JPH02236210A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH02236210A
JPH02236210A JP5569589A JP5569589A JPH02236210A JP H02236210 A JPH02236210 A JP H02236210A JP 5569589 A JP5569589 A JP 5569589A JP 5569589 A JP5569589 A JP 5569589A JP H02236210 A JPH02236210 A JP H02236210A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
coke
ore
highly reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5569589A
Other languages
Japanese (ja)
Other versions
JP2731829B2 (en
Inventor
Masaaki Naito
誠章 内藤
Kazuyoshi Yamaguchi
一良 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5569589A priority Critical patent/JP2731829B2/en
Publication of JPH02236210A publication Critical patent/JPH02236210A/en
Application granted granted Critical
Publication of JP2731829B2 publication Critical patent/JP2731829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the productivity by charging large lump of high reactive coke into center part of a furnace and small lump thereof into circumferential part together with agglomerated ore and further, replacing ordinary sintered ore to the agglomerated ore from difference between the measured values and set values of distributions of temp. and gaseous hydrogen utilizing ratio in the blast furnace. CONSTITUTION:In the blast furnace where the high reactive coke is charged while separating into the large lump and the small lump, together with the agglomerated ore combining plural pieces of pellets having 3-10mm grain diameter, the large lump coke into center part in the furnace and the small lump coke into the circumferential part in the furnace, are charged. Further, the temp. distribution in the height direction or the distribution of hydrogen utilizing ratio in the radius direction in the blast furnace is measured, and when the difference between this value and the reference value comes to the preset value, the whole ordinary sintered ore is replaced to the agglomerated ore. By this method, the productivity of the blast furnace operation can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉で反応性を高めたコークスとともに粒径
3〜10■のペレットを複数個結合した塊成鉱を使用す
ることによって、生産性を向上させた高炉操業法に関す
る。
Detailed Description of the Invention (Industrial Application Field) The present invention improves production by using agglomerate, which is made by combining a plurality of pellets with a particle size of 3 to 10 square meters, together with coke that has been made highly reactive in a blast furnace. Concerning a blast furnace operating method with improved performance.

(従来の技術) 通常の高炉にあっては、炉項から鉄鉱石及びコークスを
層状に装入し、この鉄鉱石を炉内で還元した後、金属状
態に還元・溶融して溶跣を製造している。
(Prior art) In a normal blast furnace, iron ore and coke are charged in layers from the furnace stage, and the iron ore is reduced in the furnace, and then reduced and melted into a metallic state to produce smelt. are doing.

このとき、高炉を安定して操業するために、特開昭57
−174403号公報にあっては、高炉に鉄原料とコー
クスを順次装入し精錬する高炉操業法において、高炉に
コークスを装入するにあたり、常時らしくは間欠的に炉
周辺部に15〜25meを平均粒度とする小塊コークス
を、炉中心部に35〜70calMを平均粒度とする大
塊コークスを装入し、操業することを特徴とする高炉操
業法が開示されている。
At this time, in order to operate the blast furnace stably,
In the -174403 publication, in a blast furnace operating method in which iron raw material and coke are sequentially charged into a blast furnace and refined, when charging coke into the blast furnace, 15 to 25 me A blast furnace operating method is disclosed in which small coke having an average particle size is charged into the center of the furnace and large coke having an average particle size of 35 to 70 calM is charged for operation.

また、本発明者らは特願昭62−193457号におい
て、15mm以下の小塊高反応性コークスを使用して、
該高反応性コークスを普通コークス又は鉱石と混合して
高炉に装入することにより、高炉の熱保存帯温度を低下
させ、高炉の反応効率を高める高炉操業法を提案した。
In addition, the present inventors have disclosed in Japanese Patent Application No. 193457/1983 that using small pieces of highly reactive coke of 15 mm or less,
We proposed a blast furnace operating method in which the highly reactive coke is mixed with ordinary coke or ore and charged into the blast furnace, thereby lowering the temperature of the thermal reserve zone of the blast furnace and increasing the reaction efficiency of the blast furnace.

さらに本発明者らは特開昭62−40322号公報にお
いて、粒径3〜10w+mの複数個のペレットを結合し
た塊成鉱内部に空隙部を設けたことを特徴とする製鉄用
塊成鉱を提案した。
Furthermore, the present inventors have disclosed in Japanese Patent Application Laid-Open No. 62-40322 an agglomerate ore for iron-making, which is characterized in that voids are provided inside the agglomerate made by combining a plurality of pellets with a grain size of 3 to 10 w+m. Proposed.

(発明が解決しようとする課題) しかし乍ら高炉操業において、炉中心部に35〜70a
sを平均粒度とする大塊コークスを、炉周辺部に15〜
25mmを平均粒度とする小塊コークスを装入すること
により、炉中心部における炉芯の通気通液性が確保でき
、安定操業が可能と考えられるが、通常コークスを使用
する操業においては、高炉の反応効率は向上できない。
(Problem to be solved by the invention) However, in blast furnace operation, 35 to 70 a.m.
Large lump coke with an average particle size of s is placed around the furnace.
By charging small coke with an average particle size of 25 mm, ventilation and liquid permeability of the furnace core in the center of the furnace can be ensured, and stable operation is thought to be possible. The reaction efficiency cannot be improved.

一方、高炉の反応効率を向上させるためには、小塊高反
応性コークスを鉱石またはコークスと混合して使用する
のが有効であるが、通常操業においては小塊高反応性コ
ークスはmが少なく炉中心部に到達とないように装入す
るので、炉中心部の還元効率は向上せず、高炉半径方向
全体の反応効率は向上しにくい。また装入物分布制御に
より、小塊高反応性コークスを炉中心部に装入すると、
高炉半径方向全体の反応効率は向上できるが、炉中心部
における炉芯の通気通液性の点で問題となり安定操業に
支障となる。
On the other hand, in order to improve the reaction efficiency of blast furnaces, it is effective to use small-sized highly reactive coke mixed with ore or coke, but in normal operation, small-sized highly reactive coke has a low m content. Since it is charged so that it does not reach the center of the furnace, the reduction efficiency in the center of the furnace is not improved, and the reaction efficiency in the entire radial direction of the blast furnace is difficult to improve. In addition, by controlling the charge distribution, if small lump highly reactive coke is charged into the center of the furnace,
Although the overall reaction efficiency in the radial direction of the blast furnace can be improved, there is a problem in terms of ventilation and liquid permeability of the furnace core in the center of the furnace, which hinders stable operation.

また、反応効率が向上でき、低燃料比操業が可能となっ
た場合でも、低燃料比操業時によく見られるように、ガ
ス流れが不均衡になり、ガス流量の少ない領域が高炉シ
ャフト部に生成すると、600〜700℃の低温熱保存
帯が生成し易くなるが、この部位では焼結鉱還元粉化が
助長され、それに伴う高炉シャフト部の通気不良が生じ
る結果、鉱石還元の遅れ、装入物の降下不良など、高炉
安定操業に支障となるケースが多い。
In addition, even if the reaction efficiency can be improved and low fuel ratio operation becomes possible, the gas flow will be unbalanced and a region of low gas flow will be created in the blast furnace shaft, as is often seen during low fuel ratio operation. As a result, a low-temperature thermal storage zone of 600 to 700°C is likely to be generated, but this region promotes sinter reduction and pulverization, resulting in poor ventilation of the blast furnace shaft, resulting in a delay in ore reduction and charging problems. There are many cases where stable operation of the blast furnace is hindered, such as due to poor descent of materials.

高炉内高さ方向の温度分布は特開昭59−16917号
公報に開示されているように、垂直ゾンデによって測定
されており、また、特開昭62−054006号公報に
おいては、高炉炉頂部またはシャフト上部の水素ガス利
用率または水素ガス利用率/COガス利用率を測定する
ことにより、炉内温度分布を検知する方法が開示されて
いるが、これらの情報を用いてペレット使用量を調整す
るまでには至っていない。
The temperature distribution in the height direction inside the blast furnace is measured by a vertical sonde as disclosed in JP-A-59-16917, and in JP-A-62-054006, the temperature distribution at the top of the blast furnace or A method of detecting the temperature distribution in the furnace by measuring the hydrogen gas utilization rate or the hydrogen gas utilization rate/CO gas utilization rate at the upper part of the shaft is disclosed, and this information is used to adjust the pellet usage amount. It has not yet reached that point.

第4図は低還元粉化性焼結鉱、ペレットと通常焼結鉱の
還元粉化指数(以下RDIと称する)ならびに高炉内条
件下で還元した時の間接還元率を比較したものであるが
、低還元粉化性焼結鉱、べレッドのいずれも通常焼結鉱
に比べRDIは低く、高炉シャフト部の髪率を抑制し、
通気不良を解除することは可能で、低燃料比操業下にお
いて安定した操業が期待される。
Figure 4 compares the reduction pulverization index (hereinafter referred to as RDI) and the indirect reduction rate when reduced under blast furnace conditions between low-reduced pulverizable sintered ore, pellets, and regular sintered ore. , low-reduction pulverizable sintered ore, and vered all have lower RDI than normal sintered ore, suppressing the hair ratio of the blast furnace shaft,
It is possible to eliminate poor ventilation, and stable operation is expected under low fuel ratio operation.

しかしながら、低還元粉化性焼結鉱ならびにペレットの
両者とも、その還元性については通常焼結鉱に比べ劣っ
ており、高反応性コークス使用による燃料比低減可能量
を最大限有効に活用できていない。
However, the reducibility of both low-reduced pulverizable sintered ore and pellets is inferior to that of normal sintered ore, and the amount of fuel ratio reduction that can be achieved by using highly reactive coke cannot be utilized to the fullest extent. do not have.

そこで、本発明にあっては、高炉に装入されるコークス
の反応性を高め、かつ大塊と小塊に分別して装入するこ
とにより、熱保存帯温度を低下させて高炉全体の鉄鉱石
の還元反応を促進させ、炉内粉率を極力少なくして、効
率的に溶跣を製造すること、ならびに、低燃料比操業下
で発生しやすい焼結鉱還元粉化に伴うt率増加を抑制し
て、高い反応効率下、高い生産性で安定的に高炉を操業
することを目的とする。
Therefore, in the present invention, by increasing the reactivity of the coke charged into the blast furnace and charging it separately into large lumps and small lumps, the temperature of the heat reserve zone is lowered and the iron ore in the entire blast furnace is reduced. To promote the reduction reaction of sinter and reduce the powder ratio in the furnace as much as possible to efficiently produce smelt, and to reduce the increase in t rate due to reduction and powdering of sinter which tends to occur under low fuel ratio operation. The purpose is to control the blast furnace and operate the blast furnace stably with high reaction efficiency and high productivity.

(課題を解決するための手段および作用)本発明の高炉
操業法は、その目的を達成するために、コークスを大塊
と小塊に分別して装入する高炉において、高反応性コー
クスを大塊と小塊に分別し、大塊高反応性コークスを炉
中心部に、小塊高反応性コークスを炉中間部より炉周辺
部に装入するに際し、該高反応性コークスとともに、粒
径3〜10mmのペレットを複数個結合した塊成鉱(以
下、新塊成鉱と称す)を装入することを特徴とし、さら
に高反応性コークスを高炉に装入して操業を行うに際し
、高炉内高さ方向の温度分布または高炉内半径方向の水
素ガス利用率分布を測定し、測定した温度または水素ガ
ス利用率と基準値との差があらかじめ設定した値になっ
た時に、通常焼結鉱から新塊成鉱に全量置換することを
特徴とする。
(Means and effects for solving the problem) In order to achieve the object, the blast furnace operating method of the present invention is to charge highly reactive coke into large lumps in a blast furnace in which coke is charged after being separated into large lumps and small lumps. When charging the large highly reactive coke into the center of the furnace and the small highly reactive coke from the middle to the periphery of the furnace, along with the highly reactive coke, particles with a particle size of 3 to 3 It is characterized by charging agglomerate (hereinafter referred to as new agglomerate) consisting of a plurality of 10 mm pellets, and when operating by charging highly reactive coke into the blast furnace, the blast furnace inside the blast furnace is The temperature distribution in the horizontal direction or the hydrogen gas utilization rate distribution in the radial direction inside the blast furnace is measured, and when the difference between the measured temperature or hydrogen gas utilization rate and the standard value reaches a preset value, the new sintered ore is It is characterized by replacing the entire amount with agglomerate ore.

まず、高反応性コークスについて述べる。First, we will discuss highly reactive coke.

本発明で使用する高反応性コークスはJISK2151
−1977の反応性試験方法で測定したときのJIS反
応性が30%以上であることが望ましい。その値が30
%未満であると、後述する熱保存帯温度の低下がほとん
どみられない。また高反応性コークスであっても強度を
高く保つことは必要であり、通常コークスと同じ程度の
強度を保つことが望ましい。
The highly reactive coke used in the present invention is JISK2151
It is desirable that the JIS reactivity is 30% or more when measured by the reactivity test method of -1977. Its value is 30
If it is less than %, the temperature of the thermal storage zone, which will be described later, will hardly decrease. Furthermore, even with highly reactive coke, it is necessary to maintain high strength, and it is desirable to maintain the same strength as normal coke.

高強度を有する高反応性コークスの調整法としては、強
度の高い通常コークスにアルカリ水溶液を添加する方法
または一般炭を成型して乾留する方法などがある。
Methods for preparing highly reactive coke with high strength include a method of adding an alkaline aqueous solution to high-strength ordinary coke, or a method of molding steam coal and carbonizing it.

高反応性コークスは通常炉頂から装入されるコークスの
一部あるいは全量と置換し、かつ該高反応性コークスを
大塊と小塊に分別し、大塊を通常コークスと混合するか
、あるいは単独で炉中心部に鉄鉱石と交互に層状装入す
る。小塊は炉中間部から炉周辺部に鉄鉱石および/また
は通常コークスと混合して装入するか、あるいは単独で
鉄鉱石と交互に層状装入する。
Highly reactive coke replaces part or all of the coke normally charged from the top of the furnace, and the highly reactive coke is separated into large lumps and small lumps, and the large lumps are mixed with normal coke, or It is charged alone in layers in the center of the furnace, alternating with iron ore. The nodules are charged from the middle of the furnace to the periphery of the furnace in a mixture with iron ore and/or coke, or alone in layers alternating with iron ore.

本発明において、炉中心部とは高炉の炉口部半径の20
%以内の部分を示し、例えば炉口部半径が5mであれば
半径lm以内を炉中心部と称する。
In the present invention, the furnace center is defined as 20 mm of the furnace mouth radius of the blast furnace.
For example, if the radius of the furnace mouth is 5 m, the area within the radius lm is called the furnace center.

この炉中心部を除いた炉壁までの外側を炉中間部から炉
周辺部と称する。
The area outside the furnace wall excluding the furnace center is called the furnace middle area to the furnace periphery area.

炉中間部から炉周辺部に装入される鉄鉱石および/また
は通常コークスに混合使用する高反応性コークスの拉度
は15mm以下とすることが望ましい。この粒度がl5
lIII1以下であれば、コークスの単位重最に対する
表面積が増加し、反応に寄与する割合が大きくなる。
It is desirable that the degree of ablation of the iron ore charged from the middle part of the furnace to the peripheral part of the furnace and/or the highly reactive coke mixed with the normal coke is 15 mm or less. This particle size is l5
If it is less than lIII1, the surface area of the coke per unit weight increases, and the proportion contributing to the reaction increases.

この高反応性コークスは反応性が高いことから、炉内の
co,がコークス表面に接触してCOとなる界面反応が
円滑に行われる。また、その結果として炉内に生じたC
Oガスが鉄鉱石と有効に反応して低級酸化物又は金属状
態に還元する反応が促進される。
Since this highly reactive coke has high reactivity, the interfacial reaction in which the coke in the furnace comes into contact with the surface of the coke and becomes CO takes place smoothly. In addition, as a result, the C generated in the furnace
The O gas effectively reacts with the iron ore to promote the reaction of reducing it to a lower oxide or metal state.

C+GO,=2GO のコークスのガス化反応は帯の温
度を低下させることができる。たとえば、従来法による
とき、1000℃程度の熱保存帯が生成し、その値がほ
とんど変化しないのに対して、高反応性コークスを使用
することによって、熱保存帯の温度を900〜950℃
に低下させることが可能となる。その結果、還元平衡到
達点に余裕ス比を低下させることができる。
The C+GO,=2GO coke gasification reaction can reduce the temperature of the zone. For example, when using the conventional method, a heat reserve zone of about 1000°C is generated, and its value hardly changes, but by using highly reactive coke, the temperature of the heat reserve zone is increased to 900 to 950°C.
It is possible to reduce the As a result, the margin ratio can be lowered to reach the reduction equilibrium point.

また大塊高反応性コークスとして粒度35〜70mn+
の高反応性コークスを炉中心部へ装入することによって
、炉中心部における炉芯の通気通液性が確保され、安定
した操業が可能となり、かつ炉中心部に装入された鉄鉱
石の還元が促進されるため、高炉半径方向全体の還元効
率が向上できる。
Also, as large block highly reactive coke, the particle size is 35-70mm+
By charging highly reactive coke into the center of the furnace, ventilation and liquid permeability of the furnace core in the center of the furnace is ensured, stable operation is possible, and iron ore charged into the center of the furnace is Since the reduction is promoted, the reduction efficiency in the entire blast furnace radial direction can be improved.

また新塊成鉱は、第1図に示すように通常焼結鉱に比べ
、還元粉化性指数(RD I )が低く、還率の低下に
効果があり、かつ高炉内還元効率向上にも寄与し、燃料
比低減に有効な手段となる。
In addition, as shown in Figure 1, new agglomerated ore has a lower reduction pulverizability index (RD I ) than normal sintered ore, and is effective in reducing the reduction rate and improving the reduction efficiency in the blast furnace. It is an effective means to reduce the fuel ratio.

次に焼結鉱の還元粉化現象について述べる。Next, we will discuss the phenomenon of reduction and pulverization of sintered ore.

高反応性コークスを使用することにより、還元効率は向
上するが、低温での還元が促進された結果、焼結鉱の還
元粉化が助長され、粉発生量が増加し、高炉内の通気性
が悪化し、この悪化抑制策を実施しなければ、高反応性
コークスの効果を最大限に発揮できず、高い生産性を確
保できない。
The use of highly reactive coke improves the reduction efficiency, but as a result of promoting reduction at low temperatures, reduction powdering of the sintered ore is promoted, the amount of powder generated increases, and the ventilation inside the blast furnace is reduced. Unless measures are taken to suppress this deterioration, the effects of highly reactive coke cannot be maximized and high productivity cannot be ensured.

通気性が悪化すると、高炉内高さ方向の温度分布に60
0〜700℃の低温熱保存帯が発生し、また、600〜
700℃の低温熱保存帯における水性ガスシフト反応の
進行により、水素ガス利用率が低下する。
When the air permeability deteriorates, the temperature distribution in the height direction inside the blast furnace changes.
A low-temperature thermal storage zone of 0 to 700 degrees Celsius occurs, and a temperature range of 600 degrees to
As the water gas shift reaction progresses in the 700°C low-temperature thermal storage zone, the hydrogen gas utilization rate decreases.

第2図は600〜700℃の低温熱保存帯の長さと炉内
粉率増加量との関係を示したもので、低温熱保存帯が長
くなるに伴い焼結鉱還元粉化率は増加する。
Figure 2 shows the relationship between the length of the low-temperature heat storage zone of 600 to 700°C and the increase in the powder ratio in the furnace. .

また、第3図は炉頂水素ガス利用率と炉内粉率増加量と
の関係を示したもので、水素ガス利用率が低下すると焼
結鉱還元粉化率は増加する。
Moreover, FIG. 3 shows the relationship between the furnace top hydrogen gas utilization rate and the in-furnace powder rate increase, and as the hydrogen gas utilization rate decreases, the sinter reduction powder rate increases.

還元粉化率増加量の絶対値は通常焼結鉱のRD■によっ
て異なるが、例えば、第2図によると約4mの低温熱保
存帯が検出された時に、第3図によると約10%の水素
ガス利用率の低下が検出された時に、炉内粉率が通常安
定操業時の基準値に比べ5%増加したと判断される。
The absolute value of the increase in reduction powdering rate usually differs depending on the RD■ of the sintered ore, but for example, when a low-temperature thermal preservation zone of about 4 m is detected according to Figure 2, an increase of about 10% according to Figure 3 is detected. When a decrease in the hydrogen gas utilization rate is detected, it is determined that the in-furnace powder rate has increased by 5% compared to the reference value during normal stable operation.

新塊成鉱は第1図に示すように通常焼結鉱に比べ、還元
粉化性指数(RD I )が低いため、例えば低温熱保
存帯が成長する過程において、通常焼結鉱を新塊成鉱に
置換すると、炉内粉率増加を抑制でき、高炉内の通気性
悪化に伴う操業変動をなくすことが可能となる。また、
還元性も良好であるため、新塊成鉱の使用は高炉内還元
効率向上にも寄与しうる。低温熱保存帯生成過程におい
て、通常焼結鉱から新塊成鉱への全量置換を判断する基
準は、焼結鉱RDIによって異なるが、炉内粉率が通常
安定操業時の基準値に比べ5%増加した時とする。
As shown in Figure 1, new agglomerated ore has a lower reduction pulverizability index (RD I ) than normal sintered ore. By replacing it with mature ore, it is possible to suppress an increase in the powder ratio in the furnace, and it is possible to eliminate operational fluctuations due to deterioration of air permeability in the blast furnace. Also,
Since it has good reducibility, the use of new agglomerated ore can also contribute to improving the reduction efficiency in the blast furnace. In the process of forming a low-temperature thermal reserve zone, the criteria for determining the complete replacement of normal sintered ore with new agglomerated ore differs depending on the sintered ore RDI, but the in-furnace powder ratio is 5% compared to the standard value during normal stable operation. % increase.

本発明では、通常焼結鉱を全量、新塊成鉱に置換し、高
反応性コークスとともに装入する。あるいは、通常は普
通焼結鉱を装入しておき、600〜700℃の低温熱保
存帯の発生有無を検出しながら、その低温熱保存帯が発
生した時に、通常焼結鉱の装入を止め、新塊成鉱を全量
装入することによって、還元粉化量を抑制し、上述低温
熱保存帯および/または通気不良帯を解消し、安定した
高炉操業を行うことができる。
In the present invention, the entire amount of normal sintered ore is replaced with new agglomerated ore, which is charged together with highly reactive coke. Or, normally, normal sintered ore is charged, and while detecting whether or not a low-temperature thermal storage zone occurs at 600 to 700°C, when the low-temperature thermal storage zone occurs, charging of normal sintered ore is started. By stopping the blast furnace and charging the entire amount of new agglomerated ore, the amount of reduction and powdering can be suppressed, the above-mentioned low-temperature heat storage zone and/or poor ventilation zone can be eliminated, and stable blast furnace operation can be performed.

なお、600〜700℃の低温熱保存帯の測定検出は垂
直ゾンデによる温度測定や水平ゾンデによる炉頂部ある
いはシャフト上部半径方向の水素ガス利用率の測定を行
うことによって検出可能である。また、RDIはサンプ
ル(15〜20mm.soog)を還元ガス(CO30
%一N,70%,1 5 N12/win)により55
0℃で30分間還元し、その後回転試験機で900回転
( 3 0 rpmX 3 0分間)後の−3msの重
量割合をもって示される。
Note that the low-temperature heat storage zone of 600 to 700° C. can be detected by measuring the temperature with a vertical sonde or measuring the hydrogen gas utilization rate in the radial direction at the top of the furnace or the upper part of the shaft using a horizontal sonde. In addition, RDI uses a reducing gas (CO30
%-N, 70%, 1 5 N12/win) 55
It was reduced at 0° C. for 30 minutes, and was then rotated at 900 revolutions (30 rpm x 30 minutes) using a rotation tester, which was then shown as a weight percentage of -3 ms.

(実施例) 以下、実施例により本発明の特徴を具体的に説明する。(Example) Hereinafter, the features of the present invention will be specifically explained with reference to Examples.

第1表に高反応性コークスおよび粒径3〜101糟のペ
レットを複数個結合した塊成鉱を使用した高炉操業を従
来法と比較して示す。
Table 1 shows a comparison of blast furnace operation using highly reactive coke and agglomerate ore made by bonding a plurality of pellets with a particle size of 3 to 101 with a conventional method.

対象高炉は内容積3000+o3の中型高炉であり、従
来法では重量比で炉項からO/C=3.2の割合で鉄鉱
石と通常コークスを装入し、羽口前フレーム温度を22
70℃(熱風温度1100℃、添加湿分3 5 z /
 Nm’,微粉炭吹き込みなし)に維持しなからRD 
I 4 0%の通常焼結鉱を使用して溶跣を製造してい
た(比較例)。
The target blast furnace is a medium-sized blast furnace with an internal volume of 3000 + O3, and in the conventional method, iron ore and normal coke are charged at a ratio of O/C = 3.2 from the furnace term in terms of weight ratio, and the flame temperature before the tuyere is set to 22
70℃ (hot air temperature 1100℃, added moisture 35z/
Nm', without pulverized coal injection).
A sintered ore containing 0% I4 was used to produce melt (comparative example).

実施例lは通常コークスを全量高反応性コークス(JI
S反応性50%)に置換した例で、重量比で粒度5(1
+m以上が20%,粒度50Ilm未満が80%であり
、RD 1 4 0%の通常焼結鉱を全量、粒径3〜1
0mmのペレットを複数個結合した塊成鉱(新塊成鉱と
称する)に置換したときの操業例である。実施例l中に
は、通常焼結鉱を装入していた時の操業結果を付記し(
新塊成鉱使用前の操業例)、新塊成鉱を全量装入した時
の操業結果と比較して示す(新塊成鉱使用後の操業例)
In Example 1, the entire amount of normal coke was replaced with highly reactive coke (JI
In this example, the particle size was 5 (1
+m or more is 20%, particle size less than 50Ilm is 80%, and the total amount of normal sintered ore with RD 140%, particle size 3-1
This is an example of operation when replacing a plurality of 0 mm pellets with agglomerated ore (referred to as new agglomerate). In Example 1, the operational results when normal sintered ore was charged are added (
(Example of operation before using new agglomerate ore) is shown in comparison with the operation results when the entire amount of new agglomerate is charged (Example of operation after using new agglomerate ore)
.

新塊成鉱の製造は、重量比で原料組成Fetu3約94
.0%,S iO*2.0%,Ca02.5%の粉鉄鉱
石だけを造拉して4〜6■の生ペレットをつくり、最高
焼成温度l300℃となるように、粉コークスを配合し
、焼結機で焼成した後、クラッシャーにかけて、3〜6
個結合した状態の平均直径約25a+a+の塊成鉱とし
た。実施例2〜4において使用する新塊成鉱性状も同一
のものである。
The production of new agglomerated ore is based on the raw material composition Fetu3, which is approximately 94% by weight.
.. 0%, SiO*2.0%, Ca02.5% iron ore powder is milled to make raw pellets of 4 to 6 cm, and coke powder is blended so that the maximum firing temperature is 300℃. , After firing in a sintering machine, it is passed through a crusher for 3 to 6
The agglomerated ore had an average diameter of about 25a+a+ when the pieces were combined. The new agglomerate properties used in Examples 2 to 4 are also the same.

実施例2は重量比で通常コークスの50%を高反応性コ
ークス(JIS反応性50%)に置換し、そのうち重m
比で151Ilm超が70%,粒度15mm以下が30
%とした例で、RD 1 4 0%の通常焼結鉱1 6
 1 5 Kg/pig−tのうち、T.Fe換算で5
0%に相当する新塊成鉱(T.Fe66%)685Kg
/pig−tに置換したときの操業例である。実施例2
中には、通常焼結鉱使用時の操業結果を付記し(fr塊
成鉱使用前の操業例)、新塊成鉱を装入した時の操業結
果と比較して示す(新塊成鉱使用後の操業例)。
In Example 2, 50% by weight of normal coke was replaced with highly reactive coke (JIS reactivity 50%), of which the weight m
The ratio is 70% for particles exceeding 151Ilm, and 30% for particles with a particle size of 15mm or less.
In the example, RD 14 0% normal sintered ore 16
Of 15 Kg/pig-t, T. 5 in terms of Fe
685Kg of new agglomerated ore (T.Fe66%) equivalent to 0%
This is an example of operation when replacing with /pig-t. Example 2
Inside, the operational results when using normal sintered ore are appended (example of operation before using fr agglomerate ore) and compared with the operational results when new agglomerate ore is charged (new agglomerate ore). Example of operation after use).

実施例3は重量比で通常コークスの35%を高反応性コ
ークス(JIS反応性45%)に置換し、そのうち重量
比で15n+m超が50%,粒度15mm以下が50%
とした例で、垂直ゾンデにより、高炉シャフト上部の約
4mにわたり、600〜700℃の低温熱保存帯を検出
したので(新塊成鉱使用前の操業例)、通常焼結鉱を全
量新塊成鉱に置換して操業した時の操業状態を示す(新
塊成鉱使用後の操業例)。
In Example 3, 35% by weight of normal coke was replaced with highly reactive coke (JIS reactivity 45%), of which 50% by weight was more than 15n+m and 50% was less than 15mm in particle size.
In this example, a vertical sonde detected a low-temperature thermal storage zone of 600 to 700°C over approximately 4 m above the blast furnace shaft (an example of operation before using new agglomerated ore), so all of the normal sintered ore was replaced with new agglomerated ore. This shows the operational status when replaced with mature ore (an example of operation after using new agglomerated ore).

実施例4は重量比で通常コークスの50%を高反応性コ
ークス(JIS反応性50%)に置換し、そのうち重量
比で15IIIII1超が70%.粒度151mm以下
が30%とした例で、水平ゾンデにより高炉内半径方向
の水素ガス利用率(一Hto/(Ht+H,O))分布
を検出した操業において、高炉の炉壁からlmの位置の
水素ガス利用率が基準値(水素ガス利用率50%)より
もIO%低下したことを検出したので(新塊成鉱使用前
の操業例)、通常焼結鉱を全量新塊成鉱に置換して操業
した時の操業状態を示す(新塊成鉱使用後の操業例)。
In Example 4, 50% by weight of normal coke was replaced with highly reactive coke (JIS reactivity 50%), of which 70% by weight was more than 15III1. In an example where 30% of grain size is 151 mm or less, in an operation in which the hydrogen gas utilization rate (-Hto/(Ht+H,O)) distribution in the radial direction inside the blast furnace was detected using a horizontal sonde, hydrogen at a position lm from the blast furnace wall It was detected that the gas utilization rate was lower than the standard value (hydrogen gas utilization rate of 50%) by IO% (an example of operation before using new agglomerate ore), so the normal sintered ore was completely replaced with new agglomerate ore. This shows the operating status when the plant was operated (example of operation after using new agglomerated ore).

装入方法は、実施例1の場合、高反応性コークスの大塊
を中心部に、小塊を炉中間部から周辺部に装入し、焼結
鉱と交互装入した。実施例2.3.4の場合、大塊高反
応性コークスは通常コークスと混合して炉中心部に装入
し、小塊コークスは通常コークスおよび新塊成鉱と17
2ずつ混合して、炉中間部から周辺部に装入した。
In the case of Example 1, the charging method was such that a large lump of highly reactive coke was charged in the center, small lumps were charged from the middle part of the furnace to the peripheral part, and the sintered ore was alternately charged. In the case of Example 2.3.4, the large highly reactive coke is mixed with normal coke and charged into the center of the furnace, and the small coke is mixed with normal coke and new agglomerated ore.
Two parts were mixed and charged from the middle part to the peripheral part of the furnace.

第1表の実施例では、比較例に比べてガス利用率の向上
、コークス比の低下が達成され、燃料比表低下すること
ができた。なお、実施例1〜4の新塊成鉱使用前の操業
結果は新塊成鉱使用後の操業結果に比較して、コークス
比の低下度合が小さく、効率的な高炉操業とはなってい
ない。
In the examples shown in Table 1, the gas utilization rate was improved and the coke ratio was lowered, and the fuel ratio was lowered, compared to the comparative example. In addition, the operation results before using new agglomerate ore in Examples 1 to 4 show a smaller degree of decrease in coke ratio than the operation results after using new agglomerate ore, and the blast furnace operation is not efficient. .

(発明の効果) 以上に説明したように、本発明においては、高反応性コ
ークスを大塊と小塊に分別し、大塊高反応性コークスを
炉中心部に、小塊高反応性コークスを炉中間部より炉周
辺部に装入することにより、炉中心部における炉芯の通
気通液性を確保し、また熱保存帯の温度を低下させるこ
とができるため、シャフト効率を上げることも可能とな
り、高炉全体のガス利用効率を高めて少ないコークス比
で高炉操業を行うことができる。そして低燃料比時に生
成しやすい600〜700℃近傍の低温熱保存帯生成時
においても、粒径3〜10nuaのペレットを複数個結
合した塊成鉱を装入することにより、粉率増加による通
気不良を抑制でき、長期間安定した操業が可能となる。
(Effect of the invention) As explained above, in the present invention, highly reactive coke is separated into large lumps and small lumps, and the large highly reactive coke is placed in the center of the furnace, and the small highly reactive coke is placed in the center of the furnace. By charging from the middle of the furnace to the periphery of the furnace, it is possible to ensure ventilation and liquid permeability of the furnace core in the center of the furnace, and also to lower the temperature of the heat storage zone, thereby increasing shaft efficiency. This increases the overall gas utilization efficiency of the blast furnace and enables blast furnace operation with a small coke ratio. Even when a low-temperature thermal storage zone near 600 to 700 degrees Celsius is generated, which is likely to occur at low fuel ratios, by charging agglomerate made by bonding multiple pellets with a particle size of 3 to 10 nua, ventilation can be achieved by increasing the powder ratio. Defects can be suppressed and stable operation can be performed for a long period of time.

このようにして、本発明によるとき、高炉操業の生産性
を向上させることができる。
In this way, according to the present invention, the productivity of blast furnace operation can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は粒径3〜10mmのペレットを複数個結合した
塊成鉱と通常焼結鉱のRDIならびに高炉内条件下で還
元した時の間接還元率との比較を示す図、第2図は60
0〜700℃の低温熱保存帯の長さと炉内粉率増加量と
の関係を示す図、第3図は炉項水素ガス利用率と炉内粉
率増加量との関係を示す図、第4図は低還元粉化性焼結
鉱、ペレットと通常焼結鉱のRDIならびに高炉内条件
下で還元した時の間接還元率との比較を示す図である。 第i図 第2図 出 願 人 新日本製鐵株式会社 釦建髄4G−ナL}女(ト))
Figure 1 shows a comparison of the RDI of agglomerated ore made of a plurality of pellets with a grain size of 3 to 10 mm combined with normal sintered ore, and the indirect reduction rate when reduced under blast furnace conditions. 60
Figure 3 is a diagram showing the relationship between the length of the low-temperature heat storage zone of 0 to 700°C and the increase in the powder ratio in the furnace. Figure 4 is a diagram showing a comparison of the RDI of low-reduced pulverizable sintered ore, pellets, and normal sintered ore, and the indirect reduction rate when reduced under blast furnace conditions. Fig. i Fig. 2 Applicant Nippon Steel Corporation Kishitetsu 4G-naL}Female (g))

Claims (1)

【特許請求の範囲】 1)コークスを大塊と小塊に分別して装入する高炉にお
いて、高反応性コークスを大塊と小塊に分別し、大塊高
反応性コークスを炉中心部に、小塊高反応性コークスを
炉中間部より炉周辺部に装入するに際し、前記高反応性
コークスとともに粒径3〜10mmのペレットを複数個
結合した塊成鉱を装入することを特徴とする高炉操業法
。 2)高反応性コークスを高炉に装入して操業を行うに際
し、高炉内高さ方向の温度分布または高炉内半径方向の
水素ガス利用率分布を測定し、測定した温度または水素
ガス利用率と基準値との差があらかじめ設定した値にな
った時に、通常焼結鉱から粒径3〜10mmのペレット
を複数個結合した塊成鉱に全量置換することを特徴とす
る高炉操業法。
[Claims] 1) In a blast furnace in which coke is charged after being separated into large lumps and small lumps, the highly reactive coke is separated into large lumps and small lumps, and the large highly reactive coke is placed in the center of the furnace. When charging the small highly reactive coke from the middle part of the furnace to the peripheral part of the furnace, it is characterized in that agglomerate ore, which is a combination of a plurality of pellets with a grain size of 3 to 10 mm, is charged together with the highly reactive coke. Blast furnace operation method. 2) When charging highly reactive coke into a blast furnace and operating it, measure the temperature distribution in the height direction inside the blast furnace or the hydrogen gas utilization rate distribution in the radial direction inside the blast furnace, and compare it with the measured temperature or hydrogen gas utilization rate. A blast furnace operating method characterized in that when the difference from a reference value reaches a preset value, the entire amount of normal sintered ore is replaced with agglomerated ore made by combining a plurality of pellets with a grain size of 3 to 10 mm.
JP5569589A 1989-03-08 1989-03-08 Blast furnace operation method Expired - Fee Related JP2731829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5569589A JP2731829B2 (en) 1989-03-08 1989-03-08 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5569589A JP2731829B2 (en) 1989-03-08 1989-03-08 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH02236210A true JPH02236210A (en) 1990-09-19
JP2731829B2 JP2731829B2 (en) 1998-03-25

Family

ID=13006029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5569589A Expired - Fee Related JP2731829B2 (en) 1989-03-08 1989-03-08 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2731829B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249507A (en) * 2005-03-10 2006-09-21 Nippon Steel Corp Method for evaluating reducibility of sintered ore
JP2015078403A (en) * 2013-10-15 2015-04-23 新日鐵住金株式会社 Direct reduction method
JP6558519B1 (en) * 2018-03-30 2019-08-14 Jfeスチール株式会社 Raw material charging method for blast furnace
WO2019187997A1 (en) * 2018-03-30 2019-10-03 Jfeスチール株式会社 Method for loading raw materials into blast furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249507A (en) * 2005-03-10 2006-09-21 Nippon Steel Corp Method for evaluating reducibility of sintered ore
JP4634827B2 (en) * 2005-03-10 2011-02-16 新日本製鐵株式会社 Method for evaluating reducibility of sintered ore
JP2015078403A (en) * 2013-10-15 2015-04-23 新日鐵住金株式会社 Direct reduction method
JP6558519B1 (en) * 2018-03-30 2019-08-14 Jfeスチール株式会社 Raw material charging method for blast furnace
WO2019187997A1 (en) * 2018-03-30 2019-10-03 Jfeスチール株式会社 Method for loading raw materials into blast furnace
RU2742997C1 (en) * 2018-03-30 2021-02-12 ДжФЕ СТИЛ КОРПОРЕЙШН Raw materials into a blast furnace loading method
US11680748B2 (en) 2018-03-30 2023-06-20 Jfe Steel Corporation Method for charging raw materials into blast furnace

Also Published As

Publication number Publication date
JP2731829B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
CN103468287B (en) Preparation method of high strength-hyper reactivity iron containing coke
AU2008298193A1 (en) Process for producing reduced iron pellets, and process for producing pig iron
RU2613007C2 (en) Method of blast furnace operation and method of molten cast iron production
JP2011058091A (en) Blast-furnace operation method using ferrocoke
JP4910640B2 (en) Blast furnace operation method
JP6119700B2 (en) Blast furnace operation method
US20120240725A1 (en) Carbon composite agglomerate for producing reduced iron and method for producing reduced iron using the same
JP4998692B2 (en) Blast furnace operation method when using ferro-coke
JPH02236210A (en) Method for operating blast furnace
JP5768563B2 (en) Blast furnace operation method
JPH0776366B2 (en) Blast furnace operation method
JP4529838B2 (en) Sinter ore and blast furnace operation method
JP4792753B2 (en) Blast furnace operation method
JP2769835B2 (en) Blast furnace operation method
JPH02200710A (en) Method for operating blast furnace
JP2020164886A (en) Operating method of blast furnace
JP3829516B2 (en) Blast furnace operation method
JP2720058B2 (en) Blast furnace operation method
JP2733566B2 (en) Blast furnace operation method
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
JP6269549B2 (en) Blast furnace operation method
JP3068967B2 (en) Blast furnace operation method
JP3642027B2 (en) Blast furnace operation method
JP6070131B2 (en) Method for producing reduced iron
JPH02236209A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees