JPH02263907A - Operating method for blowing powder in blast furnace tuyere - Google Patents

Operating method for blowing powder in blast furnace tuyere

Info

Publication number
JPH02263907A
JPH02263907A JP8552389A JP8552389A JPH02263907A JP H02263907 A JPH02263907 A JP H02263907A JP 8552389 A JP8552389 A JP 8552389A JP 8552389 A JP8552389 A JP 8552389A JP H02263907 A JPH02263907 A JP H02263907A
Authority
JP
Japan
Prior art keywords
tuyere
blast furnace
pulverized coal
oxygen
powdered coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8552389A
Other languages
Japanese (ja)
Inventor
Chisato Yamagata
山縣 千里
Yoshimasa Kajiwara
梶原 義雅
Takaiku Yamamoto
高郁 山本
Shinichi Suyama
須山 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8552389A priority Critical patent/JPH02263907A/en
Publication of JPH02263907A publication Critical patent/JPH02263907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To reduce raw material cost under stable furnace condition in the case powdered coal and iron oxide are simultaneously blown from a tuyere by making theoretical combustion temp. before tuyere in the prescribed temp. range and further, specifying range of weight ratio of oxygen/powdered coal during blasting in the tuyere. CONSTITUTION:The blast furnace is operated by blowing >=150kg powdered coal and >=150kg iron oxide per ton of pig iron from the tuyere in a blast furnace at the same time, and making the theoretical combustion temp. before the tuyere within the range of 1800-2600 deg.C, and under such condition that the wt. ratio of oxygen/ powdered coal during blasting in the tuyere within the upper and lower limit range shown in the equation I and the equation II. Wherein, (PC): carbon content in the powdered coal (wt.%), (PH): hydrogen content in the fine powder coal. Further, it is preferable to blow about 30-60kg of slag making agent per ton of the pig iron from the tuyere in the blast furnace. By this method, combustibility of the powdered coal and smelting reduction of the sintered ore powder are secured and the operation under stable furnace condition without variation of blasting pressure and lowering of charging level can be continued.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、微粉炭と酸化鉄を多量に高炉羽口から吹き込
むことにより、石炭・鉱石の原料制約を緩和すると共に
、高炉出銑比増大および溶銑成分制御をはかる高炉羽口
粉体吹き込み操業法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention alleviates the raw material constraints of coal and ore and increases the blast furnace iron output ratio by injecting a large amount of pulverized coal and iron oxide through the blast furnace tuyere. and a blast furnace tuyere powder injection operation method for controlling hot metal composition.

(従来の技術) 従来、高炉操業形態としては、羽口から重油・タール等
の液体燃料を多量に吹き込むことにより、低コークス比
・高出銑比を図る液体燃料吹き込み操業が指向されてい
た。しかし、昭和50年前半の原油価格の高騰によりエ
ネルギー価格体系が大きく変化した結果、高炉操業はオ
ールコークス操業が主流になってきた。
(Prior Art) Conventionally, as a blast furnace operation mode, a liquid fuel injection operation was aimed at achieving a low coke ratio and high pig iron production ratio by injecting a large amount of liquid fuel such as heavy oil or tar through the tuyeres. However, as a result of the drastic change in the energy price system due to the sharp rise in crude oil prices in the first half of 1975, all-coke operation has become the mainstream for blast furnace operations.

このオールコークス操業は、液体燃料吹き込み操業に比
べて、燃料コストは低下するものの、羽口前理論燃焼温
度が高くなり、かつ高炉への水素投入量も低下するため
、荷下がりが不安定となり、スリップが頻発すると共に
、溶銑中Si1度も上昇させる。この問題点を、調湿を
多量に使用することにより解決してきたが、代わりに、
コークス比が上昇したことによるコークス炉生産能力の
問題、および、送風原単位が上昇して吹抜は限界の面か
ら最大出銑比が低下するという問題が新たに発生した。
Although this all-coke operation reduces fuel costs compared to liquid fuel injection operation, the theoretical combustion temperature before the tuyere is higher and the amount of hydrogen input to the blast furnace is also lower, making unloading unstable. Slips occur frequently and the Si content in the hot metal increases by 1 degree. This problem has been solved by using a large amount of humidity control, but instead,
New problems arose, including problems with coke oven production capacity due to an increase in the coke ratio, and a decrease in the maximum pig iron production ratio due to an increase in the air consumption rate and the limitations of the atrium.

そこで、安価な羽口吹き込み燃料として微粉炭を採用す
る高炉が増大し、そのような方式を採用した高炉におい
ては、コークス比の低下が達成され、最大出銑比は上昇
した。今日では、国内では、銑鉄トン当り微粉炭比10
0kg(以下、r kg/ptJ の単位で表わす)以
上で操業されている高炉も見られる (例えば、「鉄と
鋼J Vol、73 (1987) 5783、および
日本鉄鋼協会講演論文集、「材料とプロセスJ  Vo
l、1 (1988) p、72) 。
Therefore, the number of blast furnaces that use pulverized coal as an inexpensive tuyere-injected fuel has increased, and in blast furnaces that have adopted such a method, a reduction in coke ratio has been achieved and a maximum iron production ratio has increased. Today, in Japan, the ratio of pulverized coal per ton of pig iron is 10
Some blast furnaces are operated at 0 kg (hereinafter expressed in the unit of r kg/ptJ) or more. Process J Vo
l, 1 (1988) p, 72).

一方、今日、高炉装入原料として、焼結鉱は全鉱石使用
量の70〜95%と多量に使用されており、その良好な
被還元性および高温性状により、高炉の高出銑比操業・
低燃料比操業に寄与している。
On the other hand, today, sintered ore is used in large quantities as a raw material for blast furnace charging, accounting for 70 to 95% of the total amount of ore used, and due to its good reducibility and high temperature properties, it can be
This contributes to low fuel ratio operation.

ここで、焼結鉱製造工程においては、焼結tlA成後、
高炉使用に通した粒度範囲に、焼結鉱を破砕・篩分けす
る過程で篩下の細粒焼結鉱すなわち返鉱が発生し、焼結
機にリターンされている。通常、この返鉱の量は焼結用
配合原料の20〜30%を占め、焼結鉱焼成エネルギー
の増大に結び付いている。
Here, in the sintered ore manufacturing process, after sintering tlA,
In the process of crushing and sieving the sintered ore, fine grained sintered ore, that is, return ore, is generated under the sieve and is returned to the sintering machine. Usually, the amount of this return ore occupies 20 to 30% of the mixed raw material for sintering, and is linked to an increase in the energy for firing the sinter ore.

この焼結鉱の返鉱量を低減し、焼結鉱の鍋歩留まり (
製品/(新原料+返鉱) xlOO)を向上させる方法
の1つとして、再々篩を設置することにより、高炉での
小粒焼結鉱の装入量増大をはかった例が報告されている
(日本鉄鋼協会講演論文集、「材料とプロセス」 νo
1.110 (1988)ρ、110)。この方法によ
れば、返鉱量が低減され、焼結鉱鍋歩留まりは75%か
ら83%まで向上した。しかし、焼結工場での篩下およ
び再々篩下の焼結鉱は、返鉱として焼結機にリターンさ
れるため、返鉱ゼロは達成されず、焼結鉱焼成エネルギ
ーの低域化を残している。
By reducing the amount of return ore of this sintered ore, the pot yield of sintered ore (
As one method of improving the product/(new raw material + return ore) Japan Iron and Steel Institute Lecture Proceedings, “Materials and Processes” νo
1.110 (1988) ρ, 110). According to this method, the amount of return ore was reduced and the sintered ore ladle yield improved from 75% to 83%. However, since the sintered ore under the sieve and the sintered ore under the sieve in the sintering factory is returned to the sintering machine as return ore, zero return ore cannot be achieved, and the sintered ore firing energy remains low. ing.

なお、焼結鉱を粒径5fflImで篩分けし、篩上の焼
結鉱を高炉炉頂部より装入する高炉操業方法において、
篩下焼結鉱を一定の粒径、例えば2IIII!1を基準
に再篩分けし、微粉焼結鉱と小塊焼結鉱に区分し、微粉
焼結鉱は送風羽口より高炉内に吹き込み、小塊焼結鉱は
篩上焼結鉱と共に炉頂部より炉内に装入することを特徴
とする篩下焼結鉱の高炉使用方法も提案されている(特
開昭61−6204号)。この方法によれば、焼結鉱返
鉱量ゼロが実現し、焼結鉱焼成エネルギーの低減に結び
付く。
In addition, in a blast furnace operating method in which sintered ore is sieved with a particle size of 5fflIm and the sintered ore on the sieve is charged from the top of the blast furnace,
The sintered ore under the sieve has a certain particle size, for example 2III! The fine sintered ore is blown into the blast furnace through the blast tuyere, and the small sintered ore is passed through the furnace together with the sieved sintered ore. A method of using sintered ore under the sieve in a blast furnace has also been proposed, which is characterized by charging the sintered ore into the furnace from the top (Japanese Patent Laid-Open No. 61-6204). According to this method, the amount of sintered ore returned is zero, leading to a reduction in sintered ore firing energy.

また、微わ〕炭吹き込み操業における低Si溶銑製造法
として、微粉炭と共に、粉鉱石を吹き込む操業法も提案
されている(特開昭57−137402号)。
Furthermore, as a method for producing low-Si hot metal in a coal injection operation, an operation method has been proposed in which powdered ore is injected together with pulverized coal (Japanese Patent Application Laid-open No. 137402/1982).

この方法によれば、微粉炭比30〜150 kg/pt
において、ベレントフィードまたは焼結鉱破砕粉よりな
る粉鉱石を5〜50kg/pt吹き込むことにより、脱
珪反応(Si+2FeO=SiOt+2Fe)で溶銑中
Stは低減される。
According to this method, the pulverized coal ratio is 30 to 150 kg/pt
By injecting 5 to 50 kg/pt of fine ore consisting of berent feed or crushed sintered ore powder, St in the hot metal is reduced by a desiliconization reaction (Si+2FeO=SiOt+2Fe).

さらに、微粉炭吹き込み操業における低Sr・低S溶銑
製造法として、微粉炭と共に石灰石、ドロマイト等の塩
基性物質を吹き込む操業法も提案されている(特開昭5
7−137403号)。
Furthermore, as a method for producing low Sr and low S hot metal in pulverized coal injection operations, an operation method has been proposed in which basic substances such as limestone and dolomite are injected together with pulverized coal (JP-A-5
7-137403).

(発明が解決しようとする課題) しかしながら、前述したこれらの方法には、次に掲げる
3つの問題点が存在した。
(Problems to be Solved by the Invention) However, these methods described above have the following three problems.

■微粉炭の多量吹き込み事例、および、焼結鉱粉の多量
吹き込み事例はみられるが、微粉炭と焼結鉱粉の同時多
量吹き込みではないため、原料失費と焼結鉱焼成エネル
ギーとの同時削減による原料コストの大幅削減には結び
付かない。
■There are cases where large amounts of pulverized coal and sintered ore powder are injected, but pulverized coal and sintered ore powder are not simultaneously injected in large quantities, resulting in raw material waste and sintered ore firing energy. This reduction will not lead to a significant reduction in raw material costs.

■微粉炭多量吹き込み時には、レースウェイ内での微粉
炭燃焼が十分に進展せず、通気性悪化、荷下がり変動を
起こし、炉冷に結び付(場合がある。
■When a large amount of pulverized coal is injected, combustion of pulverized coal within the raceway does not progress sufficiently, resulting in poor ventilation, fluctuations in loading, and cooling of the furnace (sometimes).

■焼結鉱粉多量吹き込み時には、レースウェイ先端で溶
融還元が十分に進展せず、風圧変動・荷下がり変動を起
こし、炉冷に結び付く場合がある。
■When a large amount of sintered ore powder is injected, smelting reduction may not progress sufficiently at the tip of the raceway, causing wind pressure fluctuations and load drop fluctuations, which may lead to furnace cooling.

本発明は、微粉炭と焼結鉱粉を多量に吹き込む高炉の粉
体吹き込み操業において、前記問題点を解決することを
目的とするもので、微粉炭の燃焼性および焼結鉱粉の溶
融還元を確保することにより、高炉炉況安定下で、原料
コストの大幅低減を実現する高炉羽口粉体吹き込み操業
法を従供することを目的とするものである。
The present invention aims to solve the above-mentioned problems in the powder injection operation of a blast furnace in which a large amount of pulverized coal and sintered ore powder is injected. The purpose of this project is to provide a blast furnace tuyere powder injection operation method that achieves a significant reduction in raw material costs under stable blast furnace furnace conditions.

(課題を解決するための手段) 本発明者らは、上記目的を達成すべ(、多くの実験を重
ねながら研究を行った結果、 ■羽口前理論燃焼温度を所定範囲に入れた上で、酸素と
微粉炭の重量比率を所定値以上にすることにより、レー
スウェイ内での微粉炭の燃焼性が確保される。
(Means for Solving the Problems) The inventors of the present invention have found that in order to achieve the above object, as a result of conducting research through numerous experiments, (1) the theoretical combustion temperature before the tuyere is within a predetermined range; By setting the weight ratio of oxygen and pulverized coal to a predetermined value or more, the combustibility of the pulverized coal within the raceway is ensured.

■上記■の対策を講じた場合には、微粉炭と焼結鉱粉を
同時に多量吹き込みしても、微粉炭の燃焼熱により粉鉱
石の熔融還元が確保される。
(2) If the above measure (2) is taken, even if a large amount of pulverized coal and sintered ore powder are injected at the same time, the molten ore reduction will be ensured by the combustion heat of the pulverized coal.

■従って、微粉炭および焼結鉱粉を気体輸送して高炉羽
口から吹き込むに当たり、羽口前理論燃焼温度を所定範
囲に入れた上で、羽口送風中の酸素/微粉炭の・重量比
率を所定範囲内にすれば、レースウェイ内での微粉炭燃
焼およびレースウェイ先端での粉焼結絋の溶融還元が十
分に進展し、風圧変動・荷下がり変動等の炉況悪化がな
く操業を継続することが可能である。
■Therefore, when transporting pulverized coal and sintered ore powder through the blast furnace tuyere, the theoretical combustion temperature before the tuyere must be within a specified range, and the oxygen/pulverized coal weight ratio during tuyere ventilation must be If it is within the specified range, the combustion of pulverized coal in the raceway and the melting and reduction of the powdered sintered fibers at the tip of the raceway will progress sufficiently, and the operation will be possible without deterioration of furnace conditions such as wind pressure fluctuations and unloading fluctuations. It is possible to continue.

との知見を得るに至ったのである。This led us to the following knowledge.

ここに、本発明の要旨とするところは、高炉羽口より、
銑鉄トン当り微粉炭150 kg以上、同じく酸化鉄1
50 kg以上を同時に吹き込み、羽口前理論燃焼温度
を1800℃以上2600℃以下とし、羽口送風中の微
粉炭/酸素重量比率を下記式(1)、(2)に示す上下
限範囲内にする高炉羽口粉体吹き込み操業法である。
Here, the gist of the present invention is that from the blast furnace tuyere,
More than 150 kg of pulverized coal per ton of pig iron, also 1 ton of iron oxide
50 kg or more is blown at the same time, the theoretical combustion temperature before the tuyere is 1800°C or more and 2600°C or less, and the pulverized coal/oxygen weight ratio during tuyere blowing is within the upper and lower limits shown in the following formulas (1) and (2). This is a blast furnace tuyere powder injection operation method.

(PC) ?微粉炭中炭素(重量分率)(PH) +微
粉炭中水素(重量分率)(作用) 本発明において各操業条件を上述のように限定した理由
は次の通りである。
(PC)? Carbon in pulverized coal (weight fraction) (PH) + Hydrogen in pulverized coal (weight fraction) (effect) The reason for limiting each operating condition as described above in the present invention is as follows.

羽口前理論燃焼温度(以下、単に「羽口前温度」ともい
う)は低下し過ぎると、送風顕熱不足により溶銑温度確
保が困難となり、一方、羽口前温度を上昇し過ぎると、
SiO(g)等の金属蒸気分圧が高くなり棚吊りが発生
する0本発明では1800〜2600℃に限定する。好
ましくは2000〜2400℃である。
If the theoretical combustion temperature before the tuyere (hereinafter simply referred to as "temperature before the tuyere") decreases too much, it will be difficult to maintain the temperature of the hot metal due to insufficient sensible heat of the blast. On the other hand, if the temperature before the tuyere increases too much,
In the present invention, the temperature is limited to 1800 to 2600° C., where the partial pressure of metal vapor such as SiO(g) increases and shelf hanging occurs. Preferably it is 2000-2400°C.

微粉炭および酸化鉄の吹込み量はそれぞれ150kg5
0kgノルするが、実生産の観点からこれより少ない量
では高炉羽口からの多量吹込みという目的に達成されず
、粉体吹込み操業上の実際的利益が得られないからであ
る。
The amount of pulverized coal and iron oxide injected is 150 kg each5.
This is because, from the viewpoint of actual production, if the amount is smaller than this, the purpose of injecting a large amount from the blast furnace tuyere will not be achieved, and no practical benefit will be obtained in the powder injection operation.

酸素と微粉炭の重量比率については、式(2)で示す下
限はこれより酸素量が少ないと、微粉炭中炭素が不完全
燃焼する酸素濃度であり、これ未満の酸素濃度では充填
層中に未燃の微粉炭が多量に持ち込まれ、通気性悪化、
荷下がり悪化を引き起こす、一方、式(1)で示す上限
は、微粉炭中の炭素および水素が完全燃焼する酸素濃度
であり、それを超えた量の酸素は微粉炭の燃焼にとって
必要のないものである。
Regarding the weight ratio of oxygen and pulverized coal, the lower limit shown in equation (2) is the oxygen concentration at which the carbon in the pulverized coal will be incompletely combusted if the amount of oxygen is less than this, and if the oxygen concentration is less than this, the carbon in the pulverized coal will burn incompletely. A large amount of unburned pulverized coal is brought in, resulting in poor ventilation.
On the other hand, the upper limit shown in equation (1) is the oxygen concentration at which the carbon and hydrogen in the pulverized coal are completely combusted, and the amount of oxygen exceeding this is not necessary for the combustion of the pulverized coal. It is.

これらの羽口前理論燃焼温度および酸素/微粉炭の重量
比率は、それぞれ本発明で規定する所定の上下限範囲内
において、コークス比、出銑比等の高炉操業度に応じて
決定される。
The theoretical combustion temperature before the tuyere and the oxygen/pulverized coal weight ratio are each determined within the predetermined upper and lower limit ranges defined by the present invention, depending on the blast furnace operating rate such as the coke ratio and the tapping ratio.

従って、微粉炭および酸化鉄(例:焼結鉱粉)を気体輸
送して高炉羽口から吹き込むに当り、羽口前理論燃焼温
度を1800〜2600℃の範囲に入れた上で、羽口送
風中の酸素/微粉炭の重量比率を、下限を前述の式(2
)で規定される微粉炭中炭素が不完全燃焼する酸素濃度
、上限を同じく式(1)で規定される微粉炭中炭素およ
び水素が完全燃焼する酸素濃度とした上下限値の範囲内
とすれば、レースウェイ内での微粉炭燃焼およびレース
ウェイ先端での粉焼結鉱の溶融還元が十分に進展し、風
圧変動、荷下がり変動等の炉況悪化がなく操業を継続す
ることが可能であり、原燃料コストの大幅削減に結び付
く。
Therefore, when transporting pulverized coal and iron oxide (e.g. sintered ore powder) through the blast furnace tuyeres, the theoretical combustion temperature before the tuyere should be in the range of 1800 to 2600°C, and then The lower limit of the weight ratio of oxygen in the coal to pulverized coal is determined using the above formula (2
) The upper limit of the oxygen concentration at which carbon in pulverized coal undergoes incomplete combustion, as specified by equation (1), shall be within the upper and lower limits of the oxygen concentration at which carbon and hydrogen in pulverized coal undergo complete combustion, as specified by equation (1). For example, the combustion of pulverized coal in the raceway and the melting and reduction of the sintered ore powder at the tip of the raceway have progressed sufficiently, and it is possible to continue operation without deterioration of furnace conditions such as wind pressure fluctuations or unloading fluctuations. Yes, leading to a significant reduction in raw material and fuel costs.

本発明の好適態様によれば、さらに必要により高炉羽口
から造滓剤30〜60kg/ptを吹込んでもよい、造
滓剤としては石灰石、ドロマイト等が挙げられ、これは
前述の微粉炭と一緒に同一羽口から吹込まれてもよい。
According to a preferred embodiment of the present invention, 30 to 60 kg/pt of a sludge-forming agent may be injected from the blast furnace tuyere if necessary. Examples of the sludge-forming agent include limestone, dolomite, etc. They may be blown together through the same tuyere.

(実施例) 本発明の実施例を第1図に基づいて説明する。(Example) An embodiment of the present invention will be described based on FIG.

高炉19の中心線右側は酸化鉄の例としての焼結鉱粉体
の吹込み工程を示しており、焼結機2で製造された焼結
鉱は、焼結工場1内に設置されたホットスクリーン、コ
ールドスクリーン等の複数のi!i3によって篩分けら
れ、篩下は粉体吹き込み系統11に供給される。一方、
篩上は焼結工場内に設置された複数の篩4〜7によって
篩分けられ、最終的には、篩6の篩下が粉体吹き込み系
統11〜18に供給され、篩5〜7の篩上は、高炉炉頂
より塊原料として装入される。
The right side of the center line of the blast furnace 19 shows the injection process of sintered ore powder as an example of iron oxide, and the sintered ore produced in the sintering machine 2 is Multiple i! screens, cold screens, etc. The powder is sieved by i3, and the undersieve is supplied to the powder blowing system 11. on the other hand,
The upper part of the sieve is sieved by a plurality of sieves 4 to 7 installed in the sintering factory, and finally the lower part of sieve 6 is supplied to powder blowing systems 11 to 18, and the sieve part of sieve 6 is sieved by a plurality of sieves 4 to 7 installed in the sintering factory. The upper part is charged as lump raw material from the top of the blast furnace.

粉体吹き込み系統に供給された粉体は、サービスホッパ
ー11に貯蔵された後、中間タンク12を経由して吹き
込みタンク13に導入される。吹き込みタンク13内の
粉体は、タンク底部から導入された気体14により流動
化し、キャリアガス15によって輸送され、分配器16
を経て、羽口17に取り付けられた吹き込みノズル18
を介して、高炉19内に吹き込まれる。
The powder supplied to the powder blowing system is stored in a service hopper 11 and then introduced into a blowing tank 13 via an intermediate tank 12. The powder in the blowing tank 13 is fluidized by the gas 14 introduced from the bottom of the tank, transported by the carrier gas 15, and passed through the distributor 16.
The blowing nozzle 18 attached to the tuyere 17
It is blown into the blast furnace 19 through.

なお、図示はしないが、粉体吹き込みノズル18は各送
風羽口17に設置されており、分配器16は必要に応じ
て複数個、場合によっては多段に設置されていても良く
、製銑工場内の篩4〜7は必要に応じて段数を増減させ
ても良い。
Although not shown, a powder blowing nozzle 18 is installed at each blowing tuyere 17, and a plurality of distributors 16 may be installed as necessary, or in some cases, in multiple stages. The number of stages of the inner sieves 4 to 7 may be increased or decreased as necessary.

次に高炉19の中心線左半分は微粉炭および造滓剤の吹
込み工程を示している。ヤードに積まれた石炭20は、
石炭ホッパー22に貯蔵された後、ホッパー下部に設置
されたロータリーフィーダー24によって、所定量が連
続的に粉砕機26に供給される。
Next, the left half of the center line of the blast furnace 19 shows the process of blowing pulverized coal and slag forming agent. The coal 20 piled in the yard is
After being stored in the coal hopper 22, a predetermined amount is continuously supplied to the crusher 26 by a rotary feeder 24 installed at the bottom of the hopper.

粉砕機26内において、粉砕・混合されると共に、粉砕
v126に併設された熱風炉27から送られる150〜
500℃の範囲内の所定温度の熱風によって乾燥される
。この熱風は、製鉄所内で発生するBガス等を燃焼して
得られるものを使用すれば良い。
In the crusher 26, the 150~
It is dried with hot air at a predetermined temperature within the range of 500°C. This hot air may be obtained by burning B gas or the like generated within the steelworks.

所定粒度以下に粉砕された石炭は、熱風炉27からの熱
風により羽口34に向かう吹き込み系統28.29.3
0に気体輸送され、さらに、分配器33を経て各羽口3
4まで分配・気体輸送される。そして、羽口34から吹
き込みノズル35を介して、高炉19内に吹き込まれる
。この場合、必要に応じて、粉砕機26以降の吹き込み
系統において、配管32を介して、熱風および/または
冷風を付加することも可能である。
The coal pulverized to a predetermined particle size or less is directed to the tuyere 34 by hot air from the hot blast furnace 27 in the blowing system 28.29.3.
The gas is transported to each tuyere 3 via a distributor 33.
4 is distributed and gaseously transported. Then, it is blown into the blast furnace 19 from the tuyere 34 through the blowing nozzle 35. In this case, it is also possible to add hot air and/or cold air to the blowing system after the crusher 26 via the piping 32, if necessary.

また、必要に応じて、ヤードに積まれたドロマイト、石
灰石等の造滓剤21を、造滓剤ホッパー23に貯蔵した
後、ホッパー下部に設置されたロータリーフィーダー2
5によって、所定量、連続的に石炭とともに粉砕機26
に同時に供給することも可能である。所定比率で同時に
供給された石炭および造滓剤は、粉砕機26内において
粉砕・混合され、高炉羽口34より吹き込まれる。
In addition, if necessary, after storing the slag-forming agent 21 such as dolomite and limestone loaded in the yard in the slag-forming agent hopper 23, the rotary feeder 2 installed at the bottom of the hopper
5, a predetermined amount of coal is continuously added to the crusher 26.
It is also possible to supply both at the same time. Coal and slag-forming agent supplied at the same time at a predetermined ratio are crushed and mixed in the crusher 26 and blown into the blast furnace through the blast furnace tuyere 34 .

なお、図示はしないが、粉体吹き込みノズル35は各送
風羽口34に設置されており、分配器33は必要に応じ
て複数個、場合によっては多段に設置されていても良い
、造滓剤21のヤードからホッパー23に至る系統につ
いても、図示はしないが、使用する造滓剤の種類数に応
じて設置されている。
Although not shown, a powder blowing nozzle 35 is installed at each blowing tuyere 34, and a plurality of distributors 33 may be installed as needed, or in some cases, in multiple stages. Although not shown, the systems leading from the yard 21 to the hopper 23 are installed depending on the number of types of slag forming agents used.

造滓剤は、実施例では、ドロマイト・石灰石等が使用さ
れているが、その他のMgO源またはCaO源を含有す
るものであっても良い。また、MgOaとCaOBの両
方を含有する造滓剤であっても良い。
In the examples, dolomite, limestone, etc. are used as the slag forming agent, but it may also contain other MgO sources or CaO sources. Alternatively, a slag forming agent containing both MgOa and CaOB may be used.

以下に、本発明に基づいて高炉の粉体吹き込み操業をA
高炉(炉内容積2700n(>で行った実験結果を、従
来法に基づく実験結果と比較して説明する。
Below, the powder injection operation of a blast furnace based on the present invention will be explained as follows.
The results of an experiment conducted in a blast furnace (inner volume: 2,700 n) will be explained by comparing them with the results of an experiment based on a conventional method.

まず、本発明法の実施に当り、羽口前理論燃焼温度の上
下限値は、従来のB高炉(炉内容積5050%)の操業
実績より決定した。第2図は、その実績を示したもので
あり、羽口前理論燃焼温度の下限設定値は送風顕熱不足
により溶銑温度確保が困難となる最低温度によって決定
され、羽口前理論燃焼温度下限値として1800℃が得
られた。一方、羽口前理論燃焼温度の上限設定値は、S
iO(g)等の金属蒸気分圧が高くなり棚吊り発生によ
り荷下がり困難となる最高温度によって決定され、羽口
前理論燃焼温度として2600℃が得られた。
First, in carrying out the method of the present invention, the upper and lower limits of the theoretical pre-tuyere combustion temperature were determined based on the operational experience of a conventional B blast furnace (furnace internal volume: 5050%). Figure 2 shows the results.The lower limit set value of the theoretical combustion temperature before the tuyere is determined by the lowest temperature at which it is difficult to secure the hot metal temperature due to insufficient sensible heat of the blast. A value of 1800°C was obtained. On the other hand, the upper limit setting value of the theoretical combustion temperature before the tuyere is S
It was determined by the maximum temperature at which the partial pressure of metal vapor such as iO(g) becomes high and it becomes difficult to lower the load due to shelf hanging, and 2600° C. was obtained as the theoretical combustion temperature before the tuyere.

また、(酸素/微粉炭)比の上下限値については、高炉
下部実験炉にて、各種熱間テストを行い決定した。第3
図は、そのテスト結果を示したものであり、(酸素/微
粉炭)比の下限値は、微粉炭燃焼率の低下により充@層
通過ガス中のすす量が多くなり、荷下がり不順をきたす
最低値より決定され、(酸素/微粉炭)圧下限値として
、微粉炭中炭素が全量不完全燃焼(c+1/20x =
co)するのに必要な酸素ffi +4/3 X (微
粉炭中炭素重量分率)1の1.5倍が得られた。一方、
(酸素/微粉炭)比の上限値は、羽口レベルでの微粉炭
燃焼率が100%となり、それを超えて酸素比率を上昇
させても微粉炭の燃焼率向上に寄与せずに無駄となる(
酸素/微粉炭)比で決定され、(酸素/微粉炭)比の上
限値として、微粉炭中の炭素および水素が全量完全燃焼
(C+0.−CO,、H,÷1/20x=HtO)する
のに必要な酸素量[(8/3X (微粉炭中炭素重量分
率)+8×(微粉炭中水素重量分率)lが得られた。
In addition, the upper and lower limits of the (oxygen/pulverized coal) ratio were determined by conducting various hot tests in a lower experimental blast furnace. Third
The figure shows the test results, and the lower limit of the (oxygen/pulverized coal) ratio is determined by the lower limit of the (oxygen/pulverized coal) ratio, which increases the amount of soot in the packed gas passing through the bed due to a decrease in the combustion rate of pulverized coal, causing unloading problems. Determined from the lowest value, the (oxygen/pulverized coal) reduction limit value is the incomplete combustion of all carbon in the pulverized coal (c+1/20x =
1.5 times the oxygen ffi +4/3 X (weight fraction of carbon in pulverized coal) 1 required for co) was obtained. on the other hand,
The upper limit of the (oxygen/pulverized coal) ratio is such that the pulverized coal combustion rate at the tuyere level is 100%, and even if the oxygen ratio is increased beyond that, it will not contribute to improving the pulverized coal combustion rate and will be wasted. Become(
The upper limit of the (oxygen/pulverized coal) ratio is the complete combustion of all carbon and hydrogen in the pulverized coal (C+0.-CO, H, ÷ 1/20x = HtO). The amount of oxygen required for [(8/3×(weight fraction of carbon in pulverized coal)+8×(weight fraction of hydrogen in pulverized coal)]l was obtained.

このように実施された高炉羽口粉体吹き込み操業の実験
結果を第1表に示す、なお、実験で使用した篩下焼結鉱
の粒度分布および微粉炭の粒度分布を第2表に示す0本
実施例で使用した粉体は、焼結鉱は一311111微粉
炭は一10t)+esh 90%であるが、必要に応じ
て、さらに細粒の焼結鉱、粗粒の石炭を吹き込んでも良
い。
The experimental results of the blast furnace tuyere powder injection operation conducted in this way are shown in Table 1. Furthermore, the particle size distribution of the sintered ore under the sieve and the particle size distribution of the pulverized coal used in the experiment are shown in Table 2. The powder used in this example was 1311111 for sintered ore and 110t for pulverized coal + 90% esh, but if necessary, finer sintered ore or coarser coal may be injected. .

まず、第1表における試験期間Aから試験期間Cは従来
法による比較例である。試験期間Aでは、焼結鉱を篩目
3mmで篩分けし、篩上焼結鉱を高炉炉頂部より装入す
ると共に、篩下焼結鉱を全量気体輸送により羽口から炉
内に吹き込んだ、送風温度上昇アクションにより、羽口
前理論燃焼温度を2022℃としたが、焼結鉱単味吹き
込みのため、粉体の昇温が十分でな(、溶融還元の進展
が十分に行かず、送風圧力変動、荷下がり変動が頻発し
、炉冷に至った。また、試験期間Bでは、微粉炭を気体
輸送により羽口より炉内に吹き込んだ。羽口前理論燃焼
温度が1763℃、また酸素/微粉炭比も1.29と低
かったため、微粉炭の燃焼が十分に行われず、通気性が
悪化するとともに、荷下がり変動が頻発し、炉冷に至っ
た。さらに、試験期間Cでは、微粉炭と共に焼結鉱篩下
(−3suw)を、気体輸送により羽口から炉内に吹き
込んだ、送風温度上昇および富化酸素増大アクションを
とったが、羽口前理論燃焼温度が1764’Cと低く、
また、酸素/微粉炭比も1.43と低かったため、微粉
炭の燃焼および微鉱石の溶融還元が十分に進展せず、炉
内通気性悪化、送風圧力変動および荷下がり変動が頻発
し、炉冷に至った。
First, test period A to test period C in Table 1 are comparative examples using the conventional method. In test period A, the sintered ore was sieved with a sieve size of 3 mm, and the sintered ore above the sieve was charged from the top of the blast furnace, and the entire sintered ore under the sieve was blown into the furnace through the tuyeres by gas transport. The theoretical combustion temperature before the tuyere was set to 2022°C by the action of raising the temperature of the air, but since the sinter was injected with only sinter, the temperature of the powder was not raised sufficiently (smelting reduction did not progress sufficiently, Fluctuations in blowing pressure and unloading occurred frequently, leading to furnace cooling.In addition, in test period B, pulverized coal was blown into the furnace through the tuyere by gas transport.The theoretical combustion temperature before the tuyere was 1763℃, and Since the oxygen/pulverized coal ratio was also low at 1.29, pulverized coal was not sufficiently combusted, resulting in poor air permeability and frequent unloading fluctuations, which led to furnace cooling.Furthermore, during test period C, The sintered ore sifter (-3suw) was blown into the furnace through the tuyere along with pulverized coal to raise the air blowing temperature and increase the enriched oxygen, but the theoretical combustion temperature before the tuyere was 1764'C. and low,
In addition, since the oxygen/pulverized coal ratio was low at 1.43, the combustion of pulverized coal and the melting and reduction of fine ores did not progress sufficiently, resulting in poor ventilation inside the furnace, frequent fluctuations in blowing pressure, and fluctuations in loading. It got cold.

これに対し、試験期間りは本発明法を適用した例であり
、微粉炭と共に焼結鉱篩下(−3+ms)を気体輸送に
より羽口から炉内に吹き込む点は前述した期間Cの場合
と同様であるが、羽口前理論燃焼温度および酸素/微粉
炭比が所定範囲に入るように、送風温度上昇と富化酸素
上昇アクションをとった。その結果、微粉炭の燃焼およ
び粉鉱石の溶融還元が十分に進展し、風圧・荷下がり安
定下で高炉操業が継続され、原燃料コストの大幅低減が
達成されると共に出銑比の上昇がはかられた。
On the other hand, the test period 1 is an example in which the method of the present invention is applied, and the point that the sintered ore sifter (-3+ms) is blown into the furnace through the tuyeres together with pulverized coal is the same as in the case of the above-mentioned period C. In the same way, actions were taken to increase the blowing temperature and enriched oxygen so that the theoretical combustion temperature before the tuyere and the oxygen/pulverized coal ratio fell within the predetermined ranges. As a result, the combustion of pulverized coal and the melting and reduction of fine ore have progressed sufficiently, blast furnace operation has been continued under stable wind pressure and unloading conditions, a significant reduction in raw material and fuel costs has been achieved, and an increase in the pig iron production ratio has been achieved. I was teased.

(以下余白) 第1表 第2表 (発明の効果) 以上逮べたように、本発明によれば、微粉炭および篩下
焼結鉱を、気体輸送により高炉羽口から吹き込む高炉粉
体吹き込み操業において、風圧変動や荷下がり変動を起
こすとなく操業を継続することが可能となり、コークス
炉生産制約の緩和、焼結鉱焼成エネルギーの低減および
高炉出銑比上昇による生産弾力性の向上をはかることが
可能となるなど、産業上極めて有用な効果がもたらされ
(The following are blank spaces) Table 1 Table 2 (Effects of the Invention) As stated above, according to the present invention, the blast furnace powder injection operation in which pulverized coal and sintered ore are injected through the blast furnace tuyeres by gas transport It is now possible to continue operations without wind pressure fluctuations or unloading fluctuations, which alleviates coke oven production constraints, reduces sinter calcination energy, and improves production flexibility by increasing the blast furnace tap ratio. It has brought extremely useful effects industrially, such as making it possible to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施するのに適した装置構成の一例
を示すブロック図、 第2図は、実施例での事前テスト結果によって得られた
、羽口前理論燃焼温度の上下限値を示すグラフ、および 第3図は、実施例での事前テスト結果によって得られた
、 (酸素/微粉炭)重量比の上下限値を示すグラフで
ある。 2:焼結機     17:羽口 19:高炉      20:石炭 21:造滓剤     27:熱風炉 34:羽口
Figure 1 is a block diagram showing an example of a device configuration suitable for carrying out the present invention. Figure 2 is the upper and lower limits of the theoretical combustion temperature before the tuyere obtained from the preliminary test results in the example. and FIG. 3 are graphs showing the upper and lower limits of the (oxygen/pulverized coal) weight ratio obtained from the preliminary test results in the example. 2: Sintering machine 17: Tuyere 19: Blast furnace 20: Coal 21: Slag forming agent 27: Hot blast furnace 34: Tuyere

Claims (2)

【特許請求の範囲】[Claims] (1)高炉羽口より、銑鉄トン当り微粉炭150kg以
上、同じく酸化鉄150kg以上を同時に吹き込み、羽
口前理論燃焼温度を1800℃以上2600℃以下とし
、羽口送風中の微粉炭/酸素重量比率を以下に示す上下
限範囲内にする高炉羽口粉体吹き込み操業法。 〔(酸素/微粉炭)〕_m_a_x=(8/3)×(P
C)+8×(PH)〔(酸素/微粉炭)〕_m_i_n
=(4/3)×(PC)×1.5(PC):微粉炭中炭
素(重量分率) (PH):微粉炭中水素(重量分率)
(1) From the blast furnace tuyere, 150 kg or more of pulverized coal and 150 kg or more of iron oxide are simultaneously blown per ton of pig iron, the theoretical combustion temperature before the tuyere is set to 1800°C or more and 2600°C or less, and the pulverized coal/oxygen weight during tuyere blowing. A blast furnace tuyere powder injection operation method that keeps the ratio within the upper and lower limits shown below. [(oxygen/pulverized coal)]_m_a_x=(8/3)×(P
C)+8×(PH) [(oxygen/pulverized coal)]_m_i_n
= (4/3) x (PC) x 1.5 (PC): Carbon in pulverized coal (weight fraction) (PH): Hydrogen in pulverized coal (weight fraction)
(2)高炉羽口より、銑鉄トン当り造滓剤30〜60k
gを吹き込む、請求項1記載の高炉羽口粉体吹き込み操
業法。
(2) From the blast furnace tuyere, 30-60k of slag forming agent per ton of pig iron
2. The blast furnace tuyere powder injection operating method according to claim 1, wherein g is blown into the blast furnace tuyere.
JP8552389A 1989-04-04 1989-04-04 Operating method for blowing powder in blast furnace tuyere Pending JPH02263907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8552389A JPH02263907A (en) 1989-04-04 1989-04-04 Operating method for blowing powder in blast furnace tuyere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8552389A JPH02263907A (en) 1989-04-04 1989-04-04 Operating method for blowing powder in blast furnace tuyere

Publications (1)

Publication Number Publication Date
JPH02263907A true JPH02263907A (en) 1990-10-26

Family

ID=13861266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8552389A Pending JPH02263907A (en) 1989-04-04 1989-04-04 Operating method for blowing powder in blast furnace tuyere

Country Status (1)

Country Link
JP (1) JPH02263907A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381094B1 (en) * 1996-12-09 2003-07-22 주식회사 포스코 Method for theoretic combustion temperature of race way during blast furnace pulverized coal injection operation
LU91445B1 (en) * 2008-05-23 2009-11-24 Wurth Paul Sa Method for feeding pulverised coal into a blast furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381094B1 (en) * 1996-12-09 2003-07-22 주식회사 포스코 Method for theoretic combustion temperature of race way during blast furnace pulverized coal injection operation
LU91445B1 (en) * 2008-05-23 2009-11-24 Wurth Paul Sa Method for feeding pulverised coal into a blast furnace
WO2009141419A1 (en) * 2008-05-23 2009-11-26 Paul Wurth S.A. Method for feeding pulverised coal into a blast furnace
US8652395B2 (en) 2008-05-23 2014-02-18 Paul Wurth S.A. Method for feeding pulverised coal into a blast furnace
AU2009248720B2 (en) * 2008-05-23 2014-07-03 Paul Wurth S.A. Method for feeding pulverised coal into a blast furnace

Similar Documents

Publication Publication Date Title
CN102230040B (en) Ironmaking method
CN104328242B (en) Method for making steel containing vanadium titanium high phosphorus hot metal
CN108676947A (en) A kind of mixing coal for blast furnace blowing Powder Particle Size determines method
CN106119449A (en) A kind of blast furnace whole world group smelting process
CN102242230A (en) Method for blowing quicklime powder
JPH02263907A (en) Operating method for blowing powder in blast furnace tuyere
JPH03243704A (en) Operating method for blowing powder from tuyere in blast furnace
CN107043836A (en) A kind of method of blast furnace ironmaking
JP2827451B2 (en) Blast furnace tuyere powder injection operation method
JPH05156329A (en) Method for operating powder injection from tuyere in blast furnace
JP4085493B2 (en) Manufacturing method of high quality sintered ore
JP2881840B2 (en) Blast furnace tuyere powder injection method
RU2119958C1 (en) Method of washing blast furnace hearth
JP2002105517A (en) Method for operating blast furnace
JP7310858B2 (en) Blast furnace operation method
JP3642027B2 (en) Blast furnace operation method
JPH0635604B2 (en) Blast furnace operation method
SU1235900A1 (en) Method of charging blast furnace
JP3750173B2 (en) Blast furnace operation method
JPH05271727A (en) Operating method for injecting pulverized coal from tuyere of blast furnace
RU2283354C1 (en) Method of production of iron ore agglomerate
RU2157411C1 (en) Method of smelting of pig iron in blast furnace
Poos et al. Operation of an experimental furnace with pellet and sinter burdens
RU2251575C1 (en) Method for creating protection lining slag in shaft of blast furnace
JP2023080449A (en) Blast furnace operation method