
ができる。したがって公知法の場合のように工業的純酸
素を使用する必要がない。空気は通常安価に入手され、
簡単な手段で所要作業圧力に圧縮することができる。こ
の場合ガス化過程から空気の加熱に必要な熱を取出さな
いように、空気を予熱するのがとくに有利である。実際
には300〜400℃の予熱温度が適当なことが明らか
になった。この温度までは常用の導管等および遮断器管
を使用することができ、供給系の断熱も経済的に実施す
ることができる。
The method according to the invention makes it possible to use air as the gas jet. Therefore, it is not necessary to use industrially pure oxygen as in the case of known methods. Air is usually available cheaply;
It can be compressed to the required working pressure by simple means. In this case, it is particularly advantageous to preheat the air so that the heat necessary for heating the air is not extracted from the gasification process. In practice, it has been found that a preheating temperature of 300 to 400°C is appropriate. Up to this temperature, conventional conduits and circuit breaker tubes can be used, and insulation of the supply system can also be implemented economically.

しかしガス噴流を工業的純酸素から形成することもでき
る。これはとくに非常に低い発熱景の燃料の場合有利で
ある。ガス噴流中の酸素割合はしたがって経済的観点お
よび使用燃料の品位によってほぼ決定される。
However, the gas jet can also be formed from technically pure oxygen. This is particularly advantageous in the case of fuels with very low exothermic profiles. The proportion of oxygen in the gas jet is therefore largely determined by economic considerations and the grade of the fuel used.

固体”または液体燃料は浴面より下の鉄浴へ吹込むのが
有利である。輸送のためキャリヤガスたとえば空気、チ
ッ素、1酸化炭素、イナートガス等が使用される。しか
し燃料を浴面より上に導入することもできる。
Advantageously, the solid or liquid fuel is blown into the iron bath below the bath surface. A carrier gas such as air, nitrogen, carbon monoxide, inert gas, etc. is used for transport. It can also be installed on top.

ガス室を通って浴面の上に吹付けられるガス噴流の酸素
はとくに燃料から製造したガスの1部の燃焼に消費され
る。ガス化過程のための本来の酸素供給はこれに反し有
利に浴面より下にあるノズルを通しで行われる。このノ
ズルはたとえば多数の同心管からなり、ノズル保護のた
め外側に公知法で炭化水素が使用される。
The oxygen of the gas jet which is blown through the gas chamber onto the bath surface is consumed in particular in the combustion of a portion of the gas produced from the fuel. The actual oxygen supply for the gasification process, on the other hand, preferably takes place through a nozzle located below the bath surface. This nozzle consists, for example, of a number of concentric tubes, on the outside of which a hydrocarbon is used in a known manner to protect the nozzle.

浴面より下に供給する酸素量と浴面より上のガス噴流に
より供給される酸素量の比は任意の範囲に変化すること
ができる。たとえば全酸素の80%をガス噴流によって
上から供給し、20%だけを浴面より下に導入すること
ができ、または正反対に鉄浴反応器に供給する酸素全量
の80%を浴面より下で吹込み、20%だけを上からガ
ス噴流によって供給することもできる。しかし鉄浴反応
器に供給する酸素全量の少なくとも10%をガス噴流に
よって浴面へ吹付けるのが熱収支に関する本発明の利点
を利用するために必要であることが明らかになった。こ
の比は100%まで上昇することができる。この場合意
外にもガス噴流のこの酸素は鉄浴内で燃料の酸化に使用
されることが明らかになった。鉄浴反応器の普通の作業
法の場合、全酸素看の約40〜90%はガス噴流を介し
て供給される。上から供給する部分はすでに経済的理由
からできるだけ高く保たれる。というのはガス全量のこ
の部分は一般に浴面より下にあるノズルのだめに必要な
圧力に比して低い圧力で吹込まれるからである。
The ratio of the amount of oxygen supplied below the bath surface to the amount of oxygen supplied by the gas jet above the bath surface can be varied within any range. For example, 80% of the total oxygen can be supplied from above by means of a gas jet and only 20% can be introduced below the bath surface, or, just the opposite, 80% of the total oxygen supplied to an iron bath reactor can be supplied below the bath surface. Alternatively, only 20% can be supplied from above by means of a gas jet. However, it has been found necessary to utilize the advantages of the invention with respect to heat balance that at least 10% of the total amount of oxygen fed to the iron bath reactor is blown onto the bath surface by means of gas jets. This ratio can go up to 100%. It has now surprisingly turned out that this oxygen in the gas jet is used for the oxidation of the fuel in the iron bath. In the usual operating method of iron bath reactors, about 40 to 90% of the total oxygen supply is supplied via the gas jet. The portion fed from above is already kept as high as possible for economic reasons. This is because this portion of the total gas volume is generally blown at a low pressure compared to the pressure required in the nozzle sump below the bath surface.

多数のガス噴流を浴面へ向けるのが有利である。It is advantageous to direct a large number of gas jets onto the bath surface.

吹付は浴面に対し大きい距離から行われ、衝突位置はほ
ぼ浴面の中心にある。浴面より上のガス室内にふけるガ
ス噴流の走行区間が十分長いことが重要である。通常ガ
ス噴流のノズルと浴面の間の最小距離は約2mなければ
ならない。ノズルは鉄浴反応器の上部範囲の耐火ライニ
ング中に配置される。ノズルは主として空気吹込の際は
1重管からなり、またはたとえば工業的純酸素使用の際
は2つの同心管からなる。同心管の場合酸素は中心管を
流れ、ノズル保護のためリングギャップにチッ素、1酸
化炭素、イナートガス、炭化水素等が少量(酸化ガスに
対し0.1〜5%)導入される。
Spraying is performed from a large distance to the bath surface, and the impact position is approximately at the center of the bath surface. It is important that the travel distance of the gas jet flowing into the gas chamber above the bath level is sufficiently long. Usually the minimum distance between the nozzle of the gas jet and the bath surface should be about 2 m. The nozzle is placed in the refractory lining in the upper region of the iron bath reactor. The nozzle consists primarily of a single tube when blowing air or, for example, of two concentric tubes when using industrially pure oxygen. In the case of concentric tubes, oxygen flows through the central tube, and a small amount of nitrogen, carbon monoxide, inert gas, hydrocarbon, etc. (0.1 to 5% relative to the oxidizing gas) is introduced into the ring gap to protect the nozzle.

実  施  例 以下本発明の方法を容量60tの転炉形の反応容器に適
用した実施例について説明する。転炉の底部に内径28
市のノズルが10本設置される。
EXAMPLE Hereinafter, an example will be described in which the method of the present invention is applied to a converter-type reaction vessel having a capacity of 60 tons. Inner diameter 28 at the bottom of the converter
Ten city nozzles will be installed.

このノズルの2つから戻粉350 kg/minを吹込
み、その際キャリヤガスとしてチッ素、2酸化炭素また
は転炉自体からの還元ガスを使用することができる。3
つのノズルから酸素を鉱石とともに吹込み、他の5つの
ノズルから1部造滓剤たとえば石灰を負荷した酸素を供
給する。転炉の上の円錐形部に設置した側面ノズルから
酸素の約50%を浴へ導入する。前記組成の石炭および
Fe2O,85%の鉱石により炭素含量約3%の鉄20
t/hが製造される。鉄鉱石1450 kgを同時溶解
する場合、石炭1tをガス化するために必要な酸素量は
580 m’である。C○約57%、Co、14%、H
214%、H2O14%の組成および2100Kcal
/m’の発熱IHUを有する石炭ガスまたは燃料ガスが
発生する。
350 kg/min of return powder is blown in through two of these nozzles, the carrier gas being nitrogen, carbon dioxide or reducing gas from the converter itself. 3
Oxygen is blown in with the ore through one nozzle, and oxygen partially loaded with a slag-forming agent, such as lime, is supplied through the other five nozzles. Approximately 50% of the oxygen is introduced into the bath through a side nozzle placed in the upper cone of the converter. Coal of the above composition and Fe2O, 85% ore produce iron20 with a carbon content of about 3%.
t/h is produced. When melting 1450 kg of iron ore at the same time, the amount of oxygen required to gasify 1 ton of coal is 580 m'. C○ approx. 57%, Co, 14%, H
214%, H2O 14% composition and 2100Kcal
Coal gas or fuel gas is generated with an exothermic IHU of /m'.

反応容器を同時に転炉として使用するように形成し、そ
の中で直接鋼を製造することも本発明の範囲内である。
It is also within the scope of the invention to configure the reaction vessel to simultaneously serve as a converter and to produce steel directly therein.

この目的で普通の鉄浴反応器作業の間の炭素含量約2〜
3%は出鋼前そのつど約0゜05%に低下され、約20
tの部分量が排出される。転炉内には約50tの量が残
り、これは次に少し石炭過剰の酸素と石炭の同時的吹込
によって徐々に再び連続作業に望ましい2〜3%の炭素
最に加炭される。この作業法の場合、炭素を完全に除去
精錬する前に、すなわちほぼ残留炭素含量0゜5〜2%
のときにスラグを鉄浴から排滓するのが有利なことが明
らかになった。引続き新たに形成された、排出された鋼
浴と平衡する新スラグは転炉内に残る。
For this purpose, the carbon content during normal iron bath reactor operation is approximately 2 to
3% is reduced to about 0.05% each time before tapping, and about 20%
A partial amount of t is discharged. A quantity of approximately 50 t remains in the converter, which is then gradually carburized again by simultaneous injection of oxygen and coal with a slight excess of coal to the desired 2-3% carbon for continuous operation. In this working method, carbon is completely removed before refining, i.e. the residual carbon content is approximately 0.5~2%.
It has become clear that it is advantageous to drain the slag from the iron bath. Subsequently, the newly formed new slag, which is in equilibrium with the discharged steel bath, remains in the converter.

次に本発明を図面を参照して説明する。Next, the present invention will be explained with reference to the drawings.

気密に閉鎖されたほぼなし形の反応容器20は約半分ま
で溶鉄浴21で充てんされ、したがって浴面22は反応
容器20の約半分の高さにある。
The hermetically closed, essentially empty reaction vessel 20 is filled approximately half way with a molten iron bath 21, so that the bath level 22 is approximately half the height of the reaction vessel 20.

反応容器の底部には微細に摩砕した石炭24を導入する
ノズル23が設置される。さらに反応容器20の底部に
は酸素を鉄鉱石及び造滓剤とともに吹込むノズル25が
設けられている。実際にはこのノズル25はノズル保護
のため炭化水素用のリングギャップで包囲される。
A nozzle 23 for introducing finely ground coal 24 is installed at the bottom of the reaction vessel. Furthermore, a nozzle 25 is provided at the bottom of the reaction vessel 20 for blowing oxygen together with iron ore and a slag forming agent. In practice, this nozzle 25 is surrounded by a hydrocarbon ring gap for nozzle protection.

転炉の上部範囲には2つのノズル26および27が反応
容器20の壁を貫通して設置される。このノズルは酸素
を供給し、浴面20のほぼ中心部に向う噴流29を形成
する。ノズル26および27の出口孔は浴面より約2m
上にある。
In the upper region of the converter, two nozzles 26 and 27 are installed through the wall of the reaction vessel 20. This nozzle supplies oxygen and forms a jet 29 directed approximately toward the center of the bath surface 20. The outlet holes of nozzles 26 and 27 are approximately 2 m above the bath surface.
It is above.

ガス噴流29は浴面22の上にあるガス室30を通過し
、そのジェット効果によりすでに石炭24のガス化によ
って製造されたガス31を同伴する。ガス噴流29の酸
素によってこのガスの1部は燃焼する。燃焼熱の1部は
浴面22を通して鉄浴21を伝達され、鉄鉱石の還元に
少なくとも1部使用され、溶鉄を製造する。
The gas jet 29 passes through a gas chamber 30 above the bath surface 22 and entrains by its jet effect the gas 31 already produced by the gasification of the coal 24 . A portion of this gas is combusted by the oxygen in the gas jet 29. A portion of the combustion heat is transferred to the iron bath 21 through the bath surface 22 and is used at least in part to reduce the iron ore to produce molten iron.

発明の効果 本発明方法は以上詳述したように構成したので、摩砕し
た固体又は液体の形の炭素及び/又は炭化水素を含むカ
ロリーの低い燃料から、鉄浴反応器内で安価な酸化性ガ
スを使用して、燃料ガスを経済的に製造することができ
るとともに鉄鉱石を直接還元して溶鉄を製造することが
できるという効果を奏する。
EFFECTS OF THE INVENTION The process of the present invention, constructed as detailed above, enables the production of inexpensive oxidizing materials in iron bath reactors from low-calorie fuels containing ground carbon and/or hydrocarbons in solid or liquid form. By using gas, fuel gas can be economically produced, and iron ore can be directly reduced to produce molten iron.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は鉄浴反応器の縦断面図である。 20・・・反応容器、 21・・・鉄浴、 22・・・浴面、 23.25,26.27・・・ノズル、24・・・石炭
、 29・・・ガス噴流、 30・・・ガス室、 31・・・ガス 代理人: 弁理士 松 本   昂
The drawing is a longitudinal cross-sectional view of an iron bath reactor. 20... Reaction vessel, 21... Iron bath, 22... Bath surface, 23.25, 26.27... Nozzle, 24... Coal, 29... Gas jet, 30... Gas chamber, 31...Gas agent: Patent attorney Akira Matsumoto

Claims (1)

【特許請求の範囲】 (1)溶融鉄浴が存在する鉄浴反応器内に炭素を含む固
体または液体燃料を供給するとともに、鉄を少なくとも
一部酸化物の形で含む物質を供給し、 該溶融鉄浴の浴面に少なくとも一部酸素からなるガス噴
流を前記鉄浴反応器内に画成されたガス室を通して吹付
け、 ガス室を通過する際にガス噴流が製造されたガスを吸引
し、 一部燃焼させ、 かつ製造したガスの燃焼によって発生した熱が鉄浴へ伝
達されるように製造されたガスを浴面まで同伴し、 前記一部燃焼により発生した熱が前記鉄を少なくとも一
部酸化物の形で含む物質の還元に少なくとも一部使用さ
れることを特徴とする鉄浴反応器内でガス及び溶鉄を製
造する方法。 (2)ガス室内のガス噴流の長さが2mより大きい特許
請求の範囲第1項に記載の方法。(3)鉄を少なくとも
一部酸化物の形で含む物質としてとくに鉱石、又は一部
前還元した鉱石たとえばペレット及び/又はブリケット
を鉄浴反応器に供給する特許請求の範囲第1項又は第2
項のいずれかに記載の方法。 (4)鉄を少なくとも一部酸化物の形で含む物質とくに
鉱石を酸化ガスとくに酸素とともに溶湯へ吹込む特許請
求の範囲第1項〜第3項のいずれか1つに記載の方法。 (5)反応容器内で、製造した炭素を含む鉄を鋼に精錬
する特許請求の範囲第1項〜第4項のいずれか1つに記
載の方法。
[Scope of Claims] (1) Supplying a solid or liquid fuel containing carbon into an iron bath reactor in which a molten iron bath is present, and supplying a substance containing at least a portion of iron in the form of an oxide; Blowing a gas jet consisting at least partially of oxygen onto the bath surface of the molten iron bath through a gas chamber defined in said iron bath reactor, the gas jet sucking in the produced gas as it passes through the gas chamber. , the produced gas is partially combusted, and the produced gas is entrained to the bath surface so that the heat generated by the combustion of the produced gas is transferred to the iron bath, and the heat produced by the partial combustion is transferred to at least one of the iron baths. 1. A method for producing gas and molten iron in an iron bath reactor, characterized in that it is used at least partly for the reduction of substances containing in the form of partial oxides. (2) The method according to claim 1, wherein the length of the gas jet in the gas chamber is greater than 2 m. (3) In particular, ores or partially prereduced ores such as pellets and/or briquettes are fed to the iron bath reactor as substances containing iron at least partially in the form of oxides.
The method described in any of the paragraphs. (4) A method according to any one of claims 1 to 3, in which a substance, in particular an ore, containing at least part of iron in the form of an oxide is blown into the molten metal together with an oxidizing gas, in particular oxygen. (5) The method according to any one of claims 1 to 4, wherein the produced iron containing carbon is refined into steel in a reaction vessel.
JP1007876A 1980-08-22 1989-01-18 Method for producing gas and molten iron in an iron bath reactor Expired - Lifetime JPH0762162B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3031680.4 1980-08-22
DE19803031680 DE3031680A1 (en) 1980-08-22 1980-08-22 METHOD FOR GAS GENERATION

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56128845A Division JPS5774390A (en) 1980-08-22 1981-08-19 Manufacture of gas in iron bath reactor

Publications (2)

Publication Number Publication Date
JPH01246311A true JPH01246311A (en) 1989-10-02
JPH0762162B2 JPH0762162B2 (en) 1995-07-05

Family

ID=6110175

Family Applications (2)

Application Number Title Priority Date Filing Date
JP56128845A Granted JPS5774390A (en) 1980-08-22 1981-08-19 Manufacture of gas in iron bath reactor
JP1007876A Expired - Lifetime JPH0762162B2 (en) 1980-08-22 1989-01-18 Method for producing gas and molten iron in an iron bath reactor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP56128845A Granted JPS5774390A (en) 1980-08-22 1981-08-19 Manufacture of gas in iron bath reactor

Country Status (20)

Country Link
JP (2) JPS5774390A (en)
AT (1) AT385053B (en)
AU (1) AU539665B2 (en)
BE (1) BE890047A (en)
BR (1) BR8105352A (en)
CA (1) CA1181238A (en)
CS (1) CS253561B2 (en)
DE (1) DE3031680A1 (en)
ES (1) ES8206615A1 (en)
FR (1) FR2488903B1 (en)
GB (1) GB2082624B (en)
HU (1) HU188685B (en)
IT (1) IT1137764B (en)
LU (1) LU83573A1 (en)
MX (1) MX157845A (en)
NL (1) NL193320C (en)
PL (1) PL130522B1 (en)
SE (1) SE8104704L (en)
SU (1) SU1148566A3 (en)
ZA (1) ZA815676B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194838A (en) * 2014-08-22 2014-12-10 中国天辰工程有限公司 Gasification furnace

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU535363B2 (en) * 1980-12-01 1984-03-15 Sumitomo Metal Industries Ltd. Gasification of solid carbonaceous material
DE3111168C2 (en) * 1981-03-21 1987-01-08 Klöckner-Humboldt-Deutz AG, 5000 Köln Process and apparatus for producing a gas containing essentially H↓2↓ and CO
DE3219562C2 (en) * 1982-05-25 1985-01-10 Klöckner-Werke AG, 4100 Duisburg Process for supplying coal to a steelworks
SE435732B (en) * 1983-03-02 1984-10-15 Ips Interproject Service Ab PROCEDURE FOR THE MANUFACTURING OF IRON
DE3318005C2 (en) * 1983-05-18 1986-02-20 Klöckner CRA Technologie GmbH, 4100 Duisburg Process for making iron
JPS6058488A (en) * 1983-09-07 1985-04-04 Sumitomo Metal Ind Ltd Gasification of carbonaceous matter
US4582479A (en) * 1984-12-31 1986-04-15 The Cadre Corporation Fuel cooled oxy-fuel burner
US4599107A (en) * 1985-05-20 1986-07-08 Union Carbide Corporation Method for controlling secondary top-blown oxygen in subsurface pneumatic steel refining
JPS62142712A (en) * 1985-12-18 1987-06-26 Nippon Kokan Kk <Nkk> Manufacture of steel or iron by converter or by smelting and reducing furnace
US4708738A (en) * 1986-04-01 1987-11-24 Union Carbide Corporation Method for refining very small heats of molten metal
US4647019A (en) * 1986-04-01 1987-03-03 Union Carbide Corporation Very small refining vessel
DE327862T1 (en) * 1988-02-12 1989-12-07 Kloeckner Cra Patent Gmbh, 4100 Duisburg METHOD AND DEVICE FOR AFTERBURNING.
AU628987B2 (en) * 1989-06-02 1992-09-24 Cra Services Limited Manufacture of ferroalloys using a molten bath reactor
MX174486B (en) * 1990-03-13 1994-05-18 Cra Services A PROCEDURE FOR PRODUCING METALS AND METAL ALLOYS IN A FUSION REDUCING VESSEL
JP3534407B2 (en) * 1992-06-29 2004-06-07 テクノロジカル リソーシズ プロプライエタリー リミテッド Waste treatment method
GB2281311B (en) * 1993-03-29 1996-09-04 Boc Group Plc Metallurgical processes and apparatus
ATE203267T1 (en) * 1996-02-16 2001-08-15 Thermoselect Ag METHOD FOR OPERATING A HIGH TEMPERATURE REACTOR FOR TREATING DISPOSAL GOODS
AU2652101A (en) * 2000-01-28 2001-08-07 Tribovent Verfahrensentwicklung Gmbh Method for burning metal- or metal oxide containing fuels, especially petroleum coke
US8696774B2 (en) 2010-01-07 2014-04-15 General Electric Company Gasification system and method using fuel injectors
US9102882B2 (en) 2012-09-04 2015-08-11 General Electric Company Gasification system and method
KR20150074170A (en) 2012-10-24 2015-07-01 프리메탈스 테크놀로지스 오스트리아 게엠베하 Method and device for supplying energy into a scrap metal pile in an electric arc furnace
CN110396435B (en) * 2019-09-03 2024-08-09 杭州吉幔铁氢能科技有限公司 Double-molten-bath organic solid waste air-blowing gasification device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52704A (en) * 1975-05-10 1977-01-06 Maximilianshuette Eisenwerk Process and apparatus for manufacture of reducing gas useful in metallurgy
JPS54109016A (en) * 1977-12-10 1979-08-27 Maximilianshuette Eisenwerk Improvement of heat balance in steel making
JPS54125203A (en) * 1978-03-23 1979-09-28 Sumitomo Metal Ind Ltd Production of gas

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE474594C (en) * 1923-12-19 1929-04-09 Eisen Und Stahlwerk Hoesch Akt Process to increase the temperature and the reducing power of the converter exhaust gases
DE450460C (en) * 1924-02-02 1927-10-04 Wilhelm Schwier Process and device for gasifying fine-grain or dust-like fuels
DE1040734B (en) * 1952-08-21 1958-10-09 Roman Rummel Process and device for the combustion or gasification of fuels
FR1313729A (en) * 1960-10-10 1963-01-04 Inst Francais Du Petrole Continuous process of manufacturing cast iron or steel by reduction of iron ore
LU40790A1 (en) * 1960-11-07 1962-05-07
NL6604026A (en) * 1965-11-08 1967-05-09
AU7299674A (en) * 1973-09-12 1976-03-11 Uss Eng & Consult Gasification of coal
DE2520883B2 (en) * 1975-05-10 1979-07-05 Eisenwerk-Gesellschaft Maximilianshuette Mbh, 8458 Sulzbach-Rosenberg Process and device for the continuous gasification of coal or carbonaceous fuels in an iron bath reactor
DE2520868C3 (en) * 1975-05-10 1979-05-03 Eisenwerk-Gesellschaft Maximilianshuette Mbh, 8458 Sulzbach-Rosenberg Process for supplying heat in the coal gasification process in the iron bath reactor
JPS6033869B2 (en) * 1976-03-02 1985-08-05 川崎重工業株式会社 Coal gasification equipment using molten metallurgy slag
GB1586762A (en) * 1976-05-28 1981-03-25 British Steel Corp Metal refining method and apparatus
JPS5456015A (en) * 1977-10-12 1979-05-04 Nippon Steel Corp Manufacture of molten iron in converter
DE2755165C3 (en) * 1977-12-10 1988-03-24 Klöckner CRA Technologie GmbH, 4100 Duisburg Method for increasing the scrap rate in steel production
DE2838983C3 (en) * 1978-09-07 1986-03-27 Klöckner CRA Technologie GmbH, 4100 Duisburg Process for producing steel in the converter
JPS5589395A (en) * 1978-12-26 1980-07-05 Sumitomo Metal Ind Ltd Gasification of solid carbonaceous material and its device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52704A (en) * 1975-05-10 1977-01-06 Maximilianshuette Eisenwerk Process and apparatus for manufacture of reducing gas useful in metallurgy
JPS54109016A (en) * 1977-12-10 1979-08-27 Maximilianshuette Eisenwerk Improvement of heat balance in steel making
JPS54125203A (en) * 1978-03-23 1979-09-28 Sumitomo Metal Ind Ltd Production of gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194838A (en) * 2014-08-22 2014-12-10 中国天辰工程有限公司 Gasification furnace

Also Published As

Publication number Publication date
JPS6247473B2 (en) 1987-10-08
ES504653A0 (en) 1982-08-16
HU188685B (en) 1986-05-28
JPS5774390A (en) 1982-05-10
PL232744A1 (en) 1982-05-24
DE3031680A1 (en) 1982-03-11
GB2082624B (en) 1984-03-14
IT1137764B (en) 1986-09-10
AU7440981A (en) 1982-02-25
AU539665B2 (en) 1984-10-11
FR2488903A1 (en) 1982-02-26
CA1181238A (en) 1985-01-22
ES8206615A1 (en) 1982-08-16
NL8103451A (en) 1982-03-16
ATA333581A (en) 1987-07-15
BR8105352A (en) 1982-05-18
LU83573A1 (en) 1981-12-01
DE3031680C2 (en) 1988-02-25
JPH0762162B2 (en) 1995-07-05
CS253561B2 (en) 1987-11-12
PL130522B1 (en) 1984-08-31
IT8123284A0 (en) 1981-07-31
GB2082624A (en) 1982-03-10
BE890047A (en) 1981-12-16
SE8104704L (en) 1982-02-23
ZA815676B (en) 1982-08-25
AT385053B (en) 1988-02-10
NL193320B (en) 1999-02-01
MX157845A (en) 1988-12-16
NL193320C (en) 1999-06-02
FR2488903B1 (en) 1986-01-24
SU1148566A3 (en) 1985-03-30

Similar Documents

Publication Publication Date Title
JPH01246311A (en) Production of gas and molten iron in iron bath reactor
US4356035A (en) Steelmaking process
US4153426A (en) Synthetic gas production
US4566904A (en) Process for the production of iron
KR0131266B1 (en) Process for the production of iron using converter
RU2025499C1 (en) Method to smelt in electric arc furnace and the electric arc furnace to smelt
KR900007783B1 (en) Method for producing iron
KR100248900B1 (en) Method for intensifying the reactions in metallurgical reaction vessels
JPH0219166B2 (en)
US3460934A (en) Blast furnace method
US4380469A (en) Process and apparatus for continuously reducing and melting metal oxides and/or pre-reduced metallic materials
US4198230A (en) Steelmaking process
NO142312B (en) PROCEDURE FOR MANUFACTURING LIQUID RAJJAR
US4753677A (en) Process and apparatus for producing steel from scrap
CZ182995A3 (en) Coke-heated cupola and process of melting materials based on iron metals
WO1997027338A1 (en) Direct iron and steelmaking
US3038795A (en) Process for smelting and reducing powdered or finely divided ores
US20050151307A1 (en) Method and apparatus for producing molten iron
CA1157275A (en) Method of improving the thermal efficiency of steel production from solid ferrous metals
EP0970253A1 (en) Process for direct production of cast iron from fine iron ore and fine coal and apparatus suitable to carry out said process
JP2022117935A (en) Molten iron refining method
AU708255B2 (en) Direct iron and steelmaking
JPH08325621A (en) Production of high carbon molten iron from iron scrap
JPS63192810A (en) Production of molten iron
JPH0499809A (en) Smelting reduction operating method