JPH02217408A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH02217408A
JPH02217408A JP3957689A JP3957689A JPH02217408A JP H02217408 A JPH02217408 A JP H02217408A JP 3957689 A JP3957689 A JP 3957689A JP 3957689 A JP3957689 A JP 3957689A JP H02217408 A JPH02217408 A JP H02217408A
Authority
JP
Japan
Prior art keywords
furnace
coke
blast furnace
highly reactive
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3957689A
Other languages
Japanese (ja)
Other versions
JP2769835B2 (en
Inventor
Masaaki Naito
誠章 内藤
Kazuyoshi Yamaguchi
一良 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3957689A priority Critical patent/JP2769835B2/en
Publication of JPH02217408A publication Critical patent/JPH02217408A/en
Application granted granted Critical
Publication of JP2769835B2 publication Critical patent/JP2769835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To lower temp. at heat holding zone, to improve the productivity and to stabilize the operation by charging large lump high reactive coke into center part of a furnace and small lump high reactive coke into circumferential part of the furnace in the blast furnace separately charging the coke with the large lump and small lump. CONSTITUTION:The coke is separated with the large lump and small lump and charged into the blast furnace. A part or the whole of the above coke is displaced into the high reactive coke. Then, the large lump high reactive coke is charged into the center part of the furnace. Further, the above small lump high reactive coke is charged into the part from intermediate part to the circumferential part of the furnace. By this method, the temp. at the heat holding zone is lowered and reduction reaction of iron ore is promoted and molten pig iron is stably obtd. at high productivity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉で反応性を高めたコークスを使用するこ
と、および高反応性コークスとともに低還元粉化性焼結
鉱を使用することによって、生産性を向上させた高炉操
よ法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is achieved by using coke with increased reactivity in a blast furnace and by using low-reduced pulverizable sintered ore together with highly reactive coke. , concerning a blast furnace operation method that improved productivity.

(従来の技術) 通常の高炉にあっては、炉頂から鉄鉱石及びコークスを
層状に装入し、この鉄鉱石を炉内で還元した後、金属状
態に還元・溶融して溶銑を製造している。
(Prior art) In a normal blast furnace, iron ore and coke are charged in layers from the top of the furnace, and the iron ore is reduced in the furnace and then reduced and melted into a metallic state to produce hot metal. ing.

このとき、高炉を安定して操業するために、特開昭57
−174403号公報にあっては、高炉に鉄原料とコー
クスを順次装入し精錬する高炉操業法において、高炉に
コークスを装入するにあたり、常時もしくは間欠的に炉
周辺部に15〜25■を平均粒度とする小塊コークスを
、炉中心部に35〜70mmを平均粒度とする大塊コー
クスを装入し、操業することを特徴とする高炉操業法が
開示されている。
At this time, in order to operate the blast furnace stably,
-174403, in a blast furnace operation method in which iron raw material and coke are sequentially charged into a blast furnace and refined, when charging coke into the blast furnace, 15 to 25 cm is constantly or intermittently placed around the furnace. A blast furnace operating method is disclosed in which small coke having an average particle size is charged into the center of the furnace and large coke having an average particle size of 35 to 70 mm is charged for operation.

また、本発明者らは特願昭62−193457号におい
て、15mm以下の小塊高反応性コークスを使用して、
該高反応性コークスを普通コークス又は鉱石と混合して
高炉に装入することにより、高炉の熱保存帯温度を低下
させ、高炉の反応効率を高める高炉操業法を提案した。
In addition, the present inventors have disclosed in Japanese Patent Application No. 193457/1983 that using small pieces of highly reactive coke of 15 mm or less,
We proposed a blast furnace operating method in which the highly reactive coke is mixed with ordinary coke or ore and charged into the blast furnace, thereby lowering the temperature of the thermal reserve zone of the blast furnace and increasing the reaction efficiency of the blast furnace.

(発明が解決しようとする課題) しかしながら、炉中心部に35〜70mmを平均粒度と
する大塊コークスを、炉周辺部に15〜25−を平均粒
度とする小塊コークスを装入することにより、炉中心部
における炉芯の通気通液性が確保でき、安定操業が可能
と考えられるが、通常コークスを使用する操字において
は、高炉の反応効率は向上できない。
(Problems to be Solved by the Invention) However, by charging large coke with an average particle size of 35 to 70 mm in the center of the furnace and small coke with an average particle size of 15 to 25 mm in the peripheral area of the furnace, Although it is thought that ventilation and liquid permeability of the furnace core in the center of the furnace can be ensured and stable operation is possible, the reaction efficiency of the blast furnace cannot be improved in normal operation using coke.

一方、高炉の反応効率を向上させるためには、小塊高反
応性コークスを鉱石またはコークスと混合して使用する
のが有効であるが、通常操業においては小塊高反応性コ
ークスは量が少なく炉中心部に到i!t=ないように装
入するので、炉中心部の還元効率は向上せず、高炉半径
方向全体の反応効率は向りしにくい。また装入物分布制
御により、小塊高反応性コークスを炉中心部に装入する
と、高炉半径方向全体の反応効率は向上できるが、炉中
心部における炉芯の通気通液性の点で問題となり安定操
!に支障となる。
On the other hand, in order to improve the reaction efficiency of blast furnaces, it is effective to use small-sized highly reactive coke mixed with ore or coke, but in normal operation, the amount of small-sized highly reactive coke is small. Arrived at the heart of the furnace! Since the charging is carried out so that t does not exist, the reduction efficiency in the center of the furnace does not improve, and the reaction efficiency in the entire blast furnace radial direction is difficult to improve. In addition, by controlling the charge distribution and charging small highly reactive coke into the center of the furnace, the reaction efficiency in the entire radial direction of the blast furnace can be improved, but there are problems in terms of ventilation and liquid permeability of the furnace core in the center of the furnace. Stable operation next door! It becomes a hindrance.

また、反応効率が向上でき、低燃料比操業が可能となっ
た場合でも、低燃料比操業時によく見られるように、ガ
ス流れが不均衡になり、ガス流量の少ない領域が高炉シ
ャフト部に生成すると、600〜700℃の低温熱保存
帯が生成し属くなるが、この部位では焼結鉱還元粉化が
助長され、それに伴う高炉シャフト部の通気不良が生じ
る結果、鉱石還元の遅れ、装入物の降下不良など、高炉
安定操業に支障となるケースが多い。
In addition, even if the reaction efficiency can be improved and low fuel ratio operation becomes possible, the gas flow will be unbalanced and a region of low gas flow will be created in the blast furnace shaft, as is often seen during low fuel ratio operation. As a result, a low-temperature thermal storage zone of 600 to 700°C is generated, but this region promotes sinter reduction and pulverization, resulting in poor ventilation of the blast furnace shaft, resulting in a delay in ore reduction and There are many cases where stable operation of the blast furnace is hindered, such as when the materials do not descend properly.

そこで、本発明にあっては、高炉に装入されるコークス
の反応性を高め、かつ大塊と小塊に分別して装入するこ
とにより、熱保存帯温度を低下させて高炉全体の鉄鉱石
の還元反応を促進させ、高い反応効率下で、高生産性で
安定的に溶鉄を製造すること、ならびに低燃料比操業下
で発生しやすい焼結鉱還元粉化に伴う粉率増加を抑制し
て、安定的に高炉を操業することを目的とする。
Therefore, in the present invention, by increasing the reactivity of the coke charged into the blast furnace and charging it separately into large lumps and small lumps, the temperature of the heat reserve zone is lowered and the iron ore in the entire blast furnace is reduced. It is possible to produce molten iron stably with high productivity under high reaction efficiency by promoting the reduction reaction of The purpose is to operate the blast furnace stably.

(:5題を解決するための手段および作用)本発明の高
炉操業法は、その目的を達成するために、コークスを大
塊と小塊に分別して装入する高炉において、高反応性コ
ークスを大塊と小塊に分別し、大塊高反応性コークスを
炉中心部に、小塊高反応性コークスを炉中間部より炉周
辺部に装入することにより、炉中心部における炉°芯$
通気通液性を確保し、高炉全体の還元効率を向上させ、
低燃料比操業を可能とすることを特徴とする。また高反
応性コークスを大塊と小塊に分別し、大塊高反応性コー
クスを炉中心部に、小塊高反応性コークスを炉中間部よ
り炉周辺部に装入するに際し、該高反応性コークスとと
もに、低還元粉化性焼結鉱を装入し、低燃料比操業下で
発生しやすい焼結鉱還元粉化に伴う粉率増加を抑制して
、安定的に高炉を運転することを特徴とする。
(Means and effects for solving the 5 problems) In order to achieve the objective, the blast furnace operating method of the present invention uses highly reactive coke in a blast furnace in which coke is charged after being separated into large lumps and small lumps. By separating large coke and small coke and charging the large highly reactive coke into the center of the furnace and the small highly reactive coke from the middle to the periphery of the furnace, the core of the furnace at the center of the furnace can be reduced.
Ensures ventilation and liquid permeability, improves the reduction efficiency of the entire blast furnace,
It is characterized by enabling low fuel ratio operation. In addition, highly reactive coke is separated into large lumps and small lumps, and the large highly reactive coke is charged into the center of the furnace, and the small highly reactive coke is charged from the middle part of the furnace to the peripheral part of the furnace. To operate the blast furnace stably by charging low-reduction pulverizable sintered ore together with high-temperature coke to suppress the increase in powder ratio due to reduction and pulverization of sintered ore, which tends to occur under low fuel ratio operation. It is characterized by

まず、高反応性コークスについて述べる。First, we will discuss highly reactive coke.

本発明では使用する高反応性コークスはJISK215
1−1977の反応性試験方法で測定したときのJIS
反応性が30%以上であることが望ましい、その値が3
0%未満であると、後述する熱保存帯温度の低下がほと
んどみられない。また高反応性コークスであっても強度
を高く保つことは必要であり、通常コークスと同じ程度
の強度を保つことが望ましい。
The highly reactive coke used in the present invention is JISK215
JIS when measured by the reactivity test method of 1-1977
It is desirable that the reactivity is 30% or more, and the value is 3
When it is less than 0%, there is almost no decrease in the temperature of the heat storage zone, which will be described later. Furthermore, even if the coke is highly reactive, it is necessary to maintain its strength high, and it is desirable to maintain the same strength as normal coke.

高強度を有する高反応性コークスの調整法としては、強
度の高い通常コークスにアルカリ水溶液を添加する方法
または一般炭を成型して乾留する方法などがある。
Methods for preparing highly reactive coke with high strength include a method of adding an alkaline aqueous solution to high-strength ordinary coke, or a method of molding steam coal and carbonizing it.

高反応性コークスは通常炉頂から装入されるコ−クスの
一部あるいは全量と置換し、かっ該高反応性コークスを
大塊と小塊に分別し、大塊を通常コークスと混合するか
、あるいは単独で炉中心部に鉄鉱石と交互に層状装入す
る。小塊は炉中間部から炉周辺部に鉄鉱石および/また
は通常コークスと混合して装入するか、あるいは単独で
鉄鉱石と交互に層状装入する。
Either the highly reactive coke replaces part or all of the coke normally charged from the top of the furnace, the highly reactive coke is separated into large lumps and small lumps, and the large lumps are mixed with the normal coke. Alternatively, it can be charged alone in layers alternately with iron ore in the center of the furnace. The nodules are charged from the middle of the furnace to the periphery of the furnace in a mixture with iron ore and/or coke, or alone in layers alternating with iron ore.

本発明において、炉中心部とは高炉の炉口部半径の20
%以内の部分を示し、例えば炉口部半径h(5mであれ
ば半径1m以内を炉中心部と称する。
In the present invention, the furnace center is defined as 20 mm of the furnace mouth radius of the blast furnace.
For example, if the furnace mouth radius h (5 m), the area within 1 m radius is referred to as the furnace center.

この炉中心部を除いた炉壁までの外側を炉中間部から炉
周辺部と称する。
The area outside the furnace wall excluding the furnace center is called the furnace middle area to the furnace periphery area.

炉中間部から炉周辺部に装入される鉄鉱石および/また
は通常コークスに混合使用する高反応性コークスのrL
Itは15ts以下とすることが望ましい。この粒度が
15s+m以下であれば、コークスの単位重量に対する
表面積が増加し、反応に寄与する割合が大きくなる。
rL of highly reactive coke used mixed with iron ore and/or normal coke charged from the middle part of the furnace to the peripheral part of the furnace
It is desirable that It is 15ts or less. If this particle size is 15 s+m or less, the surface area per unit weight of coke increases, and the proportion contributing to the reaction increases.

この高反応性コークスは反応性が高いことから、炉内の
COlがコークス表面に接触してCOとなる界面反応が
円滑に行われる。また、その結果として炉内に生じたC
Oガスが鉄鉱石と有効に反応して低級酸化物又は金属状
態に還元する反応が促進される。
Since this highly reactive coke has high reactivity, an interfacial reaction in which COl in the furnace comes into contact with the surface of the coke to become CO takes place smoothly. In addition, as a result, the C generated in the furnace
The O gas effectively reacts with the iron ore to promote the reaction of reducing it to a lower oxide or metal state.

C+CO,=2GOのコークスのガス化反応は吸熱反応
であり、高炉シャフト部における熱保存帯の温度を低下
させることができる。例えば、従来法によるとき、10
00℃程度の熱保存帯が生成し、その値がほとんど変化
しないのに対して、高反応性コークスを使用することに
よって、熱保存帯の温度を900〜950”Cに低下さ
せることが可能となる。その結果、還元平衡到達点に余
裕ができるため還元がより進行することになり、シャフ
ト効率、間接還元率、coガス利用率が向上し、コーク
ス比を低下させることができる。
The coke gasification reaction of C+CO,=2GO is an endothermic reaction and can lower the temperature of the heat storage zone in the blast furnace shaft. For example, when using the conventional method, 10
A heat reserve zone of approximately 00°C is generated, and its value hardly changes. However, by using highly reactive coke, it is possible to lower the temperature of the heat reserve zone to 900-950"C. As a result, there is a margin at the point at which the reduction equilibrium is reached, so that the reduction progresses further, and the shaft efficiency, indirect reduction rate, and co gas utilization rate are improved, and the coke ratio can be lowered.

また大塊高反応性コークスとして粒1t35〜7゜■の
高反応性コークスを炉中心部へ装入することによって、
炉中心部における炉芯の通気通液性が確保され、安定し
た操業が可能となり、かつ炉中心部に装入された鉄鉱石
の還元が促進されるため、高炉半径方向全体の還元効率
が向上できる。
In addition, by charging highly reactive coke with grain size of 1t35~7゜ as large block highly reactive coke into the center of the furnace,
The ventilation and liquid permeability of the furnace core in the center of the furnace is ensured, enabling stable operation, and promoting the reduction of iron ore charged in the center of the furnace, improving the reduction efficiency in the entire radial direction of the blast furnace. can.

次に焼結鉱の還元粉化抑制について述べる。Next, we will discuss the suppression of reduction and powdering of sintered ore.

高反応性コークス使用により還元効率が向上できるため
、燃料比を大巾に低下させた操業が可能となるが、その
際、高炉シャフト部の温度低下に起因して、焼結鉱の還
元粉化量は増大傾向となる。
The reduction efficiency can be improved by using highly reactive coke, making it possible to operate with a significantly lower fuel ratio. The amount tends to increase.

特に、高炉シャフト部に600〜700℃の低温熱保存
帯が生成すると、焼結鉱の還元粉化量は顕署に増大し、
高炉安定操業に支障となる。
In particular, when a low-temperature thermal storage zone of 600 to 700°C is formed in the blast furnace shaft, the amount of reduction and powdering of sintered ore increases significantly.
This will impede the stable operation of the blast furnace.

この対策とし、通常焼結鉱を全量低還元粉化性焼結鉱に
置換し、高反応性コークスとともに装入する。あるいは
、通常は普通焼結鉱を装入しておき、600〜700℃
の低温熱保存帯の生成を検出しながら、その低温熱保存
帯が発生したときに1、i!I常焼結鉱の装入を止め、
全量低温還元粉化性焼結鉱を装入する。
As a countermeasure to this, the entire amount of normal sintered ore is replaced with low-reduction pulverizable sintered ore and charged together with highly reactive coke. Alternatively, normally sintered ore is charged and the temperature is heated to 600 to 700℃.
While detecting the formation of a low-temperature thermal storage zone, when the low-temperature thermal storage zone occurs, 1, i! Stop charging of I-ever sintered ore,
Charge the entire amount of low-temperature reduction pulverizable sintered ore.

低還元粉化性焼結鉱の製造は、焼結操業における原料配
合調整、操業!Fl整(コークス原単位の変更など)で
可能であり、また、普通焼結鉱に海水や高炉シブフナ−
水などのアルカリ水溶液を添加して製造することもでき
る。
The production of low-reduction pulverizable sintered ore involves adjusting the raw material mix and operating the sintering operation! It is possible to do this by adjusting Fl (changing the coke consumption unit, etc.), and adding seawater or blast furnace sinter to ordinary sintered ore.
It can also be produced by adding an alkaline aqueous solution such as water.

第1図は焼結鉱の還元粉化指数(RD Iと略す)、J
IS還元率と海水浸漬時間との関係を示したもので、海
水に約5秒浸漬させた場合、焼結!RDIは35〜40
%が15%にまで低下する一方、焼結鉱JIS還元率は
不変であり、焼結鉱への海水添加は焼結鉱被還元性に影
響を与えず、還元粉化抑制に効果を発揮する。
Figure 1 shows the reduced pulverization index (abbreviated as RDI) of sintered ore, J
This shows the relationship between IS reduction rate and seawater immersion time.When immersed in seawater for about 5 seconds, sintering occurs! RDI is 35-40
% decreases to 15%, while the sintered ore JIS reduction rate remains unchanged, and the addition of seawater to sintered ore does not affect the sintered ore reducibility and is effective in suppressing reduction powdering. .

なお、RD I ハサンプL (15〜20ms、50
0g)を還元ガス(CO30%−N、70%、15M1
/5in)ニヨ’) 550℃で30分間還元し、その
後回転試験機で900回転(30rp*X30分間)後
の一3■−の重量割合をもって示される。また、焼結鉱
の還元率はJIS法で測定される900℃。
In addition, RDI hasamp L (15~20ms, 50
0g) into reducing gas (CO30%-N, 70%, 15M1
/5in) Niyo') After reduction at 550° C. for 30 minutes and then 900 revolutions (30 rp*×30 minutes) using a rotation tester, it is expressed as a weight ratio of 13. In addition, the reduction rate of sintered ore is 900°C as measured by JIS method.

180分後の還元率で表示している。The return rate is displayed after 180 minutes.

(実施例) 以下、実施例により本発明の特徴を具体的に説明する。(Example) Hereinafter, the features of the present invention will be specifically explained with reference to Examples.

第1表に高反応性コークスおよび低還元粉化性焼結鉱を
使用した高炉操業を従来法と比較して示す。
Table 1 shows a comparison of blast furnace operation using highly reactive coke and low reduction pulverizable sintered ore with the conventional method.

対象高炉は内容積3000m’の中型高炉であり、従来
法では炉頂からO/C=3.2の割合テ鉄鉱石と通常コ
ークスを装入し、羽口前フレーム温度を2270℃(熱
風温度1100℃、添加湿分35g/N■3、微粉炭吹
き込みなし)に維持しなから溶銑を製造していた(比較
例) 実施例1は通常コークスを全量高反応性コークス(JI
S反応性50%)に置換した例で、粒度50mm以上が
20%、粒度50mm未満が80%であり、焼結鉱は通
常焼結鉱(RD140%)に海水を噴霧して低RDI焼
結鉱(RD 120%)としている。
The target blast furnace is a medium-sized blast furnace with an internal volume of 3000 m'. In the conventional method, iron ore and normal coke are charged from the top of the furnace at a ratio of O/C = 3.2, and the flame temperature in front of the tuyere is set at 2270 °C (hot air temperature (Comparative example) In Example 1, the entire amount of normal coke was replaced with highly reactive coke (JI
In this example, 20% has a particle size of 50 mm or more, and 80% has a particle size of less than 50 mm.Sintered ore is usually sintered with low RDI by spraying seawater on sintered ore (RD140%). ore (RD 120%).

実施例2は通常コークスの50%を高反応性コークス(
JIS反応性50%)に置換した例で、そのうち15m
m超が70%、粒度151以下が30%であり、焼結鉱
は通常焼結鉱(RD 140%)にソックナー水を噴霧
して低RDI焼結鉱(RD122%)としている。
In Example 2, 50% of the normal coke was replaced with highly reactive coke (
JIS reactivity 50%), of which 15m
70% has a particle size of more than m, and 30% has a particle size of 151 or less, and the sintered ore is usually made into a low RDI sintered ore (RD 122%) by spraying sockner water on the sintered ore (RD 140%).

装入方法は、実施例1の場合、高反応性コークスの大塊
を中心iに、小塊を炉中間部から周辺部に装入し、焼結
鉱と交互装入した。実施例2の場合、大塊高反応性コー
クスは通常コークスと混合して炉中心部に装入し、小塊
コークスは通常コークスおよび焼結鉱と!/2ずつ混合
して、炉中間Tから周辺部に装入した。
In the case of Example 1, the charging method was such that a large lump of highly reactive coke was placed in the center, small lumps were charged from the middle part of the furnace to the peripheral part, and the small lumps were charged alternately with the sintered ore. In the case of Example 2, large highly reactive coke is mixed with normal coke and charged into the center of the furnace, and small coke is mixed with normal coke and sinter! /2 and charged into the periphery from the middle T of the furnace.

′:51表の実施例では、比較例に比べてガス恥j用率
の向上、コークス比の低下が達成され、燃料比を低ドす
ることができた。
In the examples shown in Table ':51, an improvement in the gas utilization rate and a decrease in the coke ratio were achieved compared to the comparative example, and the fuel ratio could be lowered.

第 表 以上に説明したように、本発明においては、高強度の高
反応性コークスを大塊と小塊に分別し、大塊高反応性コ
ークスを炉中心部に、小塊高反応性コークスを炉中間部
より炉周辺部に装入することにより、炉中心部における
炉芯の通気iil!i液性を確保し、また熱保存帯の温
度を低下させることができろため、シャフト効率を上げ
ることも可能となり、高炉全体のガス利用効率を高めて
少ないコークス比で高炉操業を行うことができる。さら
に低燃料比時に発生しやすい焼結鉱還元粉化に伴う粉率
増加を抑制することにより長期間安定した操業が可能と
なる。
As explained above in the table, in the present invention, high-strength, highly reactive coke is separated into large lumps and small lumps, and the large-sized highly reactive coke is placed in the center of the furnace, while the small-sized highly reactive coke is placed in the center of the furnace. By charging from the middle of the furnace to the periphery of the furnace, ventilation of the furnace core at the center of the furnace is achieved! Since it is possible to secure i-liquid properties and lower the temperature of the heat storage zone, it is also possible to increase the shaft efficiency, increasing the overall gas utilization efficiency of the blast furnace and operating the blast furnace with a low coke ratio. can. Furthermore, stable operation for a long period of time is possible by suppressing the increase in powder ratio due to reduction and powdering of sintered ore, which tends to occur at low fuel ratios.

このようにして、本発明によるとき、高炉操業の生産性
を向上させることができる。
In this way, according to the present invention, the productivity of blast furnace operation can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結鉱RDI、JIS還元率と海水浸漬時間と
の関係を示した図である。 (発明の効果) 第1図 JIS耕(2−) 湯べ凍A咋鋸初
FIG. 1 is a diagram showing the relationship between sintered ore RDI, JIS reduction rate, and seawater immersion time. (Effect of the invention) Figure 1 JIS cultivation (2-) Hot water bath freezing A Kui saw first

Claims (1)

【特許請求の範囲】 1、コークスを大塊と小塊に分別して装入する高炉にお
いて、高反応性コークスを大塊と小塊に分別し、大塊高
反応性コークスを炉中心部に、小塊高反応性コークスを
炉中間部より炉周辺部に装入することを特徴とする高炉
操業法。 2、高反応性コークスを大塊と小塊に分別し、大塊高反
応性コークスを炉中心部に、小塊高反応性コークスを炉
中間部より炉周辺部に装入するに際し、該高反応性コー
クスとともに低還元粉化性焼結鉱を装入することを特徴
とする高炉操業法。
[Claims] 1. In a blast furnace in which coke is charged after being separated into large lumps and small lumps, the highly reactive coke is separated into large lumps and small lumps, and the large highly reactive coke is placed in the center of the furnace. A blast furnace operating method characterized by charging small highly reactive coke from the middle of the furnace to the periphery of the furnace. 2. Highly reactive coke is separated into large lumps and small lumps, and when charging the large highly reactive coke into the center of the furnace and the small highly reactive coke from the middle part of the furnace to the peripheral part of the furnace, A blast furnace operating method characterized by charging low-reduction pulverizable sintered ore together with reactive coke.
JP3957689A 1989-02-20 1989-02-20 Blast furnace operation method Expired - Lifetime JP2769835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3957689A JP2769835B2 (en) 1989-02-20 1989-02-20 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3957689A JP2769835B2 (en) 1989-02-20 1989-02-20 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH02217408A true JPH02217408A (en) 1990-08-30
JP2769835B2 JP2769835B2 (en) 1998-06-25

Family

ID=12556905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3957689A Expired - Lifetime JP2769835B2 (en) 1989-02-20 1989-02-20 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2769835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088583A1 (en) * 2011-12-13 2013-06-20 Jfeスチール株式会社 Process for manufacturing iron-source raw material to be fed into blast furnace
TWI464270B (en) * 2011-12-22 2014-12-11 Jfe Steel Corp Manufacture method of iron source raw material for blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088583A1 (en) * 2011-12-13 2013-06-20 Jfeスチール株式会社 Process for manufacturing iron-source raw material to be fed into blast furnace
TWI464270B (en) * 2011-12-22 2014-12-11 Jfe Steel Corp Manufacture method of iron source raw material for blast furnace

Also Published As

Publication number Publication date
JP2769835B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
JPH02217408A (en) Method for operating blast furnace
JPH0776366B2 (en) Blast furnace operation method
JP3829516B2 (en) Blast furnace operation method
JP2731829B2 (en) Blast furnace operation method
JP3629740B2 (en) Hot metal production method
JPH02200710A (en) Method for operating blast furnace
CN103436770A (en) Preparation technology of nitrided ferrovanadium
JP2733566B2 (en) Blast furnace operation method
JP2720058B2 (en) Blast furnace operation method
JPS61106744A (en) Melting and manufacturing method of stainless steel
JPH0524961B2 (en)
JPH02200711A (en) Method for operating blast furnace
JP2837282B2 (en) Production method of chromium-containing hot metal
JP2897362B2 (en) Hot metal production method
JPH0788522B2 (en) Blast furnace operation method
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JP2013087344A (en) Method for producing reduced iron
JP2541200B2 (en) Converter for preventing melting of furnace wall due to high temperature gas
JPH02200709A (en) Method for operating blast furnace
CN117210676A (en) High Al is used 2 O 3 Method for protecting blast furnace with slag content
JPH01195211A (en) Method for melting and reducing iron oxide
JPS5816036A (en) Manufacture of high chromium alloy
JPH09111322A (en) Operation of blast furnace
JPH02236209A (en) Method for operating blast furnace
JPH0681015A (en) Operation of blast furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

EXPY Cancellation because of completion of term