JP2769835B2 - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JP2769835B2
JP2769835B2 JP3957689A JP3957689A JP2769835B2 JP 2769835 B2 JP2769835 B2 JP 2769835B2 JP 3957689 A JP3957689 A JP 3957689A JP 3957689 A JP3957689 A JP 3957689A JP 2769835 B2 JP2769835 B2 JP 2769835B2
Authority
JP
Japan
Prior art keywords
coke
furnace
blast furnace
charged
reactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3957689A
Other languages
Japanese (ja)
Other versions
JPH02217408A (en
Inventor
誠章 内藤
一良 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3957689A priority Critical patent/JP2769835B2/en
Publication of JPH02217408A publication Critical patent/JPH02217408A/en
Application granted granted Critical
Publication of JP2769835B2 publication Critical patent/JP2769835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉で反応性を高めたコークスを使用する
こと、および高反応性コークスとともに低還元粉化性焼
結鉱を使用することによって、生産性を向上させた高炉
操業法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is based on the use of coke with increased reactivity in a blast furnace and the use of low-reduced powdered sinter together with highly reactive coke. And a blast furnace operation method with improved productivity.

(従来の技術) 通常の高炉にあっては、炉頂から鉄鉱石及びコークス
を層状に装入し、この鉄鉱石を炉内で還元した後、金属
状態に還元・溶融して溶銑を製造している。
(Prior art) In a normal blast furnace, iron ore and coke are charged in layers from the top of the furnace, and the iron ore is reduced in the furnace, then reduced and melted to a metal state to produce hot metal. ing.

このとき、高炉を安定して操業するために、特開昭57
−174403号公報にあっては、高炉に鉄原料とコークスを
順次装入し精錬する高炉操業法において、高炉にコーク
スを装入するにあたり、常時もしくは間欠的に炉周辺部
に15〜25mmを平均粒度とする小塊コークスを、炉中心部
に35〜70mmを平均粒度とする大塊コークスを装入し、操
業することを特徴とする高炉操業法が開示されている。
At this time, in order to operate the blast furnace stably,
According to Japanese Patent No. 174403, in the blast furnace operating method in which iron raw material and coke are sequentially charged and refined in the blast furnace, when charging the coke into the blast furnace, an average of 15 to 25 mm around the furnace is constantly or intermittently charged. A method of operating a blast furnace characterized by charging small coke having a particle size of large coke having an average particle size of 35 to 70 mm in the center of the furnace and operating the same is disclosed.

また、本発明者らは特願昭62−193457号において、15
mm以下の小塊高反応性コークス使用して、該高反応性コ
ークスを普通コークス又は鉱石と混合して高炉に装入す
ることにより、高炉の熱保存帯温度を低下させ、高炉の
反応効率を高める高炉操業法を提案した。
Further, the present inventors have disclosed in Japanese Patent Application No. 62-193457
mm or less, the high-reactivity coke is mixed with ordinary coke or ore and charged into the blast furnace, thereby lowering the heat storage zone temperature of the blast furnace and increasing the reaction efficiency of the blast furnace. A blast furnace operation method to enhance was proposed.

(発明が解決しようとする課題) しかしながら、炉中心部に35〜70mmを平均粒度とする
大塊コークスを、炉周辺部に15〜25mmを平均粒度とする
小塊コークスを装入することにより、炉中心部における
炉芯の通気通液性が確保でき、安定操業が可能と考えら
れるが、通常コークスを使用する操業においては、高炉
の反応効率は向上できない。
(Problems to be Solved by the Invention) However, by charging large coke having an average particle size of 35 to 70 mm in the center of the furnace and small coke having an average particle size of 15 to 25 mm in the periphery of the furnace, It is thought that the ventilation permeability of the furnace core in the center of the furnace can be ensured and stable operation is possible. However, in the operation using ordinary coke, the reaction efficiency of the blast furnace cannot be improved.

一方、高炉の反応効率を向上させるためには、小塊高
反応性コークスを鉱石またはコークスと混合して使用す
るのが有効であるが、通常操業においては小塊高反応性
コークスは量が少なく炉中心部に到達しないように装入
するので、炉中心部の還元効率は向上せず、高炉半径方
向全体の反応効率は向上しにくい。また装入物分布制御
により、小塊高反応性コークスを炉中心部に装入する
と、高炉半径方向全体を反応効率は向上できるが、炉中
心部における炉芯の通気通液性の点で問題となり安定操
業に支障となる。
On the other hand, in order to improve the reaction efficiency of the blast furnace, it is effective to use a small lump highly reactive coke mixed with ore or coke. Since the reactor is charged so as not to reach the center of the furnace, the reduction efficiency of the center of the furnace does not improve, and the reaction efficiency in the entire radial direction of the blast furnace is hardly improved. In addition, if small coke high-reactivity coke is charged into the center of the furnace by charge distribution control, the reaction efficiency can be improved in the entire blast furnace radial direction, but there is a problem with the permeability of the core in the center of the furnace. It hinders stable operation.

また、反応効率が向上でき、低燃料比操業が可能とな
った場合でも、低燃料比操業時によく見られるように、
ガス流れ不均衡になり、ガス流量の少ない領域が高炉シ
ャフト部に生成すると、600〜700℃の低温熱保存帯が生
成し易くなるが、この部位では焼結鉱還元粉化が助長さ
れ、それに伴う高炉シャフト部の通気不良が生じる結
果、鉱石還元の遅れ、装入物の降下不良など、高炉安定
操業に支障となるケースが多い。
Also, even when the reaction efficiency can be improved and low fuel ratio operation is possible, as is often seen during low fuel ratio operation,
If the gas flow becomes unbalanced and a region with a small gas flow rate is generated in the blast furnace shaft, a low-temperature heat preservation zone of 600 to 700 ° C will be easily generated. As a result, poor ventilation of the shaft portion of the blast furnace occurs, which often delays ore reduction and impairs the load, which hinders stable operation of the blast furnace in many cases.

そこで、本発明にあっては、高炉に装入されるコーク
スの反応性を高め、かつ大塊と小塊に分別して装入する
ことにより、熱保存帯温度を低下させて高炉全体の鉄鉱
石の還元反応を促進させ、高い反応効率下で、高生産性
で安定的に溶銑を製造すること、ならびに低燃料比操業
下で発生しやすい焼結鉱還元粉化に伴う粉率増加を抑制
して、安定的に高炉を操業することを目的とする。
Therefore, in the present invention, by increasing the reactivity of coke charged into the blast furnace, and separating and charging large coke and small coke, the heat storage zone temperature is reduced, and iron ore of the entire blast furnace is reduced. To promote stable production of hot metal with high reaction efficiency and high reaction efficiency, and to suppress the increase in the powder ratio due to sinter reduction powdering, which is likely to occur under low fuel ratio operation. And to operate the blast furnace stably.

(課題を解決するための手段および作用) 本発明の高炉操業法は、その目的を達成するために、
コークスを大塊と小塊に分別して装入する高炉におい
て、高反応性コークスを大塊と小塊に分別し、大塊高反
応性コークスを炉中心部に、小塊高反応性コークスを炉
中間部より炉周辺部に装入することにより、炉中心部に
おける炉芯の通気通液性を確保し、高炉全体の還元効率
を向上させ、低燃料比操業を可能とすることを特徴とす
る。また高反応性コークスを大塊と小塊に分別し、大塊
高反応性コークスを炉中心部に、小塊高反応性コークス
を炉中間部より炉周辺部に装入するに際し、該高反応性
コークスとともに、低還元粉化性焼結鉱を装入し、低燃
料比操業下で発生しやすい焼結鉱還元粉化に伴う粉率増
加を抑制して、安定的に高炉を運転することを特徴とす
る。
(Means and Actions for Solving the Problems) The blast furnace operation method of the present invention has the following features.
In a blast furnace in which coke is separated into large and small lumps, high-reactivity coke is separated into large and small lump, large lump high-reactive coke is placed in the center of the furnace, and small lump highly reactive coke is placed in the furnace. By charging the furnace from the middle part to the periphery of the furnace, it is possible to ensure ventilation and liquid permeability of the furnace core at the center of the furnace, improve the reduction efficiency of the entire blast furnace, and enable low fuel ratio operation. . In addition, the high-reactivity coke is separated into large lump and small lump, and when the large lump high-reactivity coke is charged into the furnace center and the small lump high-reactivity coke is charged into the furnace periphery from the middle of the furnace, Stable blast furnace operation by charging low-reduced powdered sinter together with liquefied coke, and suppressing the increase in the powder rate due to sinter reduced-pulverization, which is likely to occur under low fuel ratio operation. It is characterized by.

まず、高反応性コークスについて述べる。 First, highly reactive coke will be described.

本発明では使用する高反応性コークスはJISK2151−19
77の反応性試験方法で測定したときのJIS反応性が30%
以上であることが望ましい。その値が30%未満である
と、後述する熱保存帯温度の低下がほとんどみられな
い。また高反応性コークスであっても強度を高く保つこ
とは必要であり、通常コークスと同じ程度の強度を保つ
ことが望ましい。
The highly reactive coke used in the present invention is JISK2151-19
30% JIS reactivity as measured by the reactivity test method of 77
It is desirable that this is the case. If the value is less than 30%, the heat storage zone temperature described below hardly decreases. Further, it is necessary to maintain high strength even for highly reactive coke, and it is desirable to maintain the same strength as normal coke.

高強度を有する高反応性コークスの調整法としては、
強度の高い通常コークスにアルカリ水溶液を添加する方
法または一般炭を成型して乾留する方法などがある。
As a method for preparing highly reactive coke having high strength,
There is a method of adding an alkaline aqueous solution to high-strength ordinary coke, or a method of forming and drying a common coal.

高反応性コークスは通常炉頂から装入されるコークス
の一部あるいは全量と置換し、かつ該高反応性コークス
を大塊と小塊に分別し、大塊を通常コークスと混合する
か、あるいは単独で炉中心部に鉄鉱石と交互に層状装入
する。小塊は炉中間部から炉周辺部に鉄鉱石および/ま
たは通常コークスと混合して装入するか、あるいは単独
で鉄鉱石と交互に層状装入する。
The high-reactivity coke is replaced with a part or all of the coke usually charged from the furnace top, and the high-reactivity coke is separated into large and small lumps, and the large lumps are mixed with normal coke, or The iron ore is charged separately and layered into the center of the furnace alone. The lumps are charged from the middle of the furnace to the periphery of the furnace in a mixture with iron ore and / or ordinary coke, or are separately charged separately and layered with iron ore.

本発明において、炉中心部とは高炉の炉口部半径の20
%以内の部分を示し、例えば炉口部半径が5mであれば半
径1m以内を炉中心部と称する。この炉中心部を除いた炉
壁までの外側を炉中間部から炉周辺部と称する。
In the present invention, the furnace center is defined as the furnace opening radius of the blast furnace at 20 mm.
%, For example, if the furnace opening radius is 5 m, the area within 1 m radius is called the furnace center. The outside of the furnace wall excluding the furnace center is referred to as the furnace middle to the furnace periphery.

炉中間部から炉周辺部に装入される鉄鉱石および/ま
たは通常コークスに混合使用する高反応性コークスの粒
度は15mm以下とすることが望ましい。この粒度が15mm以
下であれば、コークスの単位重量に対する表面積が増加
し、反応に寄与する割合が大きくなる。
It is desirable that the particle size of iron ore and / or highly reactive coke mixed and used with ordinary coke to be charged from the middle part of the furnace to the periphery of the furnace is 15 mm or less. If the particle size is 15 mm or less, the surface area per unit weight of coke increases, and the proportion contributing to the reaction increases.

この高反応性コークスは反応性が高いことから、炉内
のCO2がコークス表面に接触してCOとなる界面反応が円
滑に行われる。また、その結果として炉内に生じたCOガ
スが鉄鉱石と有効に反応して低級酸化物又は金属状態に
還元する反応が促進される。
Since this highly reactive coke has high reactivity, the interfacial reaction in which CO 2 in the furnace comes into contact with CO on the coke surface is smoothly performed. Further, as a result, the reaction that the CO gas generated in the furnace effectively reacts with the iron ore to reduce to a lower oxide or a metal state is promoted.

C+CO2=2COのコークスのガス化反応は吸熱反応であ
り、高炉シャフト部における熱保存帯の温度を低下させ
ることができる。例えば、従来法によるとき、1000℃程
度の熱保存帯が生成し、その値がほとんど変化しないの
に対して、高反応性コークスを使用することによって、
熱保存帯の温度を900〜950℃に低下させることが可能と
なる。その結果、還元平衡到達点に余裕ができるため還
元がより進行することになり、シャフト効率、間接還元
率、COガス利用率が向上し、コークス比を低下させるこ
とができる。
The gasification reaction of coke of C + CO 2 = 2CO is an endothermic reaction, and can lower the temperature of the heat storage zone in the blast furnace shaft. For example, according to the conventional method, a heat storage zone of about 1000 ° C. is generated and its value hardly changes, but by using a highly reactive coke,
It is possible to reduce the temperature of the heat storage zone to 900 to 950 ° C. As a result, since the reduction equilibrium reaching point has a margin, the reduction proceeds more, the shaft efficiency, the indirect reduction rate, and the CO gas utilization rate are improved, and the coke ratio can be reduced.

また大塊高反応性コークスとして粒度35〜70mmの高反
応性コークスを炉中心部へ装入することによって、炉中
心部における炉芯の通気通液性が確保され、安定した操
業が可能となり、かつ炉中心部に装入された鉄鉱石の還
元が促進されるため、高炉半径方向全体の還元効率が向
上できる。
In addition, by introducing high-reactivity coke with a particle size of 35 to 70 mm as a large lump high-reactivity coke into the center of the furnace, the air permeability of the core in the center of the furnace is ensured, and stable operation becomes possible. In addition, since the reduction of the iron ore charged in the center of the furnace is promoted, the reduction efficiency in the entire blast furnace radial direction can be improved.

次に焼結鉱の還元粉化抑制について述べる。 Next, reduction and reduction of sintering powder will be described.

高反応性コークス使用により還元効率が向上できるた
め、燃料比を大巾に低下させた操業が可能となるが、そ
の際、高炉シャフト部の温度低下に起因して、焼結鉱の
還元粉化量は増大傾向となる。特に、高炉シャフト部に
600〜700℃の低温熱保存帯が生成すると、焼結鉱の還元
粉化量は顕著に増大し、高炉安全操業に支障となる。
The use of high-reactivity coke can improve the reduction efficiency, which makes it possible to operate with a significantly reduced fuel ratio. The amount tends to increase. Especially for the blast furnace shaft
When a low-temperature heat storage zone of 600 to 700 ° C is generated, the amount of reduced ore sintering of the sinter increases remarkably, which hinders safe operation of the blast furnace.

この対策とし、通常焼結鉱を全量低還元粉化性焼結鉱
に置換し、高反応性コークスとともに装入する。あるい
は、通常は普通焼結鉱を装入しておき、600〜700℃の低
温熱保存帯の生成を検出しながら、その低温熱保存帯が
発生したときに、通常焼結鉱の装入を止め、全量低温還
元粉化性焼結鉱を装入する。
As a countermeasure for this, all the ordinary sinters are replaced with low-reduced powdered sinters and charged together with highly reactive coke. Or, usually, ordinary sinter is charged, and while detecting the formation of a low-temperature heat storage zone of 600 to 700 ° C, when the low-temperature heat storage zone occurs, the normal sinter is charged. Stop and charge the whole amount of low-temperature reduction powdered sinter.

低還元粉化性焼結鉱の製造は、焼結操業における原料
配合調整、操業調整(コークス原単位の変更など)で可
能であり、また、普通焼結鉱に海水や高炉シックナー水
などのアルカリ水溶液を添加して製造することもでき
る。
The production of low-reduced powdered sinter is possible by adjusting the blending of raw materials in the sintering operation and adjusting the operation (such as changing the basic unit of coke). It can also be produced by adding an aqueous solution.

第1図は焼結鉱の還元粉化指数(RDIと略す)、JIS還
元率と海水浸漬時間との関係を示したもので、海水に約
5秒浸漬させた場合、焼結鉱RDIは35〜40%が15%にま
で低下する一方、焼結鉱JIS還元率は不変であり、焼結
鉱への海水添加は焼結鉱被還元性に影響を与えず、還元
粉化抑制に効果を発揮する。
Fig. 1 shows the relationship between the reduction powder index (RDI) of sinter, the JIS reduction rate and seawater immersion time. When immersed in seawater for about 5 seconds, the RDI of sinter is 35%. While the sinter ore JIS reduction rate remains unchanged while the -40% reduction to 15%, the addition of seawater to the sinter does not affect the reducibility of the sinter ore and has an effect on reducing powder reduction. Demonstrate.

なお、RDIはサンプル(15〜20mm,500g)を還元ガス
(CO30%−N270%,15NI/min)により550℃で30分間還元
し、その後回転試験機で900回転(30rpm×30分間)後の
−3mmの重量割合をもって示される。また、焼結鉱の還
元率はJIS法で測定される900℃,180分後の還元率で表示
している。
For RDI, the sample (15-20 mm, 500 g) was reduced with a reducing gas (CO 30% -N 2 70%, 15 NI / min) at 550 ° C. for 30 minutes, and then 900 revolutions (30 rpm × 30 minutes) with a rotation tester. It is indicated with a weight percentage of -3 mm later. The reduction rate of the sintered ore is represented by the reduction rate after 180 minutes at 900 ° C measured by the JIS method.

(実施例) 以下、実施例により本発明の特徴を具体的に説明す
る。
(Examples) Hereinafter, features of the present invention will be specifically described with reference to examples.

第1表に高反応性コークスおよび低還元粉化性焼結鉱
を使用した高炉操業を従来法と比較して示す。
Table 1 shows the blast furnace operation using high-reactivity coke and low-reduced powdered sinter in comparison with the conventional method.

対象高炉は内容積3000m3の中型高炉であり、従来法で
は炉頂からO/C=3.2の割合で鉄鉱石と通常コークスを装
入し、羽口前フレーム温度を2270℃(熱風温度1100℃、
添加湿分35g/Nm3、微粉炭吹き込みなし)に維持しなが
ら溶銑を製造していた(比較例) 実施例1は通常コークスを全量高反応性コークス(JI
S反応性50%)に置換した例で、粒度50mm以上が20%、
粒度が50mm未満が80%であり、焼結鉱は通常焼結鉱(RD
I40%)に海水を噴霧して低RDI焼結鉱(RDI20%)とし
ている。
Subject blast furnace is a medium-sized blast furnace having an inner volume of 3000 m 3, the conventional method was charged with iron ore and ordinary coke in a ratio of O / C = 3.2 from the furnace top, 2270 ° C. wings preoral flame temperature (hot air temperature 1100 ° C. ,
Hot metal was manufactured while maintaining the added moisture at 35 g / Nm 3 and no pulverized coal injection) (Comparative Example) In Example 1, the total amount of normal coke was high reactive coke (JI).
S reactivity 50%), the particle size 50mm or more is 20%,
The particle size is less than 50mm 80% and the sinter is usually sinter (RD
I40%) is sprayed with seawater to make low RDI sintered ore (RDI 20%).

実施例2は通常コークスの50%を高反応性コークス
(JIS反応性50%)に置換した例で、そのうち15mm超が7
0%、粒度15mm以下が30%であり、焼結鉱は通常焼結鉱
(RDI40%)にシックナー水を噴霧して低RDI焼結鉱(RD
I22%)としている。
Example 2 is an example in which 50% of normal coke was replaced with high-reactivity coke (JIS reactivity 50%).
0%, particle size 15mm or less is 30%, and the sinter is usually low RDI sinter (RDI 40%) sprayed with thickener water.
I22%).

装入方法は、実施例1の場合、高反応性コークスの大
塊を中心部に、小塊を炉中間部から周辺部に装入し、焼
結鉱と交互装入した。実施例2の場合、大塊高反応性コ
ークスは通常コークスと混合して炉中心部に装入し、小
塊コークスは通常コークスおよび焼結鉱と1/2ずつ混合
して、炉中間部から周辺部に装入した。
As for the charging method, in the case of Example 1, a large lump of highly reactive coke was charged into the center and a small lump was charged from the middle of the furnace to the periphery, and charged alternately with the sinter. In the case of Example 2, large lump highly reactive coke is mixed with normal coke and charged into the center of the furnace, and small lump coke is usually mixed with coke and sinter at a ratio of 1/2, and from the middle of the furnace. Charged to the surrounding area.

第1表の実施例では、比較例に比べてガス利用率の向
上、コークス比の低下が達成され、燃料比を低下するこ
とができた。
In the examples shown in Table 1, the gas utilization rate was improved and the coke ratio was reduced as compared with the comparative example, and the fuel ratio was able to be reduced.

(発明の効果) 以上に説明したように、本発明においては、高強度の
高反応性コークスを大塊と小塊に分別し、大塊高反応性
コークスを炉中心部に、小塊高反応性コークスを炉中間
部より炉周辺部に装入することにより、炉中心部におけ
る炉芯の通気通液性を確保し、また熱保存帯の温度を低
下させることができるため、シャフト効率を上げること
も可能となり、高炉全体のガス利用率を高めて少ないコ
ークス比で高炉操業を行うことができる。さらに低燃料
比時に発生しやすい焼結鉱還元粉化に伴う粉率増加を抑
制することにより長期間安定した操業が可能となる。
(Effects of the Invention) As described above, in the present invention, high-strength highly-reactive coke is separated into large lumps and small lumps, and the large lumpy high-reactivity coke is placed at the center of the furnace. Charging coke into the periphery of the furnace from the middle of the furnace ensures the permeability of the furnace core at the center of the furnace and lowers the temperature of the heat preservation zone, thus increasing the shaft efficiency. It is also possible to increase the gas utilization rate of the entire blast furnace and to operate the blast furnace with a low coke ratio. Furthermore, stable operation can be performed for a long period of time by suppressing the increase in the powder ratio due to the reduction and pulverization of sinter ore, which tends to occur at a low fuel ratio.

このようにして、本発明によるとき、高炉操業の生産
性を向上させることができる。
Thus, according to the present invention, the productivity of the blast furnace operation can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は焼結鉱RDI,JIS還元率と海水浸漬時間との関係
を示した図である。
FIG. 1 is a diagram showing the relationship between the sinter ore RDI, JIS reduction rate and seawater immersion time.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C21B 5/00──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C21B 5/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】コークスを大塊と小塊に分別して装入する
高炉において、高反応性コークスを大塊と小塊に分別
し、大塊高反応性コークスを炉中心部に、小塊高反応性
コークスを炉中間部より炉周辺部に装入することを特徴
とする高炉操業法。
In a blast furnace in which coke is separated into large lumps and small lumps and charged, high-reactivity coke is separated into large lumps and small lumps, and large lumps and high-reactivity coke are placed at the center of the furnace. A blast furnace operating method, wherein reactive coke is charged from the middle of the furnace to the periphery of the furnace.
【請求項2】高反応性コークスを大塊と小塊に分別し、
大塊高反応性コークスを炉中心部に、小塊高反応性コー
クスを炉中間部より炉周辺部に装入するに際し、該高反
応性コークスとともに低還元粉化性焼結鉱を装入するこ
とを特徴とする高炉操業法。
2. The method according to claim 1, wherein the highly reactive coke is separated into large lumps and small lumps.
At the time of loading the large lump highly reactive coke into the furnace center and the small lump highly reactive coke into the furnace periphery from the middle of the furnace, charge the low-reduction powdered sinter together with the highly reactive coke. A blast furnace operating method, characterized in that:
JP3957689A 1989-02-20 1989-02-20 Blast furnace operation method Expired - Lifetime JP2769835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3957689A JP2769835B2 (en) 1989-02-20 1989-02-20 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3957689A JP2769835B2 (en) 1989-02-20 1989-02-20 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH02217408A JPH02217408A (en) 1990-08-30
JP2769835B2 true JP2769835B2 (en) 1998-06-25

Family

ID=12556905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3957689A Expired - Lifetime JP2769835B2 (en) 1989-02-20 1989-02-20 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2769835B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088583A1 (en) * 2011-12-13 2013-06-20 Jfeスチール株式会社 Process for manufacturing iron-source raw material to be fed into blast furnace
TWI464270B (en) * 2011-12-22 2014-12-11 Jfe Steel Corp Manufacture method of iron source raw material for blast furnace

Also Published As

Publication number Publication date
JPH02217408A (en) 1990-08-30

Similar Documents

Publication Publication Date Title
JP5064330B2 (en) Method for producing reduced iron and pig iron
EP2450459B1 (en) Blast-furnace operation method
US3150958A (en) Process for the reduction of metals from oxide
AU2010274314B2 (en) Carbon composite briquette for producing reduced iron and method for producing reduced iron employing the same
US3276859A (en) Process for the reduction of metals from oxide
JP6119700B2 (en) Blast furnace operation method
JP2769835B2 (en) Blast furnace operation method
JP2000192153A (en) Sintered ore and production thereof, and operation of blast furnace
JP2731829B2 (en) Blast furnace operation method
JPH0776366B2 (en) Blast furnace operation method
JP3829516B2 (en) Blast furnace operation method
JP2720058B2 (en) Blast furnace operation method
JP4529838B2 (en) Sinter ore and blast furnace operation method
JP2733566B2 (en) Blast furnace operation method
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
JPH02200710A (en) Method for operating blast furnace
JP3014549B2 (en) Blast furnace operation method
JP2014111813A (en) Method of manufacturing reduced iron
US20240167110A1 (en) Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron
JPH02236209A (en) Method for operating blast furnace
JP6638680B2 (en) Blast furnace operation method
JPH02200712A (en) Method for operating blast furnace
JPH02200711A (en) Method for operating blast furnace
JP2000290709A (en) Method for charging raw material into blast furnace
JPH06100909A (en) Operation of blast furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090417

EXPY Cancellation because of completion of term