WO2013088583A1 - Process for manufacturing iron-source raw material to be fed into blast furnace - Google Patents

Process for manufacturing iron-source raw material to be fed into blast furnace Download PDF

Info

Publication number
WO2013088583A1
WO2013088583A1 PCT/JP2011/079269 JP2011079269W WO2013088583A1 WO 2013088583 A1 WO2013088583 A1 WO 2013088583A1 JP 2011079269 W JP2011079269 W JP 2011079269W WO 2013088583 A1 WO2013088583 A1 WO 2013088583A1
Authority
WO
WIPO (PCT)
Prior art keywords
blast furnace
iron source
source material
metal salt
aqueous solution
Prior art date
Application number
PCT/JP2011/079269
Other languages
French (fr)
Japanese (ja)
Inventor
主代 晃一
隆英 樋口
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to PCT/JP2011/079269 priority Critical patent/WO2013088583A1/en
Publication of WO2013088583A1 publication Critical patent/WO2013088583A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates

Definitions

  • the present invention relates to a method for producing an iron source material for a blast furnace such as sintered ore and iron ore having excellent resistance to reduction powdering.
  • the sintered ore used in the blast furnace causes a remarkable pulverization phenomenon in the relatively low temperature range of 400 to 600 ° C of the blast furnace shaft part. Therefore, the gas permeability in the blast furnace is hindered and the blast furnace condition is deteriorated. It has become. Therefore, a reduction pulverization test that assumes pulverization when hematite is reduced to magnetite at around 550 ° C. in the massive zone in the blast furnace is defined in Japanese Industrial Standard M8720 or ISO 4696-2, and the quality index indicating characteristics is It is indexed as a Reduction Degradation Index (RDI).
  • RDI Reduction Degradation Index
  • Non-Patent Document 1 discloses the mechanism using a calcium chloride aqueous solution.
  • Patent Document 1 and Patent Document 2 an aqueous solution containing chloride is sprayed on or immersed in the sintered ore to form a chloride film around it and improve the anti-reduction powder characteristics. A method has been proposed.
  • Patent Document 3 as a carbon-containing fluid, a heated tar, a powder coke slurry, or a pulverized coal slurry is sprayed on or immersed in a sintered ore so that a carbon-containing substance is introduced into the open pores.
  • Patent Document 4 discloses that the surface of a blast furnace iron source material such as iron ore or sintered ore is coated with a coating of an organic polymer compound, and the open pores present in the blast furnace iron source material are defined as organic polymer compounds.
  • Patent Document 3 when tar is used as a fluid containing carbon, a harsh operation of treating with high-temperature tar is required, and in the method using pulverized coal or pulverized coke slurry, pulverized coal Because powder coke is hydrophobic, it is difficult to prepare a slurry with good dispersibility and to attach a sufficient amount of this slurry to the surface of the raw material for blast furnace iron source. However, there is a drawback that a sufficient effect for improving the property cannot be obtained, and a more effective method is desired.
  • Patent Document 4 when a coating is formed with an acrylic polymer, polyvinyl alcohol, or amylose, which is an organic polymer, there is a problem in economy because it is more expensive than an inorganic substance or a monomer.
  • An object of the present invention is to solve such problems of the prior art and to provide a method for producing an iron source material for a blast furnace having excellent resistance to reduction dusting.
  • An aqueous solution of a metal salt containing at least one metal selected from the group of calcium and magnesium and at least one acid selected from the group of acetic acid, carbonic acid and nitric acid is applied to the surface of the iron source material for blast furnace.
  • a method for producing an iron source material for a blast furnace comprising a first attaching step for attaching.
  • the first attaching step includes spraying or applying the aqueous solution of the metal salt to the iron source material for blast furnace, and attaching the aqueous solution of the metal salt to the iron source material for blast furnace. Of manufacturing iron source material for blast furnace.
  • the blast furnace iron After transporting the blast furnace iron source raw material to the blast furnace by the raw material transport conveyor after the first adhesion step, at least once after passing through the connecting portion of the raw material transport conveyor, the blast furnace iron The manufacturing method of the iron source material for blast furnaces as described in (3) which has a 2nd adhesion process which sprinkles the aqueous solution of the said metal salt to a source material.
  • the manufacturing method of the iron source raw material for blast furnaces of Claim 2 which consists of spraying.
  • the first attaching step comprises (2) spraying an aqueous solution of a metal salt from above the blast furnace iron source material when the blast furnace iron source material is conveyed to the blast furnace by a material conveyor. The manufacturing method of the iron source raw material for blast furnaces of description.
  • the blast furnace iron After transporting the blast furnace iron source material to the blast furnace by the material transport conveyor after the first adhesion step, at least once after passing through the connecting portion of the material transport conveyor, the blast furnace iron The manufacturing method of the iron source material for blast furnaces as described in (6) which has a 2nd adhesion process which sprinkles the aqueous solution of the said metal salt to a source material.
  • the metal salt is at least one metal salt selected from the group consisting of calcium hydrogen carbonate and magnesium hydrogen carbonate.
  • the metal salt is at least one metal salt selected from the group consisting of calcium nitrate and magnesium nitrate.
  • FIG. 2A is a view showing an embodiment in which an aqueous solution of a metal salt is sprayed from above the iron source raw material for a blast furnace while being conveyed by a raw material conveyer
  • FIG. 2B is a blast furnace being conveyed by a raw material conveyer.
  • FIG. 2A shows the embodiment which sprays the aqueous solution of a metal salt from the upper part of the iron source material for industrial use, and sprays the aqueous solution of the metal salt to the iron source material for blast furnace at the connecting part of the raw material transfer conveyor.
  • the iron source material for blast furnace used in the present invention is an iron-containing raw material charged from the top of the blast furnace, mainly sintered ore, iron ore (lump ore), and trivalent iron oxide (hematite). It contains.
  • sintered ore and iron ore will be described.
  • the surface is obtained by combining one or more metals of calcium and magnesium with one or more acids of acetic acid, carbonic acid and nitric acid.
  • An aqueous solution of a metal salt is deposited.
  • An aqueous solution of a metal salt obtained by combining one or more metals of calcium and magnesium and one or more acids of acetic acid, carbonic acid and nitric acid is an aqueous solution of calcium or magnesium acetate, calcium or magnesium Nitrate aqueous solution, calcium or magnesium hydrogen carbonate aqueous solution, or a mixed aqueous solution of two or more of the above aqueous solutions.
  • the reason why the reduced powdering property of the iron source material for blast furnace is improved in the present invention is that calcium chloride precipitates and adheres to the inner wall of the sintered ore in Non-Patent Document 1 and prevents the contact between the ore and the reducing gas and the progress of reduction.
  • the metal salt obtained by combining one or more metals of calcium and magnesium and one or more acids of acetic acid, carbonic acid and nitric acid is a sintered ore. This is thought to be due to the precipitation and adhesion to the inner wall of the steel, preventing the contact between the mineral grains and the reducing gas and delaying the reduction.
  • the iron ore or sintered ore is reduced at a temperature around 400 to 600 ° C. at the upper part of the blast furnace, and the hematite (Fe 2 O 3 ) in the iron ore or sintered ore becomes magnetite (Fe 3 O 4 ). Since this phase change is accompanied by volume expansion, strain or cracks are generated in the iron ore or sintered ore and become brittle, and reduction ore of the iron ore or sintered ore frequently occurs.
  • Salt crystals deposited on the surface of the iron ore or sinter inhibit the diffusion of reducing gas through the pores inside the iron ore or sinter by blocking the pores facing the iron ore or sinter surface.
  • the reduction in the iron ore or sintered ore is delayed, the amount of magnetite produced in the iron ore or sintered ore is reduced, and reduced powdering is suppressed.
  • the precipitated calcium salt crystal or magnesium salt crystal decomposes at a temperature higher than the temperature range where reductive powdering occurs, and changes into an oxide with a reduction in volume, so that it enters the iron ore or sintered ore.
  • the reduction of reducibility is small because the diffusion of the reducing gas through the pores is facilitated and the reduction inside the iron ore or sintered ore proceeds.
  • the volume associated with decomposition increases in the order of carbonate, nitrate, and acetate.
  • the amount of shrinkage is considered to increase, and it is estimated that diffusion of reducing gas through the pores of iron ore or sinter becomes easier in the order of carbonate, nitrate, and acetate.
  • sintered ore with a low SiO 2 content is less reducible than ordinary sintered ore because of less slag, and the reducible index (RI) is as high as 68%, but it is reduced to powder.
  • the RDI is as high as 38% or more.
  • magnesite, bluestone, etc. are effective, but they have a drawback that they are difficult to obtain.
  • the present invention can be utilized more effectively.
  • the SiO 2 content is more preferably 4.6 to 4.9 mass%. Moreover, it is preferable to apply this invention to a high crystal water containing iron ore with remarkable reduction powdering as an iron ore. Highly crystallized water-containing iron ore contains 5 to 10% crystal water.
  • the reducibility of the sintered ore is defined in Japanese Industrial Standard M8713 or ISO7215, and the ultimate reduction rate representing the characteristics is indexed as a reducibility index (RI).
  • the metal salt obtained by combining one or more metals of calcium and magnesium and one or more acids of acetic acid, carbonic acid and nitric acid should be thinly attached to the entire surface of iron ore or sintered ore. It is preferable to produce an effect with a smaller amount of use.
  • the metal salt can be thinly adhered to the iron ore or sintered ore surface by spraying or coating in the form of a solution using water or an organic solvent as a solvent, but calcium or magnesium acetate, nitrate or bicarbonate Is water-soluble, it is preferable to use water which is easily available and inexpensive.
  • calcium or magnesium carbonate Since calcium or magnesium carbonate has low solubility in water, it is preferable to obtain an aqueous solution of calcium bicarbonate or magnesium bicarbonate by dissolving carbonate in carbonated water in which weakly acidic carbonate is dissolved. . Even if calcium carbonate or magnesium carbonate is dissolved in a dilute aqueous solution of acetic acid or nitric acid, the effect of the present invention can be obtained. In this case, part of the carbonate is decomposed to generate carbon dioxide, and acetate or nitrate is generated. It becomes a mixed aqueous solution.
  • an aqueous solution of a metal salt obtained by a combination of at least one metal selected from calcium and magnesium and at least one acid selected from acetic acid, carbonic acid and nitric acid.
  • the amount of the metal salt with respect to the target blast furnace iron source material 1t is 0.1 to 30 mol.
  • the amount of the solution for dissolving the metal salt may be an amount sufficient for the dissolution, and the amount that spreads over the entire iron ore or sintered ore.
  • the amount of the metal salt is preferably 0.3 to 10 mol relative to 1 t of the iron source material for blast furnace.
  • the metal salt aqueous solution is preferably sprayed or applied in an amount of 0.001 to 0.05 ton of aqueous solution per ton of blast furnace iron source material.
  • the metal salt aqueous solution is preferably sprayed or applied in an amount of 0.001 to 0.05 ton of aqueous solution per ton of blast furnace iron source material.
  • the aqueous solution does not spread over the entire iron ore or sintered ore, and the effect of inhibiting the reduction is small and the reduction powdering is not improved.
  • restoration is saturated.
  • the amount is 0.001 to 0.05 tons per ton of blast furnace iron source material to be sprayed or applied with an aqueous solution, the effect of coating the surface of the iron ore or sintered ore with the aqueous solution can be sufficiently obtained.
  • the amount is 0.001 to 0.025 ton per ton of blast furnace iron source raw material.
  • the aqueous metal salt solution preferably has a metal salt concentration of 0.002 to 26 mol / kg. When the amount is less than 0.002 mol / kg, the amount of the metal salt is small, so that the effect of inhibiting the reduction is small and the reduction powdering is not improved.
  • the aqueous metal salt solution has a metal salt concentration of 0.01 to 5 mol / kg, most preferably 0.01 to 1 mol / kg. If the amount is less than 0.01 mol / kg, the improvement of reduced powdering is relatively small, and the cost increases depending on the amount of the drug used. Is 1 mol / kg.
  • FIGS. 1 and 2 are diagrams showing an embodiment of a method for producing an iron source material for a blast furnace according to the present invention, wherein the iron source material for a blast furnace is one or more metals of calcium and magnesium, acetic acid, carbonic acid, The method of manufacturing by spraying the aqueous solution of the metal salt obtained by combining with the 1 or more types of acid of nitric acid is shown.
  • FIG. 1 shows a method of spraying in a yard for a blast furnace iron source material
  • FIG. 2 shows a method of spraying in a blast furnace iron source material conveyor
  • FIG. 2A is a view showing an embodiment in which an aqueous solution of a metal salt is sprayed from above the iron source raw material for a blast furnace while being conveyed by a raw material conveyer
  • FIG. 2B is a blast furnace being conveyed by a raw material conveyer.
  • the metal salt aqueous solution 3 is sprayed from an aqueous solution tank 2 to a pile of iron ore or sintered ore 1 as a blast furnace iron source material deposited in the yard, and spraying equipment 4 such as a spray or a water tank tank ( Spread by watering means such as not shown).
  • FIG. 2 (a) shows an example in which the iron ore or the sintered ore 1 as a blast furnace iron source material is conveyed and moved by the conveying device 5 such as the raw material conveying conveyor.
  • the metal salt aqueous solution 3 is sprayed from the aqueous solution tank 2 from above the sintered ore 1 by a spraying facility 4 such as a spray.
  • FIG. 2B shows the iron ore or sintered ore 1 when the iron ore or sintered ore 1 as a blast furnace iron source material is conveyed and moved by the conveying devices 5a and 5b such as a material conveying conveyor.
  • the metal salt aqueous solution is sprayed by spraying equipment 4a, 4b such as a spray from above, and the metal salt aqueous solution is sprayed by the spraying equipment 4c at the connecting portion from the transport device 5a to the transport device 5b.
  • the aqueous solution of the metal salt can be uniformly attached to the entire surface of the iron source material for blast furnace.
  • the metal salt aqueous solution can be sprayed from below, above, or from the side of the falling iron source material for the blast furnace.
  • the aqueous solution of the metal salt is obtained by using a brush or a flexible material such as resin or cloth. It can be supplied and applied to the surface of the iron source material for blast furnace.
  • Table 2 shows the components of the sintered ore used, and Table 3 shows the components of the iron ore.
  • FIG. 3 shows the results of calcium acetate amount and reduced powder index (RDI).
  • the reduced powder index (RDI) of a sintered ore (Invention Example 1) having a calcium acetate deposition amount of 0.3 mol per ton of blast furnace iron source material produced using the present invention is 33.
  • FIG. 4 shows the results of the amount of magnesium acetate and the reduced powder index (RDI).
  • the reduced powder index (RDI) of sintered ore (Invention Example 2) having a calcium acetate deposition amount of 0.3 mol per ton of blast furnace iron source material produced using the present invention is 32.
  • FIG. 5 shows the results of the amount of dissolved calcium carbonate and the reduced powder index (RDI).
  • the reduced powder index (RD1) of the sintered ore (Invention Example 3) having a calcium carbonate adhesion amount of 0.3 mol per 1 ton of blast furnace iron source material produced using the present invention is 31.
  • FIG. 6 shows the results of the amount of magnesium carbonate dissolved and the reduced powdering index (RDI).
  • the reduced powder index (RDI) of iron ore (invention example 4) having an adhesion amount of 0.3 mol of magnesium carbonate per 1 ton of blast furnace iron source material produced using the present invention is 53%.
  • FIG. 7 shows the results of the dissolved calcium nitrate amount and the reduced powder index (RDI).
  • the reduced powder index (RDI) of sintered ore (Invention Example 5) having a calcium nitrate deposition amount of 0.3 mol per ton of blast furnace iron source material produced using the present invention is 31.
  • Magnesium nitrate aqueous solution is applied to sintered ore with SiO 2 content of 5.1 mass%, sprayed with a sprinkler while changing the molar amount of magnesium nitrate with respect to 1 ton of sintered ore, and reduced to powder after drying at 80 ° C.
  • the index (RDI) was measured.
  • FIG. 8 shows the results of the amount of magnesium nitrate dissolved and the reduced powder index (RDI).
  • the reduced powder index (RDI) of sintered ore (Invention Example 6) having a magnesium nitrate adhesion amount of 0.3 mol per ton of blast furnace iron source material produced using the present invention is 32.
  • a calcium acetate aqueous solution is used for a sintered ore with an SiO 2 content of 4.9 mass%, a reduced powder index (RDI) of 38%, and a reducible index (RI) of 68%.
  • the molar amount of calcium acetate was changed with a sprinkler, and after drying at 80 ° C., the reduced powder index (RDI) and the reducible index (RI) were measured.
  • FIG. 9 shows the results of calcium acetate amount and reduced powder index (RDI).
  • the reduced powder index (RDI) of sintered ore (Invention Example 7) having a calcium acetate adhesion amount of 0.3 mol per 1 ton of blast furnace iron source material produced using the present invention is 35.
  • FIG. 10 shows the results of the calcium acetate amount and the reducibility index (RI).
  • the iron source material for blast furnace produced using the present invention is a reducible index relative to a normal sintered ore that is not treated (corresponding to calcium acetate amount 0, Comparative Example 3). It can be seen that there is little decrease in (RI) and the reduced powder index (RDI) can be improved.
  • a calcium nitrate aqueous solution is used for a sintered ore with a SiO 2 content of 4.9 mass%, a reduced powder index (RDI) of 38%, and a reducible index (RI) of 68%.
  • the molar amount of calcium nitrate was changed with a sprinkler and dried at 80 ° C., and the reduced powder index (RDI) and the reducible index (RI) were measured.
  • FIG. 11 shows the results of calcium nitrate content and reduced powder index (RDI).
  • the reduced powder index (RDI) of the sintered ore (Invention Example 8) having a calcium nitrate adhesion amount of 0.3 mol per ton of the blast furnace iron source material produced using the present invention is 33.
  • FIG. 12 shows the results of calcium nitrate content and reducibility index (RI).
  • the iron source material for blast furnace produced using the present invention is a reducibility index (corresponding to a calcium nitrate amount of 0. Comparative Example 3) that is not treated. It can be seen that the reduction in RI) is small and the reduced powder index (RDI) can be improved.
  • a calcium nitrate aqueous solution is used for a sintered ore with an SiO 2 content of 4.6 mass%, a reduced powder index (RDI) of 42%, and a reducible index (RI) of 73%.
  • the molar amount of calcium nitrate was changed with a sprinkler and dried at 80 ° C., and the reduced powder index (RDI) and the reducible index (RI) were measured.
  • FIG. 13 shows the results of calcium nitrate content and reduced powder index (RDI).
  • the reduced powder index (RDI) of a sintered ore (Invention Example 9) having a calcium nitrate adhesion amount of 0.3 mol per ton of blast furnace iron source material produced using the present invention is 37.
  • FIG. 14 shows the results of calcium nitrate amount and reducibility index (RI).
  • the iron source material for blast furnace produced using the present invention is a reducible index with respect to ordinary sintered ore that is not treated (corresponding to calcium nitrate amount 0, Comparative Example 4). It can be seen that there is little decrease in (RI) and the reduced powder index (RDI) can be improved.
  • FIG. 3 shows the results of calcium acetate amount and reduced powder index (RDI).
  • the reduced powder index (RDI) of the sintered ore (Invention Example 10) having a calcium acetate deposition amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 34. %, which is an improvement from 36% of the reduced powder index (RDI) of ordinary sintered ore (corresponding to calcium acetate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment.
  • FIG. 4 shows the results of the amount of magnesium acetate and the reduced powder index (RDI).
  • the reduced powder index (RDI) of sintered ore (Invention Example 11) having a calcium acetate deposition amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 32. %, which is an improvement from 36% of the reduced powder index (RDI) of ordinary sintered ore (corresponding to magnesium acetate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment.
  • FIG. 5 shows the results of the amount of dissolved calcium carbonate and the reduced powder index (RDI).
  • the reduced powder index (RDI) of sintered ore (Invention Example 12) having a calcium carbonate adhesion amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 32. %, which is an improvement from 36% of the reduced powder index (RDI) of ordinary sinter (corresponding to calcium carbonate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment.
  • FIG. 6 shows the results of the amount of magnesium carbonate dissolved and the reduced powdering index (RDI).
  • the reduced powder index (RDI) of iron ore (invention example 13) having an adhesion amount of magnesium carbonate of 0.1 mol per ton of iron source material for blast furnace manufactured using the present invention is 54%. This was an improvement from 59% of the reduced powder index (RDI) of ordinary iron ore (corresponding to magnesium carbonate amount 0, Comparative Example 2) not subjected to the metal salt aqueous solution adhesion treatment.
  • FIG. 7 shows the results of the dissolved calcium nitrate amount and the reduced powder index (RDI).
  • the reduced powder index (RDI) of a sintered ore (Invention Example 14) having a calcium nitrate adhesion amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 32. %, which is an improvement from 36% of the reduced powder index (RDI) of ordinary sintered ore (corresponding to calcium nitrate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment.
  • FIG. 8 shows the results of the amount of magnesium nitrate dissolved and the reduced powder index (RDI).
  • the reduced powder index (RDI) of the sintered ore (Invention Example 15) having an adhesion amount of magnesium nitrate of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 32. %, which is an improvement from 36% of the reduced powder index (RDI) of ordinary sinter (corresponding to magnesium nitrate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment.
  • a calcium acetate aqueous solution is used for a sintered ore with an SiO 2 content of 4.9 mass%, a reduced powder index (RDI) of 38%, and a reducible index (RI) of 68%.
  • the molar amount of calcium acetate was changed with a sprinkler, and after drying at 80 ° C., the reduced powder index (RDI) and the reducible index (RI) were measured.
  • FIG. 9 shows the results of calcium acetate amount and reduced powder index (RDI).
  • the reduced powder index (RDI) of sintered ore (Invention Example 16) having a calcium acetate deposition amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 36.
  • FIG. 10 shows the results of the calcium acetate amount and the reducibility index (RI).
  • the iron source material for blast furnace produced using the present invention is a reducible index relative to a normal sintered ore that is not treated (corresponding to calcium acetate amount 0, Comparative Example 3). It can be seen that there is little decrease in (RI) and the reduced powder index (RDI) can be improved.
  • a calcium nitrate aqueous solution is used for a sintered ore with a SiO 2 content of 4.9 mass%, a reduced powder index (RDI) of 38%, and a reducible index (RI) of 68%.
  • the molar amount of calcium nitrate was changed with a sprinkler and dried at 80 ° C., and the reduced powder index (RDI) and the reducible index (RI) were measured.
  • FIG. 11 shows the results of calcium nitrate content and reduced powder index (RDI).
  • the reduced powder index (RDI) of the sintered ore (Invention Example 17) having a calcium nitrate adhesion amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 34.
  • FIG. 12 shows the results of calcium nitrate content and reducibility index (RI).
  • the iron source material for blast furnace produced using the present invention is a reducibility index (corresponding to a calcium nitrate amount of 0. Comparative Example 3) that is not treated. It can be seen that the reduction in RI) is small and the reduced powder index (RDI) can be improved.
  • a calcium nitrate aqueous solution is used for a sintered ore with an SiO 2 content of 4.6 mass%, a reduced powder index (RDI) of 42%, and a reducible index (RI) of 73%.
  • the molar amount of calcium nitrate was changed with a sprinkler and dried at 80 ° C., and the reduced powder index (RDI) and the reducible index (RI) were measured.
  • FIG. 13 shows the results of calcium nitrate content and reduced powder index (RDI).
  • the reduced powder index (RDI) of sintered ore (Invention Example 18) having a calcium nitrate adhesion amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 38.
  • FIG. 14 shows the results of calcium nitrate amount and reducibility index (RI).
  • the iron source material for blast furnace produced using the present invention is a reducible index with respect to ordinary sintered ore that is not treated (corresponding to calcium nitrate amount 0, Comparative Example 4). It can be seen that there is little decrease in (RI) and the reduced powder index (RDI) can be improved.
  • Iron source material for blast furnace iron ore or sintered ore
  • Aqueous solution tank 3
  • Spraying equipment 5 Conveying device

Abstract

Provided is a process for manufacturing an iron-source raw material with excellent resistance to reduction disintegration, said iron-source raw material being to be fed into a blast furnace. This process is characterized by making an aqueous solution of a metal salt adhere to the surface of an iron-source raw material to be fed into a blast furnace, said metal salt being a salt obtained by combining calcium and/or magnesium with at least one acid selected from among acetic acid, carbonic acid and nitric acid. It is preferable that: the aqueous solution (3) of the metal salt is made to adhere to the iron-source raw material (1) by spraying or coating; the quantity of the metal salt per ton of the iron-source raw material is adjusted to 0.1 to 30mol; and the iron-source raw material is a low-silica sintered ore having an SiO2 content of 4.9 mass% or less.

Description

高炉用鉄源原料の製造方法Manufacturing method of iron source material for blast furnace
 本発明は、耐還元粉化に優れた焼結鉱及び鉄鉱石などの高炉用鉄源原料の製造方法に関する。 The present invention relates to a method for producing an iron source material for a blast furnace such as sintered ore and iron ore having excellent resistance to reduction powdering.
 高炉において使用されている焼結鉱は高炉シャフト部の400~600℃の比較的低温域において著しい粉化現象を起こし、そのため、高炉内のガス通気性を阻害して高炉炉況を悪化させる原因となっている。そのため高炉内の塊状帯の550℃付近でヘマタイトがマグネタイトに還元される際の粉化を想定した還元粉化試験が日本工業規格M8720、或はISO4696−2において規定され、特性を表す品質指標は還元粉化指数(Reduction Degradation Index)(RDI)として指数化されている。 The sintered ore used in the blast furnace causes a remarkable pulverization phenomenon in the relatively low temperature range of 400 to 600 ° C of the blast furnace shaft part. Therefore, the gas permeability in the blast furnace is hindered and the blast furnace condition is deteriorated. It has become. Therefore, a reduction pulverization test that assumes pulverization when hematite is reduced to magnetite at around 550 ° C. in the massive zone in the blast furnace is defined in Japanese Industrial Standard M8720 or ISO 4696-2, and the quality index indicating characteristics is It is indexed as a Reduction Degradation Index (RDI).
 従来から、高炉用鉄源原料の耐還元粉化性や被還元性を改善するための技術が検討されてきたが、これらは、高炉用鉄源原料の粒度や配合などを調整する方法や、焼結装置での焼成方法に関するものが主体であった。 Conventionally, techniques for improving the reduction dust resistance and reducibility of iron source materials for blast furnaces have been studied, but these include methods for adjusting the particle size and blending of iron source materials for blast furnaces, Mainly related to the firing method in the sintering apparatus.
 また高炉に直接装入される塊状の鉄鉱石についても上記の還元粉化現象が認められ、近年使用量が増加している結晶水含有量の多い鉄鉱石では特に粉化が顕著である。 In addition, the above-mentioned reduced powdering phenomenon is also observed in the massive iron ore charged directly into the blast furnace, and powdering is particularly remarkable in the iron ore with a high content of crystal water that has been used in recent years.
 これに対して、高炉用鉄源原料に後処理を施して上記の品質を改善する方法も試みられている。例えば、焼結鉱にハロゲン化水溶液を散布することにより還元粉化性が改善することは知られており、非特許文献1では塩化カルシウム水溶液を用いてその機構を解明している。また特許文献1や特許文献2には、塩化物を含む水溶液を焼結鉱に散布するか或いはこれに浸漬することにより、その周りに塩化物の皮膜を形成し、耐還元粉化特性を改善する方法が提案されている。また、特許文献3には、炭素を含有する流体として、加熱したタール、粉コークススラリー或いは微粉炭スラリーを焼結鉱に散布するか或いはこれに浸漬することにより、その開気孔に炭素含有物質を充填し、耐還元粉化性と被還元性を同時に改善する方法が提案されている。また、特許文献4には、鉄鉱石または焼結鉱などの高炉用鉄源原料の表面を有機高分子化合物の皮膜で被覆を形成し、高炉鉄源原料に存在する開気孔を有機高分子化合物により充填閉塞することにより、還元粉化が起こる低温域での高炉用鉄源原料の表面ならびに開気孔内部での還元ガスとの反応を抑制して還元粉化を防止すると共に、高温域では有機高分子化合物の炭素分により還元反応を促進する方法が提案されている。 In contrast, an attempt has been made to improve the quality by post-processing the iron source material for blast furnace. For example, it is known that reducing powdering property is improved by spraying a halogenated aqueous solution on sintered ore, and Non-Patent Document 1 discloses the mechanism using a calcium chloride aqueous solution. In Patent Document 1 and Patent Document 2, an aqueous solution containing chloride is sprayed on or immersed in the sintered ore to form a chloride film around it and improve the anti-reduction powder characteristics. A method has been proposed. Further, in Patent Document 3, as a carbon-containing fluid, a heated tar, a powder coke slurry, or a pulverized coal slurry is sprayed on or immersed in a sintered ore so that a carbon-containing substance is introduced into the open pores. A method of filling and reducing powder resistance and reducibility at the same time has been proposed. Patent Document 4 discloses that the surface of a blast furnace iron source material such as iron ore or sintered ore is coated with a coating of an organic polymer compound, and the open pores present in the blast furnace iron source material are defined as organic polymer compounds. In this way, the surface of the iron source material for blast furnace and the reaction with the reducing gas inside the open pores are suppressed by reducing the pulverization, and the reduction pulverization is prevented. There has been proposed a method of promoting the reduction reaction by the carbon content of the polymer compound.
 ところで、良質の塊鉱石の枯渇傾向に伴い、現在では高炉用鉄源原料に占める焼結鉱等の処理鉱の比率が高い操業が一般的である。ここで現状の焼結鉱のSiO含有率は塊鉱石に比較して高いため、高炉用鉄源原料における焼結鉱比率の上昇にともない高炉スラグ量が増加し、高炉還元材比およびスラグ処理費の増大を招いていた。 By the way, with the tendency of depletion of high-quality lump ore, operation with a high ratio of treated ore such as sintered ore to the iron source material for blast furnace is now common. Here, since the SiO 2 content of the current sintered ore is higher than that of the lump ore, the amount of blast furnace slag increases as the ratio of sintered ore in the iron source material for blast furnace increases, and the ratio of blast furnace reducing material and slag treatment Incurred an increase in costs.
 また焼結鉱の還元性や高温性状を改善する方法としては、焼結鉱中のスラグ量、従ってSiO含有率を低減することが効果的であることが知られている。但し、還元粉化性は悪化するという、互いに相反する関係にあり、両者を同時に改善することは困難である。 Further, as a method for improving the reducing property and high temperature property of the sintered ore, it is known that it is effective to reduce the amount of slag in the sintered ore and hence the SiO 2 content. However, there is a mutually contradictory relationship that the reduced powdering property is deteriorated, and it is difficult to improve both at the same time.
 従来、省資源の観点から高炉還元材比およびスラグ比低減のニーズが高まっており、特許文献5、6に記載されているような含MgO副原料としてマグネサイト及びブルースタイトの内の一方又は両方を用いて焼結鉱SiO含有率を下げる試みが提案されている。 Conventionally, the need for reducing the ratio of blast furnace reducing material and slag ratio has been increased from the viewpoint of resource saving, and one or both of magnesite and bruceite as MgO-containing auxiliary materials as described in Patent Documents 5 and 6 Attempts have been made to reduce the content of sintered ore SiO 2 using slag.
特開昭59−104437号公報JP 59-104437 A 特開昭63−145724号公報JP-A 63-145724 特開2000−73127号公報JP 2000-73127 A 特開2009−19252号公報JP 2009-19252 A 特開2000−178659号公報JP 2000-178659 A 特開2001−294945号公報JP 2001-294945 A
 しかしながら、特許文献1や特許文献2にあるような塩化物を用いる方法では、高炉内に塩素が増え、高炉のレンガの損傷を早めたり、高炉ガス中に混入した塩素が高炉ガス処理装置のガス通路に付着して閉塞を生じさせたり、或いは腐食を加速させるなど、高炉操業、設備にとって好ましくない。 However, in the method using chloride as in Patent Document 1 and Patent Document 2, chlorine is increased in the blast furnace, so that damage to the bricks of the blast furnace is accelerated, or chlorine mixed in the blast furnace gas is gas in the blast furnace gas processing apparatus. It is not preferable for blast furnace operation and equipment such as adhering to the passage to cause clogging or accelerating corrosion.
 また、特許文献3のように、炭素を含有する流体としてタールを用いる場合は高温のタールで処理するという過酷な作業が必要であり、また、微粉炭や粉コークススラリーを用いる方法では、微粉炭や粉コークスが疎水性であるため分散性のよいスラリーを調整し、かつ、このスラリーを高炉鉄源用原料の表面に十分な量を付着させることが困難であることなどから、耐還元粉化性の向上に十分な効果が得られないなどの欠点があり、さらに有効な方法が望まれている。 Further, as in Patent Document 3, when tar is used as a fluid containing carbon, a harsh operation of treating with high-temperature tar is required, and in the method using pulverized coal or pulverized coke slurry, pulverized coal Because powder coke is hydrophobic, it is difficult to prepare a slurry with good dispersibility and to attach a sufficient amount of this slurry to the surface of the raw material for blast furnace iron source. However, there is a drawback that a sufficient effect for improving the property cannot be obtained, and a more effective method is desired.
 また、特許文献4のように、有機高分子であるアクリル酸重合物、ポリビニルアルコール、アミロースで被覆を形成する場合、無機物もしくは単量体に比較し高価であるため経済性に問題がある。 Also, as in Patent Document 4, when a coating is formed with an acrylic polymer, polyvinyl alcohol, or amylose, which is an organic polymer, there is a problem in economy because it is more expensive than an inorganic substance or a monomer.
 また、特許文献5、6のように、含MgO副原料としてマグネサイト及びブルースタイトの内の一方又は両方を用いて低シリカ焼結鉱を製造する場合には、マグネサイト及びブルースタイトが一般的には入手しにくい原料であるため多量の焼結鉱の製造を行うことが困難である。 In addition, as in Patent Documents 5 and 6, when producing low-silica sintered ore using one or both of magnesite and bluestone as an MgO-containing auxiliary material, magnesite and bluestone are generally used. It is difficult to produce a large amount of sintered ore because it is a raw material that is difficult to obtain.
 現状では高炉操業に支障無き様、焼結鉱のRDIを38%以下とするために、焼結鉱中SiO含有率は4.9mass%程度以上に留まっており、焼結鉱中SiO含有率を下げるためにも焼結鉱の耐還元粉化性の向上は重要な課題となっている。 As Without trouble blast furnace operation at present, in order to below 38% of the RDI of sintered ore, SiO 2 content in the sinter is remained more than about 4.9mass%, SiO 2 content in sintered ore In order to reduce the rate, the improvement of the reduction powder resistance of the sintered ore is an important issue.
 本発明の目的は、このような従来技術の課題を解決し、耐還元粉化性に優れた高炉用鉄源原料の製造方法を提供することにある。 An object of the present invention is to solve such problems of the prior art and to provide a method for producing an iron source material for a blast furnace having excellent resistance to reduction dusting.
 このような課題を解決するための本発明の特徴は以下の通りである。
(1)カルシウムとマグネシウムのグループから選択された少なくとも一つの金属と、酢酸、炭酸と硝酸のグループから選択された少なくとも一つの酸とを含む金属塩の水溶液を、高炉用鉄源原料の表面に付着させる第1の付着工程を有することを特徴とする高炉用鉄源原料の製造方法。
(2)前記第1の付着工程が、前記金属塩の水溶液を高炉用鉄源原料に散布または塗布し、金属塩の水溶液を前記高炉用鉄源原料に付着させることからなる(1)に記載の高炉用鉄源原料の製造方法。
(3)前記第1の付着工程が、金属塩の水溶液をヤードに堆積された高炉用鉄源原料に散布することからなる(2)に記載の高炉用鉄源原料の製造方法。
(4)前記第1の付着工程の後、前記高炉用鉄源原料を原料搬送コンベアーで高炉に搬送する際に、前記原料搬送コンベアーの乗り継ぎ部を通過した後、少なくとも一回、前記高炉用鉄源原料に、前記金属塩の水溶液を散布する第2の付着工程を有する(3)に記載の高炉用鉄源原料の製造方法。
(5)前記第1の付着工程が、高炉用鉄源原料を原料搬送コンベアーにより高炉に搬送する際に、前記原料搬送コンベアーの乗り継ぎ部において、前記高炉用鉄源原料に、前記金属塩の水溶液を散布することからなる請求項2に記載の高炉用鉄源原料の製造方法。
(6)前記第1の付着工程が、高炉用鉄源原料を原料搬送コンベアーにより高炉に搬送する際に、高炉用鉄源原料の上方から金属塩の水溶液を散布することからなる(2)に記載の高炉用鉄源原料の製造方法。
(7)前記第1の付着工程の後、前記高炉用鉄源原料を原料搬送コンベアーで高炉に搬送する際に、前記原料搬送コンベアーの乗り継ぎ部を通過した後、少なくとも一回、前記高炉用鉄源原料に、前記金属塩の水溶液を散布する第2の付着工程を有する(6)に記載の高炉用鉄源原料の製造方法。
(8)前記金属塩が、前記高炉用鉄源原料1tに対して、0.1~30モルである(1)に記載の高炉用鉄源原料の製造方法。
(9)前記金属塩が、前記高炉用鉄源原料1tに対して、0.3~10モルである(8)に記載の高炉用鉄源原料の製造方法。
(10)前記金属塩が、前記高炉用鉄源原料1tに対して、0.3~5モルである(9)に記載の高炉用鉄源原料の製造方法。
(11)前記高炉用鉄源原料が、焼結鉱である(1)に記載の高炉用鉄源原料の製造方法。
(12)前記高炉用鉄源原料が、SiO含有量が4.9mass%以下である焼結鉱である(11)に記載の高炉用鉄源原料の製造方法。
(13)前記高炉用鉄源原料が、SiO含有量が4.6~4.9mass%である焼結鉱である(12)に記載の高炉用鉄源原料の製造方法。
(14)前記高炉用鉄源原料が、鉄鉱石である(1)に記載の高炉用鉄源原料の製造方法。
(15)前記鉄鉱石が、高結晶水鉄鉱石である(14)に記載の高炉用鉄源原料の製造方法。
(16)前記金属塩が、炭酸水素カルシウムと炭酸水素マグネシウムからなるグループから選択された少なくとも一つの金属塩である(1)に記載の高炉用鉄源原料の製造方法。
(17)前記金属塩が、硝酸カルシウムと硝酸マグネシウムからなるグループから選択された少なくとも一つの金属塩である(1)に記載の高炉用鉄源原料の製造方法。
(18)前記金属塩が、酢酸カルシウムと酢酸マグネシウムからなるグループから選択された少なくとも一つの金属塩である(1)に記載の高炉用鉄源原料の製造方法。
(19)前記金属塩の水溶液の散布が、高炉用鉄源原料トン当たり0.001~0.05トンの水溶液を散布または塗布することからなる(2)に記載の高炉用鉄源原料の製造方法。
(20)前記金属塩の水溶液の散布が、対象とする高炉用鉄源原料トン当たり0.001~0.025トンの水溶液を散布または塗布することからなる(19)に記載の高炉用鉄源原料の製造方法。
(21)前記金属塩の水溶液が、0.002~26モル/kgの金属塩の濃度を有する(1)に記載の高炉用鉄源原料の製造方法。
(22)前記金属塩の水溶液が、0.01~5モル/kgの金属塩の濃度を有する(22)に記載の高炉用鉄源原料の製造方法。
(23)前記金属塩の水溶液が、0.01~1モル/kgの金属塩の濃度を有する(23)に記載の高炉用鉄源原料の製造方法。
The features of the present invention for solving such problems are as follows.
(1) An aqueous solution of a metal salt containing at least one metal selected from the group of calcium and magnesium and at least one acid selected from the group of acetic acid, carbonic acid and nitric acid is applied to the surface of the iron source material for blast furnace. A method for producing an iron source material for a blast furnace, comprising a first attaching step for attaching.
(2) The first attaching step includes spraying or applying the aqueous solution of the metal salt to the iron source material for blast furnace, and attaching the aqueous solution of the metal salt to the iron source material for blast furnace. Of manufacturing iron source material for blast furnace.
(3) The method for producing a blast furnace iron source material according to (2), wherein the first attaching step includes spraying an aqueous solution of a metal salt onto a blast furnace iron source material deposited in a yard.
(4) After transporting the blast furnace iron source raw material to the blast furnace by the raw material transport conveyor after the first adhesion step, at least once after passing through the connecting portion of the raw material transport conveyor, the blast furnace iron The manufacturing method of the iron source material for blast furnaces as described in (3) which has a 2nd adhesion process which sprinkles the aqueous solution of the said metal salt to a source material.
(5) When said 1st adhesion process conveys the iron source raw material for blast furnaces to a blast furnace by a raw material conveyance conveyor, in the transfer part of the said raw material conveyance conveyor, the aqueous solution of the said metal salt to the said blast furnace iron source raw material The manufacturing method of the iron source raw material for blast furnaces of Claim 2 which consists of spraying.
(6) The first attaching step comprises (2) spraying an aqueous solution of a metal salt from above the blast furnace iron source material when the blast furnace iron source material is conveyed to the blast furnace by a material conveyor. The manufacturing method of the iron source raw material for blast furnaces of description.
(7) After transporting the blast furnace iron source material to the blast furnace by the material transport conveyor after the first adhesion step, at least once after passing through the connecting portion of the material transport conveyor, the blast furnace iron The manufacturing method of the iron source material for blast furnaces as described in (6) which has a 2nd adhesion process which sprinkles the aqueous solution of the said metal salt to a source material.
(8) The method for producing a blast furnace iron source material according to (1), wherein the metal salt is 0.1 to 30 mol with respect to 1 t of the blast furnace iron source material.
(9) The method for producing a blast furnace iron source material according to (8), wherein the metal salt is 0.3 to 10 mol with respect to the blast furnace iron source material 1t.
(10) The method for producing a blast furnace iron source material according to (9), wherein the metal salt is 0.3 to 5 mol with respect to the blast furnace iron source material 1t.
(11) The method for producing a blast furnace iron source material according to (1), wherein the blast furnace iron source material is sintered ore.
(12) The method for producing a blast furnace iron source material according to (11), wherein the blast furnace iron source material is a sintered ore having a SiO 2 content of 4.9 mass% or less.
(13) The method for producing a blast furnace iron source material according to (12), wherein the blast furnace iron source material is a sintered ore having a SiO 2 content of 4.6 to 4.9 mass%.
(14) The method for producing an iron source material for a blast furnace according to (1), wherein the iron source material for a blast furnace is iron ore.
(15) The method for producing an iron source material for a blast furnace according to (14), wherein the iron ore is a high-crystal water iron ore.
(16) The method for producing an iron source material for a blast furnace according to (1), wherein the metal salt is at least one metal salt selected from the group consisting of calcium hydrogen carbonate and magnesium hydrogen carbonate.
(17) The method for producing an iron source material for a blast furnace according to (1), wherein the metal salt is at least one metal salt selected from the group consisting of calcium nitrate and magnesium nitrate.
(18) The method for producing an iron source material for a blast furnace according to (1), wherein the metal salt is at least one metal salt selected from the group consisting of calcium acetate and magnesium acetate.
(19) The production of the iron source material for blast furnace according to (2), in which the dispersion of the metal salt aqueous solution comprises spraying or applying 0.001 to 0.05 ton of an aqueous solution per ton of blast furnace iron source material Method.
(20) The blast furnace iron source according to (19), wherein the dispersion of the metal salt aqueous solution comprises spraying or coating 0.001 to 0.025 tons of an aqueous solution per ton of blast furnace iron source raw material to be processed. Raw material manufacturing method.
(21) The method for producing an iron source material for a blast furnace according to (1), wherein the aqueous metal salt solution has a metal salt concentration of 0.002 to 26 mol / kg.
(22) The method for producing an iron source material for a blast furnace according to (22), wherein the aqueous metal salt solution has a metal salt concentration of 0.01 to 5 mol / kg.
(23) The method for producing an iron source material for a blast furnace according to (23), wherein the aqueous solution of the metal salt has a metal salt concentration of 0.01 to 1 mol / kg.
 本発明によれば、有機高分子等の高価な材料やマグネサイト及びブルースタイト等の入手し難い原料を使用することなく、経済的に、高炉用鉄源原料の還元粉化を防止することが可能となる。 According to the present invention, it is possible to economically prevent reduced pulverization of an iron source material for a blast furnace without using an expensive material such as an organic polymer, or an inaccessible raw material such as magnesite and bluestone. It becomes possible.
本発明の製造方法の一実施形態を示す図である。It is a figure which shows one Embodiment of the manufacturing method of this invention. 本発明の製造方法の他の一実施形態を示す図である。図2(a)は原料搬送コンベアーにより搬送しながら高炉用鉄源原料の上方から金属塩の水溶液を散布する実施形態を示す図であり、図2(b)は原料搬送コンベアーにより搬送しながら高炉用鉄源原料の上方から金属塩の水溶液を散布し、且つ、原料搬送コンベアーの乗り継ぎ部において高炉用鉄源原料に前記金属塩の水溶液を散布する実施形態を示す図である。It is a figure which shows other one Embodiment of the manufacturing method of this invention. FIG. 2A is a view showing an embodiment in which an aqueous solution of a metal salt is sprayed from above the iron source raw material for a blast furnace while being conveyed by a raw material conveyer, and FIG. 2B is a blast furnace being conveyed by a raw material conveyer. It is a figure which shows the embodiment which sprays the aqueous solution of a metal salt from the upper part of the iron source material for industrial use, and sprays the aqueous solution of the metal salt to the iron source material for blast furnace at the connecting part of the raw material transfer conveyor. SiO含有量が5.1mass%である焼結鉱への酢酸カルシウムの付着量に対するRDIの変化を示すグラフ。Graph showing changes in RDI for deposition of calcium acetate to sinter SiO 2 content of 5.1mass%. SiO含有量が5.1mass%である焼結鉱への酢酸マグネシウムの付着量に対するRDIの変化を示すグラフ。Graph showing changes in RDI for deposition amount of magnesium acetate to sinter SiO 2 content of 5.1mass%. SiO含有量が5.1mass%である焼結鉱への炭酸カルシウムの付着量に対するRDIの変化を示すグラフ。Graph showing changes in RDI for deposition of calcium carbonate to sinter SiO 2 content of 5.1mass%. 鉄鉱石への炭酸マグネシウムの付着量に対するRDIの変化を示すグラフ。The graph which shows the change of RDI with respect to the adhesion amount of magnesium carbonate to an iron ore. SiO含有量が5.1mass%である焼結鉱への硝酸カルシウムの付着量に対するRDIの変化を示すグラフ。Graph showing changes in RDI for deposition of calcium nitrate to sinter SiO 2 content of 5.1mass%. SiO含有量が5.1mass%である焼結鉱への硝酸マグネシウムの付着量に対するRDIの変化を示すグラフ。Graph showing changes in RDI SiO 2 content relative to deposition amount of magnesium nitrate into the sintered ore is 5.1mass%. SiO含有量が4.9mass%である焼結鉱への酢酸カルシウムの付着量に対するRDIの変化を示すグラフ。Graph showing changes in RDI for deposition of calcium acetate to sinter SiO 2 content of 4.9mass%. SiO含有量が4.9mass%である焼結鉱への酢酸カルシウムの付着量に対するRIの変化を示すグラフ。Graph showing changes in RI for deposition of calcium acetate to sinter SiO 2 content of 4.9mass%. SiO含有量が4.9mass%である焼結鉱への硝酸カルシウムの付着量に対するRDIの変化を示すグラフ。Graph showing changes in RDI for deposition of calcium nitrate to sinter SiO 2 content of 4.9mass%. SiO含有量が4.9mass%である焼結鉱への硝酸カルシウムの付着量に対するRIの変化を示すグラフ。Graph showing changes in RI for deposition of calcium nitrate to sinter SiO 2 content of 4.9mass%. SiO含有量が4.6mass%である焼結鉱への硝酸カルシウムの付着量に対するRDIの変化を示すグラフ。Graph showing changes in RDI for deposition of calcium nitrate to sinter SiO 2 content of 4.6mass%. SiO含有量が4.6mass%である焼結鉱への硝酸カルシウムの付着量に対するRIの変化を示すグラフ。Graph showing changes in RI for deposition of calcium nitrate to sinter SiO 2 content of 4.6mass%.
 本発明で用いる高炉用鉄源原料とは、高炉の炉頂から装入する鉄含有原料であり、主に焼結鉱、鉄鉱石(塊鉱石)であり、3価の酸化鉄(ヘマタイト)を含有するものである。以下においては焼結鉱と鉄鉱石の場合で説明する。 The iron source material for blast furnace used in the present invention is an iron-containing raw material charged from the top of the blast furnace, mainly sintered ore, iron ore (lump ore), and trivalent iron oxide (hematite). It contains. In the following, the case of sintered ore and iron ore will be described.
 本発明では焼結鉱や鉄鉱石の還元を阻害するために、表面にカルシウム、マグネシウムの内の1種以上の金属と、酢酸、炭酸、硝酸の内の1種以上の酸との組合せで得られる金属塩の水溶液を付着させる。 In the present invention, in order to inhibit the reduction of sintered ore and iron ore, the surface is obtained by combining one or more metals of calcium and magnesium with one or more acids of acetic acid, carbonic acid and nitric acid. An aqueous solution of a metal salt is deposited.
 カルシウム、マグネシウムの内の1種以上の金属と、酢酸、炭酸、硝酸の内の1種以上の酸との組合せで得られる金属塩の水溶液は、カルシウムまたはマグネシウムの酢酸塩の水溶液、カルシウムまたはマグネシウムの硝酸塩の水溶液、カルシウムまたはマグネシウムの炭酸水素塩の水溶液のいずれかでも良いし、上記水溶液のうち2種以上の混合水溶液であっても良い。 An aqueous solution of a metal salt obtained by combining one or more metals of calcium and magnesium and one or more acids of acetic acid, carbonic acid and nitric acid is an aqueous solution of calcium or magnesium acetate, calcium or magnesium Nitrate aqueous solution, calcium or magnesium hydrogen carbonate aqueous solution, or a mixed aqueous solution of two or more of the above aqueous solutions.
 本発明で高炉用鉄源原料の還元粉化性が改善する理由は、非特許文献1において塩化カルシウムが焼結鉱の内壁へ析出・付着し、鉱粒と還元ガスの接触を妨げ還元の進行を遅らせると記述されているのと同様に、カルシウム、マグネシウムの内の1種以上の金属と、酢酸、炭酸、硝酸の内の1種以上の酸との組合せで得られる金属塩が焼結鉱の内壁へ析出・付着し、鉱粒と還元ガスの接触を妨げ還元の進行を遅らせるためであると考えられる。しかしながら還元性に関しては、塩化カルシウムの場合、1000℃においても溶融状態で焼結鉱表面にとどまるため、還元の進行が粉化温度領域を超えても停滞してしまうが、カルシウム、マグネシウムの内の1種以上の金属と、酢酸、炭酸、硝酸の内の1種以上の酸との組合せで得られる金属塩は800℃程度以下の温度で分解するため、付着層が還元ガスを透過させるようになり、比較的還元の進行が速いという特徴がある。 The reason why the reduced powdering property of the iron source material for blast furnace is improved in the present invention is that calcium chloride precipitates and adheres to the inner wall of the sintered ore in Non-Patent Document 1 and prevents the contact between the ore and the reducing gas and the progress of reduction. The metal salt obtained by combining one or more metals of calcium and magnesium and one or more acids of acetic acid, carbonic acid and nitric acid is a sintered ore. This is thought to be due to the precipitation and adhesion to the inner wall of the steel, preventing the contact between the mineral grains and the reducing gas and delaying the reduction. However, with regard to reducibility, in the case of calcium chloride, since it remains on the surface of the sinter in a molten state even at 1000 ° C., the progress of the reduction will stagnate even if it exceeds the pulverization temperature range. Since the metal salt obtained by combining one or more metals and one or more acids of acetic acid, carbonic acid, and nitric acid decomposes at a temperature of about 800 ° C. or less, the adhesion layer allows the reducing gas to pass therethrough. Therefore, the reduction is relatively fast.
 鉄鉱石または焼結鉱は高炉上部の400~600℃付近の温度において還元されて鉄鉱石または焼結鉱中のヘマタイト(Fe)がマグネタイト(Fe)になる。この相変化には体積膨張を伴うため、鉄鉱石または焼結鉱中に歪またはクラックが発生して脆くなり、鉄鉱石または焼結鉱の還元粉化が盛んに起こる。 The iron ore or sintered ore is reduced at a temperature around 400 to 600 ° C. at the upper part of the blast furnace, and the hematite (Fe 2 O 3 ) in the iron ore or sintered ore becomes magnetite (Fe 3 O 4 ). Since this phase change is accompanied by volume expansion, strain or cracks are generated in the iron ore or sintered ore and become brittle, and reduction ore of the iron ore or sintered ore frequently occurs.
 鉄鉱石または焼結鉱の表面にカルシウムまたはマグネシウムを含有する溶液を付着させた場合、高炉内への装入等で周囲の温度が上昇すると付着した溶液の溶媒(水分および低温揮発分)は蒸発し、カルシウム塩の結晶またはマグネシウム塩の結晶が鉄鉱石または焼結鉱表面に析出する。 When a solution containing calcium or magnesium is attached to the surface of iron ore or sintered ore, the solvent (water and low-temperature volatiles) of the attached solution evaporates when the ambient temperature rises due to charging into the blast furnace. Then, calcium salt crystals or magnesium salt crystals are deposited on the iron ore or sintered ore surface.
 鉄鉱石または焼結鉱表面に析出した塩の結晶は、鉄鉱石または焼結鉱内部への還元ガスの気孔を通した拡散を、鉄鉱石または焼結鉱表面に面した気孔を塞ぐことにより阻害して鉄鉱石または焼結鉱内部の還元を遅らせるため、鉄鉱石または焼結鉱内部でのマグネタイトの生成量が減少し、還元粉化が抑制される。 Salt crystals deposited on the surface of the iron ore or sinter inhibit the diffusion of reducing gas through the pores inside the iron ore or sinter by blocking the pores facing the iron ore or sinter surface. Thus, since the reduction in the iron ore or sintered ore is delayed, the amount of magnetite produced in the iron ore or sintered ore is reduced, and reduced powdering is suppressed.
 前記析出したカルシウム塩の結晶またはマグネシウム塩の結晶は還元粉化の起こる温度域よりも更に高温では分解し、容積の縮小を伴い酸化物に変化することにより、鉄鉱石または焼結鉱内部への還元ガスの気孔を通した拡散が容易となり鉄鉱石または焼結鉱内部の還元が進行するので被還元性の低下はわずかである。 The precipitated calcium salt crystal or magnesium salt crystal decomposes at a temperature higher than the temperature range where reductive powdering occurs, and changes into an oxide with a reduction in volume, so that it enters the iron ore or sintered ore. The reduction of reducibility is small because the diffusion of the reducing gas through the pores is facilitated and the reduction inside the iron ore or sintered ore proceeds.
 ここでモル当量当たりの金属塩の体積と高温での分解後の金属酸化物の体積との比を各金属塩で比較した場合、炭酸塩、硝酸塩、酢酸塩の順に大きくなり、分解に伴う容積収縮量が大きくなると考えられ、鉄鉱石または焼結鉱内部への還元ガスの気孔を通した拡散は炭酸塩、硝酸塩、酢酸塩の順に従い容易になると推定される。 Here, when the ratio of the volume of the metal salt per molar equivalent to the volume of the metal oxide after decomposition at high temperature is compared for each metal salt, the volume associated with decomposition increases in the order of carbonate, nitrate, and acetate. The amount of shrinkage is considered to increase, and it is estimated that diffusion of reducing gas through the pores of iron ore or sinter becomes easier in the order of carbonate, nitrate, and acetate.
 特に、SiO含有量が低い焼結鉱はスラグ量が少ないため通常の焼結鉱よりも被還元性が良好であり、被還元性指数(RI)が68%程度と高いが、還元粉化性が悪く、RDIが38%以上と高い。この還元粉化性を改善するにはマグネサイト及びブルースタイト等が有効であるが、これらは入手し難い欠点がある。このようなRDIが38%以上と高い焼結鉱に本発明を適用し焼結鉱の耐還元粉化性を向上することで、本発明をより効果的に活用することができる。このような焼結鉱として、SiO含有量は4.9mass%以下である焼結鉱を用いるのが好ましい。SiO含有量は4.6~4.9mass%であるのがより好ましい。
 また、鉄鉱石としては還元粉化が顕著である高結晶水含有鉄鉱石に本発明を適用するのが好ましい。高結晶水含有鉄鉱石は結晶水を5~10%含有する。
In particular, sintered ore with a low SiO 2 content is less reducible than ordinary sintered ore because of less slag, and the reducible index (RI) is as high as 68%, but it is reduced to powder. The RDI is as high as 38% or more. In order to improve this reduced powdering property, magnesite, bluestone, etc. are effective, but they have a drawback that they are difficult to obtain. By applying the present invention to sintered ore having such a high RDI of 38% or more and improving the reduction powder resistance of the sintered ore, the present invention can be utilized more effectively. As such a sintered ore, it is preferable to use a sintered ore having a SiO 2 content of 4.9 mass% or less. The SiO 2 content is more preferably 4.6 to 4.9 mass%.
Moreover, it is preferable to apply this invention to a high crystal water containing iron ore with remarkable reduction powdering as an iron ore. Highly crystallized water-containing iron ore contains 5 to 10% crystal water.
 焼結鉱の被還元性に関しては日本工業規格M8713或いはISO7215において規定され、特性を表す到達還元率を被還元性指数(Reducibility Index)(RI)として指数化されている。 The reducibility of the sintered ore is defined in Japanese Industrial Standard M8713 or ISO7215, and the ultimate reduction rate representing the characteristics is indexed as a reducibility index (RI).
 カルシウム、マグネシウムの内の1種以上の金属と、酢酸、炭酸、硝酸の内の1種以上の酸との組合せで得られる金属塩は、鉄鉱石または焼結鉱の全表面に薄く付着させることにより少ない使用量で効果を出すことが好ましい。水或いは有機溶媒などを溶媒とした溶液の状態で散布または塗布などにより前記金属塩を鉄鉱石または焼結鉱表面に薄く付着させることができるが、カルシウムまたはマグネシウムの酢酸塩、硝酸塩または炭酸水素塩は水溶性であることから、溶媒としては入手が容易で安価な水を用いることが好ましい。 The metal salt obtained by combining one or more metals of calcium and magnesium and one or more acids of acetic acid, carbonic acid and nitric acid should be thinly attached to the entire surface of iron ore or sintered ore. It is preferable to produce an effect with a smaller amount of use. The metal salt can be thinly adhered to the iron ore or sintered ore surface by spraying or coating in the form of a solution using water or an organic solvent as a solvent, but calcium or magnesium acetate, nitrate or bicarbonate Is water-soluble, it is preferable to use water which is easily available and inexpensive.
 カルシウムまたはマグネシウムの炭酸塩は水に対する溶解度が低いため、弱酸性である炭酸を溶解させた炭酸水に炭酸塩を溶解し、炭酸水素カルシウムまたは炭酸水素マグネシウムの炭酸水素塩の水溶液を得ることが好ましい。カルシウムまたはマグネシウムの炭酸塩を酢酸や硝酸の希薄水溶液に溶解しても本発明の効果は得られるが、この場合は、炭酸塩の一部が分解して炭酸ガスが発生し、酢酸塩または硝酸塩の混ざった水溶液となる。 Since calcium or magnesium carbonate has low solubility in water, it is preferable to obtain an aqueous solution of calcium bicarbonate or magnesium bicarbonate by dissolving carbonate in carbonated water in which weakly acidic carbonate is dissolved. . Even if calcium carbonate or magnesium carbonate is dissolved in a dilute aqueous solution of acetic acid or nitric acid, the effect of the present invention can be obtained. In this case, part of the carbonate is decomposed to generate carbon dioxide, and acetate or nitrate is generated. It becomes a mixed aqueous solution.
 したがって、カルシウム、マグネシウムの内の1種以上の金属と、酢酸、炭酸、硝酸の内の1種以上の酸との組合せで得られる金属塩の水溶液を用いることが好ましい。 Therefore, it is preferable to use an aqueous solution of a metal salt obtained by a combination of at least one metal selected from calcium and magnesium and at least one acid selected from acetic acid, carbonic acid and nitric acid.
 また、これらの溶液を付着させる際には、対象とする高炉用鉄源原料1tに対する前記金属塩の量を0.1~30モルとすることが望ましい。0.1モル未満の場合は還元を阻害する効果が少なく還元粉化が改善されない。また30モルを超えると、付着物が十分に鉄鉱石または焼結鉱の表面を覆っている状態となるため、還元を阻害する効果が飽和する。この際に前記金属塩を溶解する溶液の量は、溶解に十分であり、鉄鉱石または焼結鉱の全体に行き渡る量であれば良い。前記金属塩の量は前記高炉用鉄源原料1tに対して0.3~10モルであるのが好ましい。より好ましくは、前記高炉用鉄源原料1tに対して、0.3~5モルである。
 前記金属塩の水溶液の散布は、対象とする高炉用鉄源原料トン当たり0.001~0.05トンの水溶液を散布または塗布するのが好ましい。0.001t未満の場合には、水溶液が鉄鉱石または焼結鉱の全体に行き渡たらず、還元を阻害する効果が少なく還元粉化が改善されない。また0.05tを超える場合は、付着物が十分に鉄鉱石または焼結鉱の表面を覆っている状態となるため、還元を阻害する効果が飽和する。水溶液の散布または塗布が対象とする高炉用鉄源原料トン当たり0.001~0.05トンであれば、鉄鉱石または焼結鉱の表面を水溶液で被覆する効果が充分に得られる。好ましくは、対象とする高炉用鉄源原料トン当たり0.001~0.025トンである。更に、金属塩の水溶液は、0.002~26モル/kgの金属塩の濃度を有することが望ましい。0.002モル/kg未満の場合には、金属塩の量が少ないため、還元を阻害する効果が少なく還元粉化が改善されない。また26モル/kgを超える場合は、付着物が十分に鉄鉱石または焼結鉱の表面を覆っている状態となるため、還元を阻害する効果が飽和する。前記金属塩の水溶液が、0.01~5モル/kgの金属塩の濃度を有するのがより望ましく、0.01~1モル/kgが最も望ましい。0.01モル/kg未満の場合には、還元粉化の改善が比較的少なく、また使用する薬剤量に応じ費用が多く掛るため、経済性の観点から望ましくは5モル/kg以下、最も望ましくは1モル/kgとする。
Further, when these solutions are attached, it is desirable that the amount of the metal salt with respect to the target blast furnace iron source material 1t is 0.1 to 30 mol. When the amount is less than 0.1 mol, there is little effect of inhibiting reduction, and reduction powdering is not improved. Moreover, since it will be in the state which the deposit | attachment has fully covered the surface of the iron ore or sintered ore when it exceeds 30 mol, the effect which inhibits a reduction | restoration is saturated. At this time, the amount of the solution for dissolving the metal salt may be an amount sufficient for the dissolution, and the amount that spreads over the entire iron ore or sintered ore. The amount of the metal salt is preferably 0.3 to 10 mol relative to 1 t of the iron source material for blast furnace. More preferably, it is 0.3 to 5 mol with respect to 1 t of the iron source material for blast furnace.
The metal salt aqueous solution is preferably sprayed or applied in an amount of 0.001 to 0.05 ton of aqueous solution per ton of blast furnace iron source material. When it is less than 0.001 t, the aqueous solution does not spread over the entire iron ore or sintered ore, and the effect of inhibiting the reduction is small and the reduction powdering is not improved. Moreover, since it will be in the state which the deposit | attachment has fully covered the surface of the iron ore or the sintered ore when it exceeds 0.05 t, the effect which inhibits a reduction | restoration is saturated. If the amount is 0.001 to 0.05 tons per ton of blast furnace iron source material to be sprayed or applied with an aqueous solution, the effect of coating the surface of the iron ore or sintered ore with the aqueous solution can be sufficiently obtained. Preferably, the amount is 0.001 to 0.025 ton per ton of blast furnace iron source raw material. Further, the aqueous metal salt solution preferably has a metal salt concentration of 0.002 to 26 mol / kg. When the amount is less than 0.002 mol / kg, the amount of the metal salt is small, so that the effect of inhibiting the reduction is small and the reduction powdering is not improved. Moreover, since it will be in the state which the deposit | attachment has fully covered the surface of the iron ore or the sintered ore when it exceeds 26 mol / kg, the effect which inhibits a reduction | restoration is saturated. More preferably, the aqueous metal salt solution has a metal salt concentration of 0.01 to 5 mol / kg, most preferably 0.01 to 1 mol / kg. If the amount is less than 0.01 mol / kg, the improvement of reduced powdering is relatively small, and the cost increases depending on the amount of the drug used. Is 1 mol / kg.
 図1、2は、本発明の高炉用鉄源原料の製造方法の一実施形態を示す図であり、高炉用鉄源原料にカルシウム、マグネシウムの内の1種以上の金属と、酢酸、炭酸、硝酸の内の1種以上の酸との組合せで得られる金属塩の水溶液を散布することにより製造する方法を示している。 1 and 2 are diagrams showing an embodiment of a method for producing an iron source material for a blast furnace according to the present invention, wherein the iron source material for a blast furnace is one or more metals of calcium and magnesium, acetic acid, carbonic acid, The method of manufacturing by spraying the aqueous solution of the metal salt obtained by combining with the 1 or more types of acid of nitric acid is shown.
 図1は、高炉用鉄源原料の堆積ヤードにおいて散布する方法、図2は、高炉用鉄源原料の搬送装置において散布する方法を示している。図2(a)は原料搬送コンベアーにより搬送しながら高炉用鉄源原料の上方から金属塩の水溶液を散布する実施形態を示す図であり、図2(b)は原料搬送コンベアーにより搬送しながら高炉用鉄源原料の上方から金属塩の水溶液を散布し、且つ、原料搬送コンベアーの乗り継ぎ部において高炉用鉄源原料に前記金属塩の水溶液を散布する実施形態を示す図である。 FIG. 1 shows a method of spraying in a yard for a blast furnace iron source material, and FIG. 2 shows a method of spraying in a blast furnace iron source material conveyor. FIG. 2A is a view showing an embodiment in which an aqueous solution of a metal salt is sprayed from above the iron source raw material for a blast furnace while being conveyed by a raw material conveyer, and FIG. 2B is a blast furnace being conveyed by a raw material conveyer. It is a figure which shows the embodiment which sprays the aqueous solution of a metal salt from the upper part of the iron source material for industrial use, and sprays the aqueous solution of the metal salt to the iron source material for blast furnace at the connecting part of the raw material transfer conveyor.
 図1においては、ヤードに堆積された高炉用鉄源原料としての鉄鉱石または焼結鉱1の山に、水溶液タンク2から前記金属塩の水溶液3を、スプレーなど散布設備4や散水タンク車(図示せず)などの散水手段により散布する。 In FIG. 1, the metal salt aqueous solution 3 is sprayed from an aqueous solution tank 2 to a pile of iron ore or sintered ore 1 as a blast furnace iron source material deposited in the yard, and spraying equipment 4 such as a spray or a water tank tank ( Spread by watering means such as not shown).
 図2(a)は原料搬送コンベアーで散布する例であり、高炉用鉄源原料としての鉄鉱石または焼結鉱1を、原料搬送コンベアーなどの搬送装置5により、搬送移動する際に、鉄鉱石または焼結鉱1の上方からスプレーなどの散布設備4により、水溶液タンク2から前記金属塩の水溶液3を散布する。 FIG. 2 (a) shows an example in which the iron ore or the sintered ore 1 as a blast furnace iron source material is conveyed and moved by the conveying device 5 such as the raw material conveying conveyor. Alternatively, the metal salt aqueous solution 3 is sprayed from the aqueous solution tank 2 from above the sintered ore 1 by a spraying facility 4 such as a spray.
 また、図2(b)は、高炉用鉄源原料としての鉄鉱石または焼結鉱1を、原料搬送コンベアーなどの搬送装置5a,5bにより、搬送移動する際に、鉄鉱石または焼結鉱1の上方からスプレーなどの散布設備4a,4bにより前記金属塩の水溶液を散布し、且つ、搬送装置5aから搬送装置5bへの乗り継ぎ部において散布設備4cにより前記金属塩の水溶液を散布する。この場合には、高炉用鉄源原料が原料搬送コンベアー乗り継ぎ部において撹拌されるため、高炉用鉄源原料表面全体により均一に前記金属塩の水溶液を付着させることが可能となる。乗り継ぎ部において金属塩の水溶液を散布する場合には、落下する高炉用鉄源原料の下方、上方、或は側面より金属塩の水溶液を散布することができる。 FIG. 2B shows the iron ore or sintered ore 1 when the iron ore or sintered ore 1 as a blast furnace iron source material is conveyed and moved by the conveying devices 5a and 5b such as a material conveying conveyor. The metal salt aqueous solution is sprayed by spraying equipment 4a, 4b such as a spray from above, and the metal salt aqueous solution is sprayed by the spraying equipment 4c at the connecting portion from the transport device 5a to the transport device 5b. In this case, since the iron source material for blast furnace is agitated at the connecting portion of the material conveying conveyor, the aqueous solution of the metal salt can be uniformly attached to the entire surface of the iron source material for blast furnace. When the metal salt aqueous solution is sprayed at the connecting portion, the metal salt aqueous solution can be sprayed from below, above, or from the side of the falling iron source material for the blast furnace.
 また、高炉用鉄源原料に前記金属塩の水溶液を塗布することにより製造する方法を用いる場合は、刷毛の使用や、樹脂、布などの可撓性素材を介することで前記金属塩の水溶液を供給し高炉用鉄源原料の表面に塗布することができる。 Moreover, when using the method of manufacturing by applying the aqueous solution of the metal salt to the iron source material for blast furnace, the aqueous solution of the metal salt is obtained by using a brush or a flexible material such as resin or cloth. It can be supplied and applied to the surface of the iron source material for blast furnace.
以下、実施例1~18において、表1に示す本発明例1~18、比較例1~4および図3~図14により、本発明を更に具体的に説明する。 Hereinafter, in Examples 1 to 18, the present invention will be described in more detail with reference to Inventive Examples 1 to 18, Comparative Examples 1 to 4 and FIGS. 3 to 14 shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 使用した焼結鉱の成分を表2、鉄鉱石の成分を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Table 2 shows the components of the sintered ore used, and Table 3 shows the components of the iron ore.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 SiO含有量が5.1mass%である焼結鉱に対して酢酸カルシウム水溶液を、焼結鉱1tに対する酢酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図3に酢酸カルシウム量と還元粉化指数(RDI)の結果を示す。図3によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの酢酸カルシウム付着量が0.3モルの焼結鉱(本発明例1)の還元粉化指数(RDI)は33%であり、金属塩水溶液付着処理を施さない通常の焼結鉱(酢酸カルシウム量0に相当。比較例1。)の還元粉化指数(RDI)の36%から改善された。また、その効果は酢酸カルシウム付着量が30モル/tでほぼ飽和することが分かる。 Calcium acetate aqueous solution is applied to sintered ore with SiO 2 content of 5.1 mass%, sprayed with a sprinkler while changing the molar amount of calcium acetate with respect to 1t of sintered ore, and reduced to powder after drying at 80 ° C. The index (RDI) was measured. FIG. 3 shows the results of calcium acetate amount and reduced powder index (RDI). According to FIG. 3, the reduced powder index (RDI) of a sintered ore (Invention Example 1) having a calcium acetate deposition amount of 0.3 mol per ton of blast furnace iron source material produced using the present invention is 33. %, Which is an improvement from 36% of the reduced powder index (RDI) of ordinary sintered ore (corresponding to calcium acetate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment. In addition, it can be seen that the effect is almost saturated at a calcium acetate deposition amount of 30 mol / t.
 SiO含有量が5.1mass%である焼結鉱に対して酢酸マグネシウム水溶液を、焼結鉱1tに対する酢酸マグネシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図4に酢酸マグネシウム量と還元粉化指数(RDI)の結果を示す。図4によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの酢酸カルシウム付着量が0.3モルの焼結鉱(本発明例2)の還元粉化指数(RDI)は32%であり、金属塩水溶液付着処理を施さない通常の焼結鉱(酢酸マグネシウム量0に相当。比較例1。)の還元粉化指数(RDI)の36%から改善された。その効果は酢酸マグネシウム付着量が30モル/tでほぼ飽和することが分かる。 Magnesium acetate aqueous solution is applied to sintered ore with SiO 2 content of 5.1 mass%, sprayed with a sprinkler while changing the molar amount of magnesium acetate to 1t of sintered ore, and reduced to powder after drying at 80 ° C. The index (RDI) was measured. FIG. 4 shows the results of the amount of magnesium acetate and the reduced powder index (RDI). According to FIG. 4, the reduced powder index (RDI) of sintered ore (Invention Example 2) having a calcium acetate deposition amount of 0.3 mol per ton of blast furnace iron source material produced using the present invention is 32. %, Which is an improvement from 36% of the reduced powder index (RDI) of ordinary sintered ore (corresponding to magnesium acetate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment. It can be seen that the effect is almost saturated at a magnesium acetate deposition amount of 30 mol / t.
 SiO含有量が5.1mass%である焼結鉱に対して炭酸カルシウムを炭酸水に溶解した水溶液を、焼結鉱1tに対する炭酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図5に溶解させた炭酸カルシウム量と還元粉化指数(RDI)の結果を示す。図5によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの炭酸カルシウム付着量が0.3モルの焼結鉱(本発明例3)の還元粉化指数(RD1)は31%であり、金属塩水溶液付着処理を施さない通常の焼結鉱(炭酸カルシウム量0に相当。比較例1。)の還元粉化指数(RDI)の36%から改善された。その効果は炭酸カルシウム付着量が30モル/tでほぼ飽和することが分かる。 An aqueous solution in which calcium carbonate is dissolved in carbonated water with respect to sintered ore having a SiO 2 content of 5.1 mass% is sprayed by a watering machine while changing the molar amount of calcium carbonate with respect to 1 ton of sintered ore, and 80 ° C. The dried powder index (RDI) was measured after drying. FIG. 5 shows the results of the amount of dissolved calcium carbonate and the reduced powder index (RDI). According to FIG. 5, the reduced powder index (RD1) of the sintered ore (Invention Example 3) having a calcium carbonate adhesion amount of 0.3 mol per 1 ton of blast furnace iron source material produced using the present invention is 31. %, Which is an improvement from 36% of the reduced powder index (RDI) of ordinary sinter (corresponding to calcium carbonate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment. It can be seen that the effect is almost saturated at a calcium carbonate deposition amount of 30 mol / t.
 鉄鉱石に対して炭酸マグネシウムを炭酸水に溶解した水溶液を、鉄鉱石1tに対する炭酸マグネシウムモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図6に溶解させた炭酸マグネシウム量と還元粉化指数(RDI)の結果を示す。図6によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの炭酸マグネシウム付着量が0.3モルの鉄鉱石(本発明例4)の還元粉化指数(RDI)は53%であり、金属塩水溶液付着処理を施さない通常の鉄鉱石(炭酸マグネシウム量0に相当。比較例2。)の還元粉化指数(RDI)の59%から改善された。その効果は炭酸マグネシウム付着量が30モル/tでほぼ飽和することが分かる。 An aqueous solution in which magnesium carbonate is dissolved in carbonated water with respect to iron ore is sprayed with a sprinkler while changing the molar amount of magnesium carbonate with respect to 1 ton of iron ore, and the reduced powder index (RDI) is measured after drying at 80 ° C. It was. FIG. 6 shows the results of the amount of magnesium carbonate dissolved and the reduced powdering index (RDI). According to FIG. 6, the reduced powder index (RDI) of iron ore (invention example 4) having an adhesion amount of 0.3 mol of magnesium carbonate per 1 ton of blast furnace iron source material produced using the present invention is 53%. This was an improvement from 59% of the reduced powder index (RDI) of ordinary iron ore (corresponding to magnesium carbonate amount 0, Comparative Example 2) not subjected to the metal salt aqueous solution adhesion treatment. It can be seen that the effect is almost saturated at a magnesium carbonate deposition amount of 30 mol / t.
 SiO含有量が5.1mass%である焼結鉱に対して硝酸カルシウム水溶液を、焼結鉱1tに対する硝酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図7に溶解させた硝酸カルシウム量と還元粉化指数(RDI)の結果を示す。図7によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの硝酸カルシウム付着量が0.3モルの焼結鉱(本発明例5)の還元粉化指数(RDI)は31%であり、金属塩水溶液付着処理を施さない通常の焼結鉱(硝酸カルシウム量0に相当。比較例1。)の還元粉化指数(RDI)の36%から改善された。その効果は硝酸カルシウム付着量が30モル/tでほぼ飽和することが分かる。 Calcium nitrate aqueous solution is applied to sintered ore with SiO 2 content of 5.1 mass%, sprayed with a sprinkler while changing the molar amount of calcium nitrate relative to 1 ton of sintered ore, and reduced to powder after drying at 80 ° C. The index (RDI) was measured. FIG. 7 shows the results of the dissolved calcium nitrate amount and the reduced powder index (RDI). According to FIG. 7, the reduced powder index (RDI) of sintered ore (Invention Example 5) having a calcium nitrate deposition amount of 0.3 mol per ton of blast furnace iron source material produced using the present invention is 31. %, Which is an improvement from 36% of the reduced powder index (RDI) of ordinary sintered ore (corresponding to calcium nitrate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment. It can be seen that the effect is almost saturated at a calcium nitrate deposition amount of 30 mol / t.
 SiO含有量が5.1mass%である焼結鉱に対して硝酸マグネシウム水溶液を、焼結鉱1tに対する硝酸マグネシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図8に溶解させた硝酸マグネシウム量と還元粉化指数(RDI)の結果を示す。図8によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの硝酸マグネシウム付着量が0.3モルの焼結鉱(本発明例6)の還元粉化指数(RDI)は32%であり、金属塩水溶液付着処理を施さない通常の焼結鉱(硝酸マグネシウム量0に相当。比較例1。)の還元粉化指数(RDI)の36%から改善された。その効果は硝酸マグネシウム付着量が30モル/tでほぼ飽和することが分かる。 Magnesium nitrate aqueous solution is applied to sintered ore with SiO 2 content of 5.1 mass%, sprayed with a sprinkler while changing the molar amount of magnesium nitrate with respect to 1 ton of sintered ore, and reduced to powder after drying at 80 ° C. The index (RDI) was measured. FIG. 8 shows the results of the amount of magnesium nitrate dissolved and the reduced powder index (RDI). According to FIG. 8, the reduced powder index (RDI) of sintered ore (Invention Example 6) having a magnesium nitrate adhesion amount of 0.3 mol per ton of blast furnace iron source material produced using the present invention is 32. %, Which is an improvement from 36% of the reduced powder index (RDI) of ordinary sinter (corresponding to magnesium nitrate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment. It can be seen that the effect is almost saturated at a magnesium nitrate deposition amount of 30 mol / t.
 SiO含有量が4.9mass%であり、還元粉化指数(RDI)が38%、被還元性指数(RI)が68%である焼結鉱に対して酢酸カルシウム水溶液を、焼結鉱1tに対する酢酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)および被還元性指数(RI)の測定をおこなった。図9に酢酸カルシウム量と還元粉化指数(RDI)の結果を示す。図9によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの酢酸カルシウム付着量が0.3モルの焼結鉱(本発明例7)の還元粉化指数(RDI)は35%であり、処理を施さない通常の焼結鉱(酢酸カルシウム量0に相当。比較例3。)の還元粉化指数(RDI)が38%に対して改善された。その効果は酢酸カルシウム付着量が30モル/tでほぼ飽和することが分かる。図10に酢酸カルシウム量と被還元性指数(RI)の結果を示す。図10によれば、本発明を用いて製造した高炉用鉄源原料は、処理を施さない通常の焼結鉱(酢酸カルシウム量0に相当。比較例3。)に対して、被還元性指数(RI)の低下が少なく、還元粉化指数(RDI)を改善できることがわかる。 A calcium acetate aqueous solution is used for a sintered ore with an SiO 2 content of 4.9 mass%, a reduced powder index (RDI) of 38%, and a reducible index (RI) of 68%. The molar amount of calcium acetate was changed with a sprinkler, and after drying at 80 ° C., the reduced powder index (RDI) and the reducible index (RI) were measured. FIG. 9 shows the results of calcium acetate amount and reduced powder index (RDI). According to FIG. 9, the reduced powder index (RDI) of sintered ore (Invention Example 7) having a calcium acetate adhesion amount of 0.3 mol per 1 ton of blast furnace iron source material produced using the present invention is 35. %, And the reduced powder index (RDI) of ordinary sintered ore (corresponding to calcium acetate amount 0, Comparative Example 3) without treatment was improved from 38%. It can be seen that the effect is almost saturated at a calcium acetate deposition amount of 30 mol / t. FIG. 10 shows the results of the calcium acetate amount and the reducibility index (RI). According to FIG. 10, the iron source material for blast furnace produced using the present invention is a reducible index relative to a normal sintered ore that is not treated (corresponding to calcium acetate amount 0, Comparative Example 3). It can be seen that there is little decrease in (RI) and the reduced powder index (RDI) can be improved.
 SiO含有量が4.9mass%であり、還元粉化指数(RDI)が38%、被還元性指数(RI)が68%である焼結鉱に対して硝酸カルシウム水溶液を、焼結鉱1tに対する硝酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)および被還元性指数(RI)の測定をおこなった。図11に硝酸カルシウム量と還元粉化指数(RDI)の結果を示す。図11によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの硝酸カルシウム付着量が0.3モルの焼結鉱(本発明例8)の還元粉化指数(RDI)は33%であり、処理を施さない通常の焼結鉱(硝酸カルシウム量0に相当。比較例3。)の還元粉化指数(RDI)が38%に対して改善された。その効果は硝酸カルシウム付着量が30モル/tでほぼ飽和することが分かる。図12に硝酸カルシウム量と被還元性指数(RI)の結果を示す。図12によれば、本発明を用いて製造した高炉用鉄源原料は、処理を施さない通常の焼結鉱(硝酸カルシウム量0に相当。比較例3。)対して、被還元性指数(RI)の低下が少なく、還元粉化指数(RDI)を改善できることがわかる。 A calcium nitrate aqueous solution is used for a sintered ore with a SiO 2 content of 4.9 mass%, a reduced powder index (RDI) of 38%, and a reducible index (RI) of 68%. The molar amount of calcium nitrate was changed with a sprinkler and dried at 80 ° C., and the reduced powder index (RDI) and the reducible index (RI) were measured. FIG. 11 shows the results of calcium nitrate content and reduced powder index (RDI). According to FIG. 11, the reduced powder index (RDI) of the sintered ore (Invention Example 8) having a calcium nitrate adhesion amount of 0.3 mol per ton of the blast furnace iron source material produced using the present invention is 33. %, And the reduced powder index (RDI) of ordinary sinter (corresponding to calcium nitrate amount of 0, Comparative Example 3) without any treatment was improved from 38%. It can be seen that the effect is almost saturated at a calcium nitrate deposition amount of 30 mol / t. FIG. 12 shows the results of calcium nitrate content and reducibility index (RI). According to FIG. 12, the iron source material for blast furnace produced using the present invention is a reducibility index (corresponding to a calcium nitrate amount of 0. Comparative Example 3) that is not treated. It can be seen that the reduction in RI) is small and the reduced powder index (RDI) can be improved.
 SiO含有量が4.6mass%であり、還元粉化指数(RDI)が42%、被還元性指数(RI)が73%である焼結鉱に対して硝酸カルシウム水溶液を、焼結鉱1tに対する硝酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)および被還元性指数(RI)の測定をおこなった。図13に硝酸カルシウム量と還元粉化指数(RDI)の結果を示す。図13によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの硝酸カルシウム付着量が0.3モルの焼結鉱(本発明例9)の還元粉化指数(RDI)は37%であり、処理を施さない通常の焼結鉱(硝酸カルシウム量0に相当。比較例4。)の還元粉化指数(RDI)が42%に対して改善された。その効果は硝酸カルシウム付着量が30モル/tでほぼ飽和することが分かる。図14に硝酸カルシウム量と被還元性指数(RI)の結果を示す。図14によれば、本発明を用いて製造した高炉用鉄源原料は、処理を施さない通常の焼結鉱(硝酸カルシウム量0に相当。比較例4。)に対して、被還元性指数(RI)の低下が少なく、還元粉化指数(RDI)を改善できることがわかる。 A calcium nitrate aqueous solution is used for a sintered ore with an SiO 2 content of 4.6 mass%, a reduced powder index (RDI) of 42%, and a reducible index (RI) of 73%. The molar amount of calcium nitrate was changed with a sprinkler and dried at 80 ° C., and the reduced powder index (RDI) and the reducible index (RI) were measured. FIG. 13 shows the results of calcium nitrate content and reduced powder index (RDI). According to FIG. 13, the reduced powder index (RDI) of a sintered ore (Invention Example 9) having a calcium nitrate adhesion amount of 0.3 mol per ton of blast furnace iron source material produced using the present invention is 37. %, And the reduced powder index (RDI) of ordinary sinter (corresponding to calcium nitrate amount of 0, Comparative Example 4) without any treatment was improved from 42%. It can be seen that the effect is almost saturated at a calcium nitrate deposition amount of 30 mol / t. FIG. 14 shows the results of calcium nitrate amount and reducibility index (RI). According to FIG. 14, the iron source material for blast furnace produced using the present invention is a reducible index with respect to ordinary sintered ore that is not treated (corresponding to calcium nitrate amount 0, Comparative Example 4). It can be seen that there is little decrease in (RI) and the reduced powder index (RDI) can be improved.
 SiO含有量が5.1mass%である焼結鉱に対して酢酸カルシウム水溶液を、焼結鉱1tに対する酢酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図3に酢酸カルシウム量と還元粉化指数(RDI)の結果を示す。図3によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの酢酸カルシウム付着量が0.1モルの焼結鉱(本発明例10)の還元粉化指数(RDI)は34%であり、金属塩水溶液付着処理を施さない通常の焼結鉱(酢酸カルシウム量0に相当。比較例1。)の還元粉化指数(RDI)の36%から改善された。 Calcium acetate aqueous solution is applied to sintered ore with SiO 2 content of 5.1 mass%, sprayed with a sprinkler while changing the molar amount of calcium acetate with respect to 1t of sintered ore, and reduced to powder after drying at 80 ° C. The index (RDI) was measured. FIG. 3 shows the results of calcium acetate amount and reduced powder index (RDI). According to FIG. 3, the reduced powder index (RDI) of the sintered ore (Invention Example 10) having a calcium acetate deposition amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 34. %, Which is an improvement from 36% of the reduced powder index (RDI) of ordinary sintered ore (corresponding to calcium acetate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment.
 SiO含有量が5.1mass%である焼結鉱に対して酢酸マグネシウム水溶液を、焼結鉱1tに対する酢酸マグネシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図4に酢酸マグネシウム量と還元粉化指数(RDI)の結果を示す。図4によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの酢酸カルシウム付着量が0.1モルの焼結鉱(本発明例11)の還元粉化指数(RDI)は32%であり、金属塩水溶液付着処理を施さない通常の焼結鉱(酢酸マグネシウム量0に相当。比較例1。)の還元粉化指数(RDI)の36%から改善された。 Magnesium acetate aqueous solution is applied to sintered ore with SiO 2 content of 5.1 mass%, sprayed with a sprinkler while changing the molar amount of magnesium acetate to 1t of sintered ore, and reduced to powder after drying at 80 ° C. The index (RDI) was measured. FIG. 4 shows the results of the amount of magnesium acetate and the reduced powder index (RDI). According to FIG. 4, the reduced powder index (RDI) of sintered ore (Invention Example 11) having a calcium acetate deposition amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 32. %, Which is an improvement from 36% of the reduced powder index (RDI) of ordinary sintered ore (corresponding to magnesium acetate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment.
 SiO含有量が5.1mass%である焼結鉱に対して炭酸カルシウムを炭酸水に溶解した水溶液を、焼結鉱1tに対する炭酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図5に溶解させた炭酸カルシウム量と還元粉化指数(RDI)の結果を示す。図5によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの炭酸カルシウム付着量が0.1モルの焼結鉱(本発明例12)の還元粉化指数(RDI)は32%であり、金属塩水溶液付着処理を施さない通常の焼結鉱(炭酸カルシウム量0に相当。比較例1。)の還元粉化指数(RDI)の36%から改善された。 An aqueous solution in which calcium carbonate is dissolved in carbonated water with respect to sintered ore having a SiO 2 content of 5.1 mass% is sprayed by a watering machine while changing the molar amount of calcium carbonate with respect to 1 ton of sintered ore, and 80 ° C. The dried powder index (RDI) was measured after drying. FIG. 5 shows the results of the amount of dissolved calcium carbonate and the reduced powder index (RDI). According to FIG. 5, the reduced powder index (RDI) of sintered ore (Invention Example 12) having a calcium carbonate adhesion amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 32. %, Which is an improvement from 36% of the reduced powder index (RDI) of ordinary sinter (corresponding to calcium carbonate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment.
 鉄鉱石に対して炭酸マグネシウムを炭酸水に溶解した水溶液を、鉄鉱石1tに対する炭酸マグネシウムモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図6に溶解させた炭酸マグネシウム量と還元粉化指数(RDI)の結果を示す。図6によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの炭酸マグネシウム付着量が0.1モルの鉄鉱石(本発明例13)の還元粉化指数(RDI)は54%であり、金属塩水溶液付着処理を施さない通常の鉄鉱石(炭酸マグネシウム量0に相当。比較例2。)の還元粉化指数(RDI)の59%から改善された。 An aqueous solution in which magnesium carbonate is dissolved in carbonated water with respect to iron ore is sprayed with a sprinkler while changing the molar amount of magnesium carbonate with respect to 1 ton of iron ore, and the reduced powder index (RDI) is measured after drying at 80 ° C. It was. FIG. 6 shows the results of the amount of magnesium carbonate dissolved and the reduced powdering index (RDI). According to FIG. 6, the reduced powder index (RDI) of iron ore (invention example 13) having an adhesion amount of magnesium carbonate of 0.1 mol per ton of iron source material for blast furnace manufactured using the present invention is 54%. This was an improvement from 59% of the reduced powder index (RDI) of ordinary iron ore (corresponding to magnesium carbonate amount 0, Comparative Example 2) not subjected to the metal salt aqueous solution adhesion treatment.
 SiO含有量が5.1mass%である焼結鉱に対して硝酸カルシウム水溶液を、焼結鉱1tに対する硝酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図7に溶解させた硝酸カルシウム量と還元粉化指数(RDI)の結果を示す。図7によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの硝酸カルシウム付着量が0.1モルの焼結鉱(本発明例14)の還元粉化指数(RDI)は32%であり、金属塩水溶液付着処理を施さない通常の焼結鉱(硝酸カルシウム量0に相当。比較例1。)の還元粉化指数(RDI)の36%から改善された。 Calcium nitrate aqueous solution is applied to sintered ore with SiO 2 content of 5.1 mass%, sprayed with a sprinkler while changing the molar amount of calcium nitrate relative to 1 ton of sintered ore, and reduced to powder after drying at 80 ° C. The index (RDI) was measured. FIG. 7 shows the results of the dissolved calcium nitrate amount and the reduced powder index (RDI). According to FIG. 7, the reduced powder index (RDI) of a sintered ore (Invention Example 14) having a calcium nitrate adhesion amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 32. %, Which is an improvement from 36% of the reduced powder index (RDI) of ordinary sintered ore (corresponding to calcium nitrate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment.
 SiO含有量が5.1mass%である焼結鉱に対して硝酸マグネシウム水溶液を、焼結鉱1tに対する硝酸マグネシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)の測定を行なった。図8に溶解させた硝酸マグネシウム量と還元粉化指数(RDI)の結果を示す。図8によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの硝酸マグネシウム付着量が0.1モルの焼結鉱(本発明例15)の還元粉化指数(RDI)は32%であり、金属塩水溶液付着処理を施さない通常の焼結鉱(硝酸マグネシウム量0に相当。比較例1。)の還元粉化指数(RDI)の36%から改善された。 Magnesium nitrate aqueous solution is applied to sintered ore with SiO 2 content of 5.1 mass%, sprayed with a sprinkler while changing the molar amount of magnesium nitrate with respect to 1 ton of sintered ore, and reduced to powder after drying at 80 ° C. The index (RDI) was measured. FIG. 8 shows the results of the amount of magnesium nitrate dissolved and the reduced powder index (RDI). According to FIG. 8, the reduced powder index (RDI) of the sintered ore (Invention Example 15) having an adhesion amount of magnesium nitrate of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 32. %, Which is an improvement from 36% of the reduced powder index (RDI) of ordinary sinter (corresponding to magnesium nitrate amount 0, Comparative Example 1) not subjected to the metal salt aqueous solution adhesion treatment.
 SiO含有量が4.9mass%であり、還元粉化指数(RDI)が38%、被還元性指数(RI)が68%である焼結鉱に対して酢酸カルシウム水溶液を、焼結鉱1tに対する酢酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)および被還元性指数(RI)の測定をおこなった。図9に酢酸カルシウム量と還元粉化指数(RDI)の結果を示す。図9によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの酢酸カルシウム付着量が0.1モルの焼結鉱(本発明例16)の還元粉化指数(RDI)は36%であり、処理を施さない通常の焼結鉱(酢酸カルシウム量0に相当。比較例3。)の還元粉化指数(RDI)が38%に対して改善された。図10に酢酸カルシウム量と被還元性指数(RI)の結果を示す。図10によれば、本発明を用いて製造した高炉用鉄源原料は、処理を施さない通常の焼結鉱(酢酸カルシウム量0に相当。比較例3。)に対して、被還元性指数(RI)の低下が少なく、還元粉化指数(RDI)を改善できることがわかる。 A calcium acetate aqueous solution is used for a sintered ore with an SiO 2 content of 4.9 mass%, a reduced powder index (RDI) of 38%, and a reducible index (RI) of 68%. The molar amount of calcium acetate was changed with a sprinkler, and after drying at 80 ° C., the reduced powder index (RDI) and the reducible index (RI) were measured. FIG. 9 shows the results of calcium acetate amount and reduced powder index (RDI). According to FIG. 9, the reduced powder index (RDI) of sintered ore (Invention Example 16) having a calcium acetate deposition amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 36. %, And the reduced powder index (RDI) of ordinary sintered ore (corresponding to calcium acetate amount 0, Comparative Example 3) without treatment was improved from 38%. FIG. 10 shows the results of the calcium acetate amount and the reducibility index (RI). According to FIG. 10, the iron source material for blast furnace produced using the present invention is a reducible index relative to a normal sintered ore that is not treated (corresponding to calcium acetate amount 0, Comparative Example 3). It can be seen that there is little decrease in (RI) and the reduced powder index (RDI) can be improved.
 SiO含有量が4.9mass%であり、還元粉化指数(RDI)が38%、被還元性指数(RI)が68%である焼結鉱に対して硝酸カルシウム水溶液を、焼結鉱1tに対する硝酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)および被還元性指数(RI)の測定をおこなった。図11に硝酸カルシウム量と還元粉化指数(RDI)の結果を示す。図11によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの硝酸カルシウム付着量が0.1モルの焼結鉱(本発明例17)の還元粉化指数(RDI)は34%であり、処理を施さない通常の焼結鉱(硝酸カルシウム量0に相当。比較例3。)の還元粉化指数(RDI)が38%に対して改善された。図12に硝酸カルシウム量と被還元性指数(RI)の結果を示す。図12によれば、本発明を用いて製造した高炉用鉄源原料は、処理を施さない通常の焼結鉱(硝酸カルシウム量0に相当。比較例3。)対して、被還元性指数(RI)の低下が少なく、還元粉化指数(RDI)を改善できることがわかる。 A calcium nitrate aqueous solution is used for a sintered ore with a SiO 2 content of 4.9 mass%, a reduced powder index (RDI) of 38%, and a reducible index (RI) of 68%. The molar amount of calcium nitrate was changed with a sprinkler and dried at 80 ° C., and the reduced powder index (RDI) and the reducible index (RI) were measured. FIG. 11 shows the results of calcium nitrate content and reduced powder index (RDI). According to FIG. 11, the reduced powder index (RDI) of the sintered ore (Invention Example 17) having a calcium nitrate adhesion amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 34. %, And the reduced powder index (RDI) of ordinary sinter (corresponding to calcium nitrate amount of 0, Comparative Example 3) without any treatment was improved from 38%. FIG. 12 shows the results of calcium nitrate content and reducibility index (RI). According to FIG. 12, the iron source material for blast furnace produced using the present invention is a reducibility index (corresponding to a calcium nitrate amount of 0. Comparative Example 3) that is not treated. It can be seen that the reduction in RI) is small and the reduced powder index (RDI) can be improved.
 SiO含有量が4.6mass%であり、還元粉化指数(RDI)が42%、被還元性指数(RI)が73%である焼結鉱に対して硝酸カルシウム水溶液を、焼結鉱1tに対する硝酸カルシウムのモル量を変化させて散水機により散布し、80℃で乾燥後に還元粉化指数(RDI)および被還元性指数(RI)の測定をおこなった。図13に硝酸カルシウム量と還元粉化指数(RDI)の結果を示す。図13によれば、本発明を用いて製造した高炉用鉄源原料1t当たりの硝酸カルシウム付着量が0.1モルの焼結鉱(本発明例18)の還元粉化指数(RDI)は38%であり、処理を施さない通常の焼結鉱(硝酸カルシウム量0に相当。比較例4。)の還元粉化指数(RDI)が42%に対して改善された。図14に硝酸カルシウム量と被還元性指数(RI)の結果を示す。図14によれば、本発明を用いて製造した高炉用鉄源原料は、処理を施さない通常の焼結鉱(硝酸カルシウム量0に相当。比較例4。)に対して、被還元性指数(RI)の低下が少なく、還元粉化指数(RDI)を改善できることがわかる。 A calcium nitrate aqueous solution is used for a sintered ore with an SiO 2 content of 4.6 mass%, a reduced powder index (RDI) of 42%, and a reducible index (RI) of 73%. The molar amount of calcium nitrate was changed with a sprinkler and dried at 80 ° C., and the reduced powder index (RDI) and the reducible index (RI) were measured. FIG. 13 shows the results of calcium nitrate content and reduced powder index (RDI). According to FIG. 13, the reduced powder index (RDI) of sintered ore (Invention Example 18) having a calcium nitrate adhesion amount of 0.1 mol per ton of blast furnace iron source material produced using the present invention is 38. %, And the reduced powder index (RDI) of ordinary sinter (corresponding to calcium nitrate amount of 0, Comparative Example 4) without any treatment was improved from 42%. FIG. 14 shows the results of calcium nitrate amount and reducibility index (RI). According to FIG. 14, the iron source material for blast furnace produced using the present invention is a reducible index with respect to ordinary sintered ore that is not treated (corresponding to calcium nitrate amount 0, Comparative Example 4). It can be seen that there is little decrease in (RI) and the reduced powder index (RDI) can be improved.
 1  高炉用鉄源原料(鉄鉱石または焼結鉱)
 2  水溶液タンク
 3  水溶液
 4  散布設備
 5  搬送装置
1 Iron source material for blast furnace (iron ore or sintered ore)
2 Aqueous solution tank 3 Aqueous solution 4 Spraying equipment 5 Conveying device

Claims (23)

  1.  カルシウムとマグネシウムのグループから選択された少なくとも一つの金属と、酢酸、炭酸と硝酸のグループから選択された少なくとも一つの酸とを含む金属塩の水溶液を、高炉用鉄源原料の表面に付着させる第1の付着工程を有することを特徴とする高炉用鉄源原料の製造方法。 An aqueous solution of a metal salt containing at least one metal selected from the group of calcium and magnesium and at least one acid selected from the group of acetic acid, carbonic acid and nitric acid is attached to the surface of the iron source material for blast furnace. A method for producing an iron source material for a blast furnace, characterized by comprising one adhesion step.
  2.  前記第1の付着工程が、前記金属塩の水溶液を高炉用鉄源原料に散布または塗布し、金属塩の水溶液を前記高炉用鉄源原料に付着させることからなる請求項1に記載の高炉用鉄源原料の製造方法。 2. The blast furnace use according to claim 1, wherein the first attaching step comprises spraying or coating the aqueous solution of the metal salt on the iron source material for a blast furnace, and attaching the aqueous solution of the metal salt to the iron source material for the blast furnace. Manufacturing method of iron source material.
  3.  前記第1の付着工程が、金属塩の水溶液をヤードに堆積された高炉用鉄源原料に散布することからなる請求項2に記載の高炉用鉄源原料の製造方法。 3. The method for producing a blast furnace iron source material according to claim 2, wherein the first adhesion step comprises spraying an aqueous solution of a metal salt onto the blast furnace iron source material deposited in the yard.
  4.  前記第1の付着工程の後、前記高炉用鉄源原料を原料搬送コンベアーで高炉に搬送する際に、前記原料搬送コンベアーの乗り継ぎ部を通過した後、少なくとも一回、前記高炉用鉄源原料に、前記金属塩の水溶液を散布する第2の付着工程を有する請求項3に記載の高炉用鉄源原料の製造方法。 After transporting the blast furnace iron source material to the blast furnace by the raw material transport conveyor after the first attaching step, after passing through the connecting portion of the raw material transport conveyor, at least once, the iron source material for blast furnace The manufacturing method of the iron source raw material for blast furnaces of Claim 3 which has a 2nd adhesion process which sprinkles the aqueous solution of the said metal salt.
  5.  前記第1の付着工程が、高炉用鉄源原料を原料搬送コンベアーにより高炉に搬送する際に、前記原料搬送コンベアーの乗り継ぎ部において、前記高炉用鉄源原料に、前記金属塩の水溶液を散布することからなる請求項2に記載の高炉用鉄源原料の製造方法。 When the first adhering step transports the blast furnace iron source material to the blast furnace by the material conveyor, the aqueous solution of the metal salt is sprayed on the blast furnace iron source material at the connecting portion of the material conveyor. The manufacturing method of the iron source raw material for blast furnaces of Claim 2 which consists of this.
  6.  前記第1の付着工程が、高炉用鉄源原料を原料搬送コンベアーにより高炉に搬送する際に、高炉用鉄源原料の上方から金属塩の水溶液を散布することからなる請求項2に記載の高炉用鉄源原料の製造方法。 3. The blast furnace according to claim 2, wherein the first attaching step comprises spraying an aqueous solution of a metal salt from above the blast furnace iron source material when the blast furnace iron source material is conveyed to the blast furnace by a material conveyor. Method for manufacturing iron source materials.
  7.  前記第1の付着工程の後、前記高炉用鉄源原料を原料搬送コンベアーで高炉に搬送する際に、前記原料搬送コンベアーの乗り継ぎ部を通過した後、少なくとも一回、前記高炉用鉄源原料に、前記金属塩の水溶液を散布する第2の付着工程を有する請求項6に記載の高炉用鉄源原料の製造方法。 After transporting the blast furnace iron source material to the blast furnace by the raw material transport conveyor after the first attaching step, after passing through the connecting portion of the raw material transport conveyor, at least once, the iron source material for blast furnace The manufacturing method of the iron source raw material for blast furnaces of Claim 6 which has a 2nd adhesion process which sprinkles the aqueous solution of the said metal salt.
  8.  前記金属塩の付着量が、対象とする前記高炉用鉄源原料1tに対して0.1~30モルである請求項1に記載の高炉用鉄源原料の製造方法。 The method for producing an iron source material for a blast furnace according to claim 1, wherein the amount of the metal salt attached is 0.1 to 30 mol with respect to 1 t of the target iron source material for the blast furnace.
  9.  前記金属塩の付着量が、対象とする前記高炉用鉄源原料1tに対して0.3~10モルである請求項8に記載の高炉用鉄源原料の製造方法。 The method for producing a blast furnace iron source material according to claim 8, wherein the adhesion amount of the metal salt is 0.3 to 10 mol with respect to 1 t of the target blast furnace iron source material.
  10.  前記金属塩の付着量が、対象とする前記高炉用鉄源原料1tに対して0.3~5モルである請求項9に記載の高炉用鉄源原料の製造方法。 The method for producing an iron source material for a blast furnace according to claim 9, wherein the amount of the metal salt attached is 0.3 to 5 mol with respect to 1 t of the target iron source material for a blast furnace.
  11.  前記高炉用鉄源原料が、焼結鉱である請求項1に記載の高炉用鉄源原料の製造方法。 The method for producing a blast furnace iron source material according to claim 1, wherein the blast furnace iron source material is sintered ore.
  12.  前記高炉用鉄源原料が、SiO含有量が4.9mass%以下である焼結鉱である請求項11に記載の高炉用鉄源原料の製造方法。 The blast furnace iron source raw material, manufacturing method of the blast furnace iron source material of claim 11 SiO 2 content of sintered ore, which is a less 4.9mass%.
  13.  前記高炉用鉄源原料が、SiO含有量が4.6~4.9mass%である焼結鉱である請求項12に記載の高炉用鉄源原料の製造方法。 13. The method for producing a blast furnace iron source material according to claim 12, wherein the blast furnace iron source material is a sintered ore having a SiO 2 content of 4.6 to 4.9 mass%.
  14.  前記高炉用鉄源原料が、鉄鉱石である請求項1に記載の高炉用鉄源原料の製造方法。 The method for producing a blast furnace iron source material according to claim 1, wherein the blast furnace iron source material is iron ore.
  15.  前記鉄鉱石が、高結晶水含有鉄鉱石である請求項14に記載の高炉用鉄源原料の製造方法。 The method for producing an iron source material for a blast furnace according to claim 14, wherein the iron ore is an iron ore containing high crystal water.
  16.  前記金属塩が、炭酸水素カルシウムと炭酸水素マグネシウムからなるグループから選択された少なくとも一つの金属塩である請求項1に記載の高炉用鉄源原料の製造方法。 The method for producing an iron source material for a blast furnace according to claim 1, wherein the metal salt is at least one metal salt selected from the group consisting of calcium hydrogen carbonate and magnesium hydrogen carbonate.
  17.  前記金属塩が、硝酸カルシウムと硝酸マグネシウムからなるグループから選択された少なくとも一つの金属塩である請求項1に記載の高炉用鉄源原料の製造方法。 The method for producing an iron source material for a blast furnace according to claim 1, wherein the metal salt is at least one metal salt selected from the group consisting of calcium nitrate and magnesium nitrate.
  18.  前記金属塩が、酢酸カルシウムと酢酸マグネシウムからなるグループから選択された少なくとも一つの金属塩である請求項1に記載の高炉用鉄源原料の製造方法。 The method for producing an iron source material for a blast furnace according to claim 1, wherein the metal salt is at least one metal salt selected from the group consisting of calcium acetate and magnesium acetate.
  19.  前記金属塩の水溶液の散布が、対象とする高炉用鉄源原料トン当たり0.001~0.05トンの水溶液を散布または塗布することからなる請求項2に記載の高炉用鉄源原料の製造方法。 3. The production of a blast furnace iron source material according to claim 2, wherein the dispersion of the metal salt aqueous solution comprises spraying or coating 0.001 to 0.05 ton of an aqueous solution per ton of blast furnace iron source material. Method.
  20.  前記金属塩の水溶液の散布が、対象とする高炉用鉄源原料トン当たり0.001~0.025トンの水溶液を散布または塗布することからなる請求項19に記載の高炉用鉄源原料の製造方法。 20. The production of an iron source material for a blast furnace according to claim 19, wherein the dispersion of the aqueous solution of the metal salt comprises spraying or applying 0.001 to 0.025 tons of an aqueous solution per ton of the target blast furnace iron source material. Method.
  21.  前記金属塩の水溶液が、0.002~26モル/kgの金属塩の濃度を有する請求項1に記載の高炉用鉄源原料の製造方法。 The method for producing an iron source material for a blast furnace according to claim 1, wherein the aqueous solution of the metal salt has a metal salt concentration of 0.002 to 26 mol / kg.
  22.  前記金属塩の水溶液が、0.01~5モル/kgの金属塩の濃度を有する請求項21に記載の高炉用鉄源原料の製造方法。 The method for producing an iron source material for a blast furnace according to claim 21, wherein the aqueous solution of the metal salt has a metal salt concentration of 0.01 to 5 mol / kg.
  23.  前記金属塩の水溶液が、0.01~1モル/kgの金属塩の濃度を有する請求項22に記載の高炉用鉄源原料の製造方法。 The method for producing an iron source material for a blast furnace according to claim 22, wherein the aqueous metal salt solution has a metal salt concentration of 0.01 to 1 mol / kg.
PCT/JP2011/079269 2011-12-13 2011-12-13 Process for manufacturing iron-source raw material to be fed into blast furnace WO2013088583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079269 WO2013088583A1 (en) 2011-12-13 2011-12-13 Process for manufacturing iron-source raw material to be fed into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079269 WO2013088583A1 (en) 2011-12-13 2011-12-13 Process for manufacturing iron-source raw material to be fed into blast furnace

Publications (1)

Publication Number Publication Date
WO2013088583A1 true WO2013088583A1 (en) 2013-06-20

Family

ID=48612067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079269 WO2013088583A1 (en) 2011-12-13 2011-12-13 Process for manufacturing iron-source raw material to be fed into blast furnace

Country Status (1)

Country Link
WO (1) WO2013088583A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313307A (en) * 2014-10-16 2015-01-28 昆明理工大学 Low-temperature reduction pulverization auxiliary for sintered ores and using method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102204A (en) * 1977-02-18 1978-09-06 Sumitomo Metal Ind Ltd Treating method for preventing pulverization of sintered ores dueto reduction
JPH02217408A (en) * 1989-02-20 1990-08-30 Nippon Steel Corp Method for operating blast furnace
JPH0913107A (en) * 1995-06-27 1997-01-14 Sumitomo Metal Ind Ltd Operation of blast furnace
JP2006291255A (en) * 2005-04-07 2006-10-26 Sumitomo Metal Ind Ltd Method for operating blast furnace
JP2006348364A (en) * 2005-06-17 2006-12-28 Nippon Steel Corp Method for spraying chloride solution onto sintered ore
JP2009019252A (en) * 2007-07-13 2009-01-29 Nippon Steel Corp Iron source raw material for blast furnace and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102204A (en) * 1977-02-18 1978-09-06 Sumitomo Metal Ind Ltd Treating method for preventing pulverization of sintered ores dueto reduction
JPH02217408A (en) * 1989-02-20 1990-08-30 Nippon Steel Corp Method for operating blast furnace
JPH0913107A (en) * 1995-06-27 1997-01-14 Sumitomo Metal Ind Ltd Operation of blast furnace
JP2006291255A (en) * 2005-04-07 2006-10-26 Sumitomo Metal Ind Ltd Method for operating blast furnace
JP2006348364A (en) * 2005-06-17 2006-12-28 Nippon Steel Corp Method for spraying chloride solution onto sintered ore
JP2009019252A (en) * 2007-07-13 2009-01-29 Nippon Steel Corp Iron source raw material for blast furnace and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313307A (en) * 2014-10-16 2015-01-28 昆明理工大学 Low-temperature reduction pulverization auxiliary for sintered ores and using method thereof

Similar Documents

Publication Publication Date Title
TWI401211B (en) Indium oxide powder and method for producing same
WO2015016145A1 (en) Raw material for direct reduction applications, method for producing raw material for direct reduction applications, and method for producing reduced iron
CN105648383B (en) A kind of preparation method at WC-Co composite powder end used for hot spraying
JP2000178662A (en) Granulating agent for powdery metallic raw material and wet granulating method
Chen et al. Preparation of nano α-alumina powder and wear resistance of nanoparticles reinforced composite coating
WO2013088583A1 (en) Process for manufacturing iron-source raw material to be fed into blast furnace
JP2013170311A (en) Method for producing sintered ore
JP5962077B2 (en) Method for producing blast furnace iron source material
CN107176850B (en) Anti-sticking powder coating and preparation method thereof
TWI464270B (en) Manufacture method of iron source raw material for blast furnace
JP5014906B2 (en) Iron source material for blast furnace and method for producing the same
JP2012092418A (en) Method of producing iron source raw material for charging blast furnace
WO2010098329A1 (en) Method for treating sintering granules
CN100523225C (en) Method to improve iron production rate in a blast furnace
JPH0822781B2 (en) Surface coating for tundish and ladle ladle
JP2002332559A (en) Oxide grain for thermal spraying, production method therefor and thermally sprayed member and corrosion resistant member using the same grain
JP2012077351A (en) Method for manufacturing iron-source raw material to be charged into blast furnace
CN104988309B (en) Iron ore pellets boron magnesium compound binding agent and purposes and the processing method of acidic pellet ore
WO2014034589A1 (en) Method for producing reduced iron agglomerates
CN112359259A (en) Non-uniform bicrystal hard alloy containing grain inhibiting element and having carbon uniformly distributed and preparation method thereof
JP2001278420A (en) Open storage method for reduced iron
KR102074362B1 (en) Making process for briquet and method for molten steel unsing the same
JP7360052B2 (en) Manufacturing method of anisotropic magnetic powder and anisotropic magnetic powder
JP7333166B2 (en) Slurry, method for producing mold powder, and mold powder
JP6660015B2 (en) How to store clinker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP