JP2731829B2 - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JP2731829B2
JP2731829B2 JP5569589A JP5569589A JP2731829B2 JP 2731829 B2 JP2731829 B2 JP 2731829B2 JP 5569589 A JP5569589 A JP 5569589A JP 5569589 A JP5569589 A JP 5569589A JP 2731829 B2 JP2731829 B2 JP 2731829B2
Authority
JP
Japan
Prior art keywords
coke
furnace
blast furnace
charged
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5569589A
Other languages
Japanese (ja)
Other versions
JPH02236210A (en
Inventor
誠章 内藤
一良 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5569589A priority Critical patent/JP2731829B2/en
Publication of JPH02236210A publication Critical patent/JPH02236210A/en
Application granted granted Critical
Publication of JP2731829B2 publication Critical patent/JP2731829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉で反応性を高めたコークスとともに粒
径3〜10mmのペレットを複数個結合した塊成鉱を使用す
ることによって、生産性を向上させた高炉操業法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention provides a method for improving productivity by using a coke that has increased reactivity in a blast furnace and an agglomerate in which a plurality of pellets having a particle size of 3 to 10 mm are combined. For blast furnace operation with improved quality.

(従来の技術) 通常の高炉にあっては、炉項から鉄鉱石及びコークス
を層状に装入し、この鉄鉱石を炉内で還元した後、金属
状態に還元・溶融して溶銑を製造している。
(Prior art) In a normal blast furnace, iron ore and coke are charged in layers from a furnace section, and the iron ore is reduced in a furnace, then reduced and melted to a metal state to produce hot metal. ing.

このとき、高炉を安定して操業するために、特開昭57
−174403号公報にあっては、高炉に鉄原料とコークスを
順次装入し精錬する高炉操業法において、高炉にコーク
スを装入するにあたり、常時もしくは間欠的に炉周辺部
に15〜25mmを平均粒度とする小塊コークスを、炉中心部
に35〜70mmを平均粒度とする大塊コークスを装入し、操
業することを特徴とする高炉操業法が開示されている。
At this time, in order to operate the blast furnace stably,
According to Japanese Patent No. 174403, in the blast furnace operating method in which iron raw material and coke are sequentially charged and refined in the blast furnace, when charging the coke into the blast furnace, an average of 15 to 25 mm around the furnace is constantly or intermittently charged. A method of operating a blast furnace characterized by charging small coke having a particle size of large coke having an average particle size of 35 to 70 mm in the center of the furnace and operating the same is disclosed.

また、本発明者らは特願昭62−193457号において、15
mm以下の小塊高反応性コークスを使用して、該高反応性
コークスを普通コークス又は鉱石と混合して高炉に装入
することにより、高炉の熱保存帯温度を低下させ、高炉
の反応効率を高める高炉操業法を提案した。
Further, the present inventors have disclosed in Japanese Patent Application No. 62-193457
mm or less, the high-reactivity coke is mixed with ordinary coke or ore and charged into the blast furnace, thereby lowering the heat storage zone temperature of the blast furnace and increasing the reaction efficiency of the blast furnace. A blast furnace operation method to increase the blast furnace was proposed.

さらに本発明者らは特開昭62−40322号公報におい
て、粒径3〜10mmの複数個のペレットを結合した塊成鉱
内部に空隙部を設けたことを特徴とする製鉄用塊成鉱を
提案した。
Further, the present inventors have disclosed in Japanese Patent Application Laid-Open No. 62-40322 an iron ore agglomerate characterized in that a void portion is provided inside an agglomerate in which a plurality of pellets having a particle size of 3 to 10 mm are combined. Proposed.

(発明が解決しようとする課題) しかし乍ら高炉操業において、炉中心部に35〜70mmを
平均粒度とする大塊コークスを、炉周辺部に15〜25mmを
平均粒度とする小塊コークスを装入することにより、炉
中心部における炉芯の通気通液性が確保でき、安定操業
が可能と考えられるが、通常コークスを使用する操業に
おいては、高炉の反応効率は向上できない。
(Problems to be Solved by the Invention) However, in the blast furnace operation, large coke having an average particle size of 35 to 70 mm is provided in the center of the furnace, and small coke having an average particle size of 15 to 25 mm is provided in the periphery of the furnace. It is considered that the introduction of the core can ensure the liquid permeability of the furnace core in the central part of the furnace, thereby enabling stable operation. However, in the operation using ordinary coke, the reaction efficiency of the blast furnace cannot be improved.

一方、高炉の反応効率を向上させるためには、小塊高
反応性コークスを鉱石またはコークスと混合して使用す
るのが有効であるが、通常操業においては小塊高反応性
コークスは量が少なく炉中心部に到達とないように装入
するので、炉中心部の還元効率は向上せず、高炉半径方
向全体の反応効率は向上しにくい。また装入物分布制御
により、小塊高反応性コークスを炉中心部に装入する
と、高炉半径方向全体の反応効率は向上できるが、炉中
心部における炉芯の通気通液性の点で問題となり安定操
業に支障となる。
On the other hand, in order to improve the reaction efficiency of the blast furnace, it is effective to use a small lump highly reactive coke mixed with ore or coke. Since the reactor is charged so as not to reach the center of the furnace, the reduction efficiency of the center of the furnace is not improved, and the reaction efficiency in the entire radial direction of the blast furnace is hardly improved. In addition, if the small reactive mass coke is charged into the center of the furnace by controlling the charge distribution, the reaction efficiency in the entire blast furnace radial direction can be improved, but there is a problem with the permeability of the core in the center of the furnace. It hinders stable operation.

また、反応効率が向上でき、低燃料比操業が可能とな
った場合でも、低燃料比操業時によく見られるように、
ガス流れが不均衡になり、ガス流量の少ない領域が高炉
シヤフト部に生成すると、600〜700℃の低温熱保存帯が
生成し易くなるが、この部位では焼結鉱還元粉化が助長
され、それに伴う高炉シヤフト部の通気不良が生じる結
果、鉱石還元の遅れ、装入物の降下不良など、高炉安定
操業に支障となるケースが多い。
Also, even when the reaction efficiency can be improved and low fuel ratio operation is possible, as is often seen during low fuel ratio operation,
When the gas flow becomes unbalanced and a region with a small gas flow is generated in the blast furnace shaft, a low-temperature heat preservation zone of 600 to 700 ° C is easily generated. As a result, poor ventilation of the blast furnace shaft occurs, resulting in delays in ore reduction and poor descent of the charged materials, which often hinders stable operation of the blast furnace.

高炉内高さ方向の温度分布は特開昭59−16917号公報
に開示されているように、垂直ゾンデによって測定され
ており、また、特開昭62−054006号公報においては、高
炉炉頂部またはシヤフト上部の水素ガス利用率または水
素ガス利用率/COガス利用率を測定することにより、炉
内温度分布を検知する方法が開示されているが、これら
の情報を用いてペレット使用量を調整するまでには至っ
ていない。
The temperature distribution in the height direction in the blast furnace is measured by a vertical probe, as disclosed in JP-A-59-17917, and in JP-A-62-054006, the temperature distribution in the blast furnace top or A method of detecting the temperature distribution in the furnace by measuring the hydrogen gas utilization rate or the hydrogen gas utilization rate / CO gas utilization rate at the upper portion of the shaft is disclosed, but the amount of pellet used is adjusted using the information. Not yet.

第4図は低還元粉化性焼結鉱、ペレットと通常焼結鉱
の還元粉化指数(以下RDIと称する)ならびに高炉内条
件下で還元した時の間接還元率を比較したものである
が、低還元粉化性焼結鉱、ペレットのいずれも通常焼結
鉱に比べRDIは低く、高炉シヤフト部の粉率を抑制し、
通気不良を解除することは可能で、低燃料比操業下にお
いて安定した操業が期待される。
Fig. 4 compares the reduced powdering index (hereinafter referred to as RDI) of low-reduced powdered sinter, pellets and ordinary sinter, and the indirect reduction rate when reduced under blast furnace conditions. , Low-reduced powdered sinter and pellets both have lower RDI than ordinary sinter and suppress the powder rate of the blast furnace shaft,
It is possible to eliminate poor ventilation, and stable operation is expected under low fuel ratio operation.

しかしながら、低還元粉化性焼結鉱ならびにペレット
の両者とも、その還元性については通常焼結鉱に比べ劣
っており、高反応性コークス使用による燃料比低減可能
量を最大限有効に活用できていない。
However, both low-reduced powdered sinters and pellets are inferior to ordinary sinters in terms of their reducibility, making it possible to make the most effective use of the fuel ratio reduction possible by using highly reactive coke. Absent.

そこで、本発明にあっては、高炉に装入されるコーク
スの反応性を高め、かつ大塊と小塊に分別して装入する
ことにより、熱保存帯温度を低下させて高炉全体の鉄鉱
石の還元反応を促進させ、炉内粉率を極力少なくして、
効率的に溶銑を製造すること、ならびに、低燃料比操業
下で発生しやすい焼結鉱還元粉化に伴う粉率増加を抑制
して、高い反応効率下、高い生産性で安定的に高炉を操
業することを目的とする。
Therefore, in the present invention, by increasing the reactivity of coke charged into the blast furnace, and separating and charging large coke and small coke, the heat storage zone temperature is reduced, and iron ore of the entire blast furnace is reduced. To reduce the in-furnace powder rate as much as possible,
Efficiently producing hot metal and suppressing the increase in the powder rate due to sinter reduction pulverization, which is likely to occur at low fuel ratio operations, stably establish a blast furnace with high reaction efficiency and high productivity. It is intended to operate.

(課題を解決するための手段および作用) 本発明の高炉操業法は、その目的を達成するために、
コークスを大塊と小塊に分別して装入する高炉におい
て、高反応性コークスを大塊と小塊に分別し、大塊高反
応性コークスを炉中心部に、小塊高反応性コークスを炉
中間部より炉周辺部に装入するに際し、該高反応性コー
クスとともに、粒径3〜10mmのペレットを複数個結合し
た塊成鉱(以下、新塊成鉱と称す)を装入することを特
徴とし、さらに高反応性コークスを高炉に装入して操業
を行うに際し、高炉内高さ方向の温度分布または高炉内
半径方向の水素ガス利用率分布を測定し、測定した温度
または水素ガス利用率と基準値との差があらかじめ設定
した値になった時に、通常焼結鉱から新塊成鉱に全量置
換することを特徴とする。
(Means and Actions for Solving the Problems) The blast furnace operation method of the present invention has the following features.
In a blast furnace in which coke is separated into large and small lumps, high-reactivity coke is separated into large and small lump, large lump high-reactivity coke is placed in the center of the furnace, and small lump highly reactive coke is placed in the furnace. At the time of charging from the middle part to the furnace peripheral part, it is necessary to charge agglomerate ore (hereinafter, referred to as new agglomerate ore) in which a plurality of pellets having a particle size of 3 to 10 mm are combined together with the highly reactive coke. In addition, when operating with high-reactivity coke charged into the blast furnace, the temperature distribution in the height direction inside the blast furnace or the hydrogen gas utilization rate distribution in the radial direction inside the blast furnace was measured, and the measured temperature or hydrogen gas utilization was measured. When the difference between the rate and the reference value reaches a preset value, the entire amount of the normal ore is replaced with the new agglomerate.

まず、高反応性コークスについて述べる。 First, highly reactive coke will be described.

本発明で使用する高反応性コークスはJISK2151−1977
の反応性試験方法で測定したときのJIS反応性が30%以
上であることが望ましい。その値が30%未満であると、
後述する熱保存帯温度の低下がほとんどみられない。ま
た高反応性コークスであっても強度を高く保つことは必
要であり、通常コークスと同じ程度の強度を保つことが
望ましい。
The highly reactive coke used in the present invention is JISK2151-1977.
It is desirable that the JIS reactivity measured by the reactivity test method described above is 30% or more. If that value is less than 30%,
There is almost no decrease in the heat storage zone temperature described below. Further, it is necessary to maintain high strength even for highly reactive coke, and it is desirable to maintain the same strength as normal coke.

高強度を有する高反応性コークスの調整法としては、
強度の高い通常コークスにアルカリ水溶液を添加する方
法または一般炭を成型して乾留する方法などがある。
As a method for preparing highly reactive coke having high strength,
There is a method of adding an alkaline aqueous solution to high-strength ordinary coke, or a method of forming and drying a common coal.

高反応性コークスは通常炉頂から装入されるコークス
の一部あるいは全量と置換し、かつ該高反応性コークス
を大塊と小塊に分別し、大塊を通常コークスと混合する
か、あるいは単独で炉中心部に鉄鉱石と交互に層状装入
する。小塊は炉中間部から炉周辺部に鉄鉱石および/ま
たは通常コークスと混合して装入するか、あるいは単独
で鉄鉱石と交互に層状装入する。
The high-reactivity coke is replaced with a part or all of the coke usually charged from the furnace top, and the high-reactivity coke is separated into large and small lumps, and the large lumps are mixed with normal coke, or The iron ore is charged separately and layered into the center of the furnace alone. The lumps are charged from the middle of the furnace to the periphery of the furnace in a mixture with iron ore and / or ordinary coke, or are separately charged separately and layered with iron ore.

本発明において、炉中心部とは高炉の炉口部半径の20
%以内の部分を示し、例えば炉口部半径が5mであれば半
径1m以内を炉中心部と称する。この炉中心部を除いた炉
壁までの外側を炉中間部から炉周辺部と称する。
In the present invention, the furnace center is defined as the furnace opening radius of the blast furnace at 20 mm.
%, For example, if the furnace opening radius is 5 m, the area within 1 m radius is called the furnace center. The outside of the furnace wall excluding the furnace center is referred to as the furnace middle to the furnace periphery.

炉中間部から炉周辺部に装入される鉄鉱石および/ま
たは通常コークスに混合使用する高反応性コークスの粒
度は15mm以下とすることが望ましい。この粒度が15mm以
下であれば、コークスの単位重量に対する表面積が増加
し、反応に寄与する割合が大きくなる。
It is desirable that the particle size of iron ore and / or highly reactive coke mixed and used with ordinary coke to be charged from the middle part of the furnace to the periphery of the furnace is 15 mm or less. If the particle size is 15 mm or less, the surface area per unit weight of coke increases, and the proportion contributing to the reaction increases.

この高反応性コークスは反応性が高いことから、炉内
のCO2がコークス表面に接触してCOとなる界面反応が円
滑に行われる。また、その結果として炉内に生じたCOガ
スが鉄鉱石と有効に反応して低級酸化物又は金属状態に
還元する反応が促進される。
Since this highly reactive coke has high reactivity, the interfacial reaction in which CO 2 in the furnace comes into contact with CO on the coke surface is smoothly performed. Further, as a result, the reaction that the CO gas generated in the furnace effectively reacts with the iron ore to reduce to a lower oxide or a metal state is promoted.

C+CO2=2COのコークスのガス化反応は吸熱反応であ
り、高炉シヤフト部における熱保存帯の温度を低下させ
ることができる。たとえば、従来法によるとき、1000℃
程度の熱保存帯が生成し、その値がほとんど変化しない
のに対して、高反応性コークスを使用することによっ
て、熱保存帯の温度を900〜950℃に低下させることが可
能となる。その結果、還元平衡到達点に余裕ができるた
め還元がより進行することになり、シヤフト効率、間接
還元率、COガス利用率が向上し、コークス比を低下させ
ることができる。
The gasification reaction of coke of C + CO 2 = 2CO is an endothermic reaction, and can lower the temperature of the heat storage zone in the blast furnace shaft. For example, 1000 ℃
The use of highly reactive coke makes it possible to reduce the temperature of the heat storage zone to 900-950 ° C., while the degree of heat storage zone is produced and its value hardly changes. As a result, since the reduction equilibrium reaching point has a margin, the reduction proceeds more, and the shaft efficiency, the indirect reduction rate, and the CO gas utilization rate are improved, and the coke ratio can be reduced.

また大塊高反応性コークスとして粒度35〜70mmの高反
応性コークスを炉中心部へ装入することによつて、炉中
心部における炉芯の通気通液性が確保され、安定した操
業が可能となり、かつ炉中心部に装入された鉄鉱石の還
元が促進されるため、高炉半径方向全体の還元効率が向
上できる。
In addition, by introducing high-reactivity coke with a particle size of 35 to 70 mm as large lump high-reactivity coke into the center of the furnace, the permeability of the furnace core at the center of the furnace is ensured, and stable operation is possible. In addition, since the reduction of the iron ore charged in the center of the furnace is promoted, the reduction efficiency in the entire blast furnace radial direction can be improved.

また新塊成鉱は、第1図に示すように通常焼結鉱に比
べ、還元粉化性指数(RDI)が低く、還元性も良好であ
るため、新塊成鉱の使用は炉内粉率の低下に効果があ
り、かつ高炉内還元効率向上にも寄与し、燃料比低減に
有効な手段となる。
In addition, as shown in Fig. 1, the new agglomerate ore has a lower reducible pulverizability index (RDI) and better reducibility than ordinary sintered ore, so the use of the new agglomerate This is effective in lowering the fuel efficiency, and also contributes to the improvement of the reduction efficiency in the blast furnace, which is an effective means for reducing the fuel ratio.

次に焼結鉱の還元粉化現象について述べる。 Next, the reduction powdering phenomenon of the sintered ore will be described.

高反応性コークスを使用することにより、還元効率は
向上するが、低温での還元が促進された結果、焼結鉱の
還元粉化が助長され、粉発生量が増加し、高炉内の通気
性が悪化し、この悪化抑制策を実施しなければ、高反応
性コークスの効果を最大限に発揮できず、高い生産性を
確保できない。通気性が悪化すると、高炉内高さ方向の
温度分布に600〜700℃の低温熱保存帯が発生し、また、
600〜700℃の低温熱保存帯における水性ガスシフト反応
の進行により、水素ガス利用率が低下する。
The use of highly reactive coke improves the reduction efficiency, but promotes the reduction at low temperatures, which promotes the reduction and pulverization of the sinter, increases the amount of powder generated, and increases the air permeability in the blast furnace. If the measures for suppressing the deterioration are not implemented, the effect of high-reactivity coke cannot be maximized, and high productivity cannot be secured. When air permeability deteriorates, a low-temperature heat storage zone of 600 to 700 ° C is generated in the temperature distribution in the height direction inside the blast furnace,
Due to the progress of the water gas shift reaction in the low-temperature heat storage zone at 600 to 700 ° C., the hydrogen gas utilization rate decreases.

第2図は600〜700℃の低温熱保存帯の長さと炉内粉率
増加量との関係を示したもので、低温熱保存帯が長くな
るのに伴い焼結鉱還元粉化率は増加する。
Fig. 2 shows the relationship between the length of the low-temperature heat storage zone at 600-700 ° C and the increase in the in-furnace powder rate. I do.

また、第3図は炉頂水素ガス利用率と炉内粉率増加量
との関係を示したもので、水素ガス利用率が低下すると
焼結鉱還元粉化率は増加する。
FIG. 3 shows the relationship between the utilization rate of the hydrogen gas at the furnace top and the increase in the in-furnace powder rate. When the utilization rate of the hydrogen gas decreases, the reduction and sintering rate of the sinter increases.

還元粉化率増加量の絶対値は通常焼結鉱のRDIによっ
て異なるが、例えば、第2図によると約4mの低温熱保存
帯が検出された時に、第3図によると約10%の水素ガス
の利用率の低下が検出された時に、炉内粉率が通常安定
操業時の基準値に比べ5%増加したと判断される。
The absolute value of the amount of increase in the reduction ratio is usually different depending on the RDI of the sintered ore. For example, when a low-temperature heat storage zone of about 4 m is detected in FIG. 2, about 10% of hydrogen is detected in FIG. When a decrease in the gas utilization rate is detected, it is determined that the in-furnace powder rate has increased by 5% compared to the reference value during normal stable operation.

新塊成鉱は第1図に示すように通常焼結鉱に比べ、還
元粉化性指数(RDI)が低いため、例えば低温熱保存帯
が成長する過程において、通常焼結鉱を新塊成鉱に置換
すると、炉内粉率増加を抑制でき、高炉内の通気性悪化
に伴う操業変動をなくすことが可能となる。また、還元
性も良好であるため、新塊成鉱の使用は高炉内還元効率
向上にも寄与しうる。低温熱保存帯生成過程において、
通常焼結鉱から新塊成鉱への全量置換を判断する基準
は、焼結鉱RDIによって異なるが、炉内粉率が通常安定
操業時の基準値に比べ5%増加した時とする。
As shown in Fig. 1, the new agglomerate has a lower reduced degradability index (RDI) than ordinary sinter. By replacing with ore, it is possible to suppress an increase in the in-furnace powder rate, and it is possible to eliminate operation fluctuations due to deterioration of air permeability in the blast furnace. Also, since the reducibility is good, the use of the new agglomerate can contribute to the improvement of the reduction efficiency in the blast furnace. In the process of generating the low-temperature heat storage zone,
The criterion for determining the total replacement of sinter ore with new agglomerate depends on the RDI of sinter ore, but it is assumed that the in-furnace powder rate has increased by 5% compared to the standard value during normal stable operation.

本発明では、通常焼結鉱を全量、新塊成鉱に置換し、
高反応性コークスとともに装入する。あるいは、通常は
普通焼結鉱を装入しておき、600〜700℃の低温熱保存帯
の発生有無を検出しながら、その低温熱保存帯が発生し
た時に、通常焼結鉱の装入を止め、新塊成鉱を全量装入
することによって、還元粉化量を抑制し、上述低温熱保
存帯および/または通気不良帯を解消し、安定した高炉
操業を行うことができる。
In the present invention, usually all the sinter is replaced with new agglomerate,
Charge with highly reactive coke. Or, usually, ordinary sinter is charged, and while detecting the presence or absence of a low-temperature heat storage zone of 600 to 700 ° C, when the low-temperature heat storage zone is generated, charging of the normal sinter is usually performed. By stopping and charging the entire amount of new agglomerate ore, the amount of reduced pulverization can be suppressed, the low-temperature heat preservation zone and / or the poor ventilation zone can be eliminated, and stable blast furnace operation can be performed.

なお、600〜700℃の低温熱保存帯の測定検出は垂直ゾ
ンデによる温度測定や水平ゾンデによる炉頂部あるいは
シャフト上部半径方向の水素ガス利用率の測定を行うこ
とによって検出可能である。また、RDIはサンプル(15
〜20mm,500g)を還元ガス(CO30%−N270%,15Nl/min)
により550℃で30分間還元し、その後回転試験機で900回
転(30rpm×30分間)後の−3mmの重量割合をもって示さ
れる。
The measurement and detection of the low-temperature heat storage zone at 600 to 700 ° C. can be detected by measuring the temperature using a vertical sonde or measuring the hydrogen gas utilization rate in the radial direction of the furnace top or shaft top using a horizontal sonde. The RDI is sample (15
To 20 mm, 500 g) the reducing gas (CO30% -N 2 70%, 15Nl / min)
And then reduced at 550 ° C. for 30 minutes, and then indicated by a weight ratio of −3 mm after 900 rotations (30 rpm × 30 minutes) on a rotation tester.

(実施例) 以下、実施例により本発明の特徴を具体的に説明す
る。
(Examples) Hereinafter, features of the present invention will be specifically described with reference to examples.

第1表に高反応性コークスおよび粒径3〜10mmのペレ
ットを複数個結合した塊成鉱を使用した高炉操業を従来
法と比較して示す。
Table 1 shows the blast furnace operation using the agglomerate ore in which a plurality of highly reactive coke and pellets having a particle size of 3 to 10 mm are combined as compared with the conventional method.

対象高炉は内容積3000m3の中型高炉であり、従来法で
は重量比で炉頂からO/C=3.2の割合で鉄鉱石と通常コー
クスを装入し、羽口前フレーム温度を2270℃(熱風温度
1100℃、添加湿分35g/Nm3、微粉炭吹き込みなし)に維
持しながらRDI40%の通常焼結鉱を使用して溶銑を製造
していた(比較例)。
Subject blast furnace is a medium-sized blast furnace having an inner volume of 3000 m 3, the conventional method was charged with iron ore and ordinary coke in a ratio of O / C = 3.2 from the furnace top at a weight ratio, 2270 ° C. wings preoral flame temperature (hot air temperature
Hot metal was manufactured using ordinary sintered ore having an RDI of 40% while maintaining the temperature at 1100 ° C., the added humidity of 35 g / Nm 3 , and pulverized coal was not injected (Comparative Example).

実施例1は通常コークスを全量高反応成コークス(JI
S反応性50%)に置換した例で、重量比で粒度50mm以上
が20%,粒度50mm未満が80%であり、RDI40%の通常焼
結鉱を全量、粒径3〜10mmのペレットを複数個結合した
塊成鉱(新塊成鉱と称する)に置換したときの操業例で
ある。実施例1中には、通常焼結鉱を装入していた時の
操業結果を付記し(新塊成鉱使用前の操業例)、新塊成
鉱を全量装入した時の操業結果と比較して示す(新塊成
鉱使用後の操業例)。
In Example 1, the total amount of normal coke was high reaction coke (JI
(S reactivity 50%), where the weight ratio is 20% for particle size 50mm or more, 80% for particle size less than 50mm, the total amount of ordinary sintered ore with RDI 40%, multiple pellets with particle size 3-10mm This is an operation example when replacing with individually formed agglomerate ores (referred to as new agglomerate ore). In Example 1, the operation results when normal sinter was charged were added (operation example before use of new agglomerate ore), and the operation results when the entire new ore was charged and A comparison is shown (example of operation after using new agglomerate ore).

新塊成鉱の製造は、重量比で原料組成Fe2O3約94.0%,
SiO22.0%,CaO2.5%の粉鉄鉱石だけを造粒して4〜6mm
の生ペレットをつくり、最高焼成温度1300℃となるよう
に、粉コークスを配合し、焼結機で焼成した後、クラッ
シャーにかけて、3〜6個結合した状態の平均直径約25
mmの塊成鉱とした。実施例2〜4において使用する新塊
成鉱性状も同一のものである。
The production of new agglomerate is about 94.0% of raw material composition Fe 2 O 3 by weight ratio,
SiO 2 2.0%, and granulating the only CaO2.5% of fine iron ore 4~6mm
The raw pellets are made, mixed with coke breeze so that the maximum firing temperature is 1300 ° C, fired in a sintering machine, and then crushed.
mm ore. The properties of the new agglomerate used in Examples 2 to 4 are the same.

実施例2は重量比で通常コークスの50%を高反応性コ
ークス(JIS反応性50%)に置換し、そのうち重量比で1
5mm超が70%,粒度15mm以下が30%とした例で、RDI40%
の通常焼結鉱1615Kg/pig−tのうち、T.Fe換算で50%に
相当する新塊成鉱(T.Fe66%)685Kg/pig−tに置換し
たときの操業例である。実施例2中には、通常焼結鉱使
用時の操業結果を付記し(新塊成鉱使用前の操業例)、
新塊成鉱を装入した時の操業結果と比較して示す(新塊
成鉱使用後の操業例)。
In Example 2, 50% of normal coke was replaced by high-reactivity coke (JIS reactivity 50%) in weight ratio, and 1% in weight ratio was replaced.
RDI 40%, with 70% over 5mm and 30% under 15mm
This is an operation example in which 685 kg / pig-t of new agglomerate (T.Fe 66%) equivalent to 50% in terms of T.Fe is replaced from 1615 kg / pig-t of ordinary sinter ore. In Example 2, the operation results at the time of using the normal sinter are added (examples of operation before using the new agglomerate),
The results are shown in comparison with the operation results when new agglomerate was charged (example of operation after use of the new agglomerate).

実施例3は重量比で通常コークスの35%を高反応性コ
ークス(JIS反応性45%)に置換し、そのうち重量比で1
5mm超が50%,粒度15mm以下が50%とした例で、垂直ゾ
ンデにより、高炉シヤフト上部の約4mにわたり、600〜7
00℃の低温熱保存帯を検出したので(新塊成鉱使用前の
操業例)、通常焼結鉱を全量新塊成鉱に置換して操業し
た時の操業状態を示す(新塊成鉱使用後の操業例)。
In Example 3, 35% of normal coke was replaced by high-reactivity coke (JIS reactivity 45%) in weight ratio, and 1% in weight ratio was replaced.
In this example, 50% is over 5mm and 50% is 15mm or less.
Since the low-temperature heat preservation zone of 00 ° C was detected (operation example before use of new agglomerate), the operation state when the entire sintered ore was replaced with the new agglomerate ore and operated was shown (new agglomerate ore). Example of operation after use).

実施例4は重量比で通常コークスの50%を高反応性コ
ークス(JIS反応性50%)に置換し、そのうち重量比で1
5mm超が70%,粒度15mm以下が30%とした例で、水平ゾ
ンデにより高炉内半径方向の水素ガス利用率(=H2O/
(H2+H2O))分布を検出した操業において、高炉の炉
壁から1mの位置の水素ガス利用率が基準値(水素ガス利
用率50%)よりも10%低下したことを検出したので(新
塊成鉱使用前の操業例)、通常焼結鉱を全量新塊成鉱に
置換して操業した時の操業状態を示す(新塊成鉱使用後
の操業例)。
In Example 4, 50% of normal coke was replaced by high-reactivity coke (JIS reactivity 50%) in weight ratio, and 1% in weight ratio was replaced.
In this example, 70% is over 5mm and 30% is 15mm or less. Using a horizontal sonde, the hydrogen gas utilization rate in the blast furnace in the radial direction (= H 2 O /
(H 2 + H 2 O)) In the operation that detected the distribution, it was detected that the hydrogen gas utilization at 1 m from the furnace wall of the blast furnace dropped by 10% from the standard value (hydrogen gas utilization 50%). (Example of operation before use of new agglomerate), shows the operation state when the entire sintered ore is replaced with new agglomerate ore (example of operation after use of a new agglomerate).

装入方法は、実施例1の場合、高反応性コークスの大
塊を中心部に、小塊を炉中間部から周辺部に装入し、焼
結鉱と交互装入した。実施例2,3,4の場合、大塊高反応
性コークスは通常コークスと混合して炉中心部に装入
し、小塊コークスは通常コークスおよび新塊成鉱と1/2
ずつ混合して、炉中間部から周辺部に装入した。
As for the charging method, in the case of Example 1, a large lump of highly reactive coke was charged into the center and a small lump was charged from the middle of the furnace to the periphery, and charged alternately with the sinter. In the case of Examples 2, 3, and 4, large lump highly reactive coke was mixed with normal coke and charged into the furnace center, and small lump coke was mixed with normal coke and new agglomerate by 1/2.
Each was mixed and charged into the peripheral part from the furnace middle part.

第1表の実施例では、比較例に比べてガス利用率の向
上、コークス比の低下が達成され、燃料比が低下するこ
とができた。なお、実施例1〜4の新塊成鉱使用前の操
業結果は新塊成鉱使用後の操業結果に比較して、コーク
ス比の低下度合が小さく、効率的な高炉操業とはなって
いない。
In the examples shown in Table 1, the gas utilization rate was improved and the coke ratio was reduced as compared with the comparative example, and the fuel ratio was able to be reduced. In addition, the operation result before use of the new agglomerate in Examples 1 to 4 is smaller than the operation result after the use of the new agglomerate ore, in which the degree of decrease in the coke ratio is small, and the blast furnace operation is not efficient. .

(発明の効果) 以上に説明したように、本発明においては、高反応性
コークスを大塊と小塊に分別し、大塊高反応性コークス
を炉中心部に、小塊高反応性コークスを炉中間部より炉
周辺部に装入することにより、炉中心部における炉芯の
通気通液性を確保し、また熱保存帯の温度を低下させる
ことができるため、シャフト効率を上げることも可能と
なり、高炉全体のガス利用効率を高めて少ないコークス
比で高炉操業を行うことができる。そして低燃料比時に
生成しやすい600〜700℃近傍の低温熱保存帯生成時にお
いても、粒径3〜10mmのペレットを複数個結合した塊成
鉱を装入することにより、粉率増加による通気不良を抑
制でき、長期間安定した操業が可能となる。
(Effect of the Invention) As described above, in the present invention, high-reactivity coke is separated into large lumps and small lumps. By charging the furnace core from the middle of the furnace to the periphery of the furnace, ventilation permeability of the core in the center of the furnace can be ensured, and the temperature of the heat preservation zone can be reduced, so shaft efficiency can be increased. As a result, the gas utilization efficiency of the entire blast furnace can be increased, and the blast furnace can be operated with a small coke ratio. Even during the low-temperature heat preservation zone near 600 to 700 ° C, which is easy to generate when the fuel ratio is low, the agglomeration ore formed by combining a plurality of pellets with a particle size of 3 to 10 mm is charged to increase the aeration due to the increase in the fineness. Defects can be suppressed, and stable operation can be performed for a long period of time.

このようにして、本発明によるとき、高炉操業の生産
性を向上させることができる。
Thus, according to the present invention, the productivity of the blast furnace operation can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は粒径3〜10mmのペレットを複数個結合した塊成
鉱と通常焼結鉱のRDIならびに高炉内条件下で還元した
時の間接還元率との比較を示す図、第2図は600〜700℃
の低温熱保存帯の長さと炉内粉率増加量との関係を示す
図、第3図は炉頂水素ガス利用率と炉内粉率増加量との
関係を示す図、第4図は低還元粉化性焼結鉱、ペレット
と通常焼結鉱のRDIならびに高炉内条件下で還元した時
の間接還元率との比較を示す図である。
FIG. 1 is a diagram showing a comparison between the RDI of agglomerate ore and a normally sintered ore obtained by combining a plurality of pellets having a particle size of 3 to 10 mm and an indirect reduction rate when reduced under blast furnace conditions, and FIG. 600 ~ 700 ℃
Fig. 3 shows the relationship between the length of the low-temperature heat storage zone and the increase in the in-furnace powder ratio, Fig. 3 shows the relationship between the furnace top hydrogen gas utilization rate and the increase in the in-furnace powder ratio, and Fig. It is a figure which shows the RDI of a reduced powdering sinter, a pellet, and a normal sinter, and the comparison with the indirect reduction rate at the time of reducing under blast furnace conditions.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】コークスを大塊と小塊に分別して装入する
高炉において、高反応性コークスを大塊と小塊に分別
し、大塊高反応性コークスを炉中心部に、小塊高反応性
コークスを炉中間部より炉周辺部に装入するに際し、前
記高反応性コークスとともに粒径3〜10mmのペレットを
複数個結合した塊成鉱を装入することを特徴とする高炉
操業法。
In a blast furnace in which coke is separated into large lumps and small lumps and charged, high-reactivity coke is separated into large lumps and small lumps, and large lumps and high-reactivity coke are placed at the center of the furnace. A blast furnace operating method characterized in that, when reactive coke is charged from a furnace intermediate portion to a furnace peripheral portion, agglomerate ore obtained by combining a plurality of pellets having a particle size of 3 to 10 mm together with the highly reactive coke is charged. .
【請求項2】高反応性コークスを高炉に装入して操業を
行うに際し、高炉内高さ方向の温度分布または高炉内半
径方向の水素ガス利用率分布を測定し、測定した温度ま
たは水素ガス利用率と基準値との差があらかじめ設定し
た値になった時に、通常焼結鉱から粒径3〜10mmのペレ
ットを複数個結合した塊成鉱に全量置換することを特徴
とする高炉操業法。
2. A high-reactivity coke is charged into a blast furnace to perform an operation, and a temperature distribution in a height direction in the blast furnace or a hydrogen gas utilization distribution in a radial direction in the blast furnace is measured, and the measured temperature or hydrogen gas is measured. A blast furnace operating method characterized in that when the difference between the utilization rate and the reference value reaches a preset value, the entire amount of the normally sintered ore is replaced by agglomerate ore obtained by combining a plurality of pellets having a particle size of 3 to 10 mm. .
JP5569589A 1989-03-08 1989-03-08 Blast furnace operation method Expired - Fee Related JP2731829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5569589A JP2731829B2 (en) 1989-03-08 1989-03-08 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5569589A JP2731829B2 (en) 1989-03-08 1989-03-08 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH02236210A JPH02236210A (en) 1990-09-19
JP2731829B2 true JP2731829B2 (en) 1998-03-25

Family

ID=13006029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5569589A Expired - Fee Related JP2731829B2 (en) 1989-03-08 1989-03-08 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2731829B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634827B2 (en) * 2005-03-10 2011-02-16 新日本製鐵株式会社 Method for evaluating reducibility of sintered ore
JP6167837B2 (en) * 2013-10-15 2017-07-26 新日鐵住金株式会社 Direct reduction method
JP6558519B1 (en) * 2018-03-30 2019-08-14 Jfeスチール株式会社 Raw material charging method for blast furnace
US11680748B2 (en) 2018-03-30 2023-06-20 Jfe Steel Corporation Method for charging raw materials into blast furnace

Also Published As

Publication number Publication date
JPH02236210A (en) 1990-09-19

Similar Documents

Publication Publication Date Title
JP2011058091A (en) Blast-furnace operation method using ferrocoke
US20120240725A1 (en) Carbon composite agglomerate for producing reduced iron and method for producing reduced iron using the same
EP2851435B1 (en) Method for charging starting material into blast furnace
EP2851437B1 (en) Method for loading raw material into blast furnace
JP2731829B2 (en) Blast furnace operation method
JP5768563B2 (en) Blast furnace operation method
EP4407048A2 (en) Pig iron production method
JP2720058B2 (en) Blast furnace operation method
JP2733566B2 (en) Blast furnace operation method
JP2769835B2 (en) Blast furnace operation method
JP6070131B2 (en) Method for producing reduced iron
JP3829516B2 (en) Blast furnace operation method
JP4173925B2 (en) Blast furnace operation method
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
JP2010095759A (en) Method of operating blast furnace while using ferro-coke
JPH02200710A (en) Method for operating blast furnace
EP4317464A1 (en) Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron
JP3014549B2 (en) Blast furnace operation method
JP4149080B2 (en) Method for producing raw material for iron making, raw material for iron making, and method for operating blast furnace
US20240240274A1 (en) Pig iron-producing method and iron ore material
JP3522553B2 (en) Blast furnace raw material charging method
JP4093198B2 (en) Blast furnace operation method
JP2724208B2 (en) Blast furnace operation method
TW202430654A (en) Molten iron from sintered ore
JPH02236209A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees