JPH02228408A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH02228408A
JPH02228408A JP4914589A JP4914589A JPH02228408A JP H02228408 A JPH02228408 A JP H02228408A JP 4914589 A JP4914589 A JP 4914589A JP 4914589 A JP4914589 A JP 4914589A JP H02228408 A JPH02228408 A JP H02228408A
Authority
JP
Japan
Prior art keywords
ore
blast furnace
charging
coke
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4914589A
Other languages
Japanese (ja)
Other versions
JPH0692608B2 (en
Inventor
Shinya Arima
慎弥 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1049145A priority Critical patent/JPH0692608B2/en
Publication of JPH02228408A publication Critical patent/JPH02228408A/en
Publication of JPH0692608B2 publication Critical patent/JPH0692608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To easily cause ascending gas in a furnace to flow into center part and to stably operate the blast furnace at good efficiency by charging ore into circumference of the center part after charging solid reducing agent into the specific range in the center part of the blast furnace, repeating the above charging at plural times and forming the ore layer. CONSTITUTION:The solid reducing agent and the ore are charged from the top part of the blast furnace, in order to laminate the solid reducing agent layer and the ore layer, and by blowing hot blast from the tuyere, the reducing gas is generated and ascended, and the ore is reduced and allowed to flow down. In the above blast furnace operation method, at the time of forming the optional ore layer in the above ore layer, charge of the ore is divided into plural times. Further, after charging the solid reducing agent into the specific range in the center part of the blast furnace, the ore charging is executed at each time so as to charge the ore into the circumference thereof. By this method, the solid reducing agent charging rate into the center part can be easily and optionally increased. Further, the reducing reaction of the ore is progressed earlier at the position in the center part and the ascending gas in the furnace is made to flow in the center part. Further, shape of softed melting zone is made as sharp reverse V-shape and the blast furnace is stably and efficiently operated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高炉頂部から固体還元剤および鉱石を装入し
、固体還元剤層および鉱石層を積層して高炉操業する方
法に関し、詳細には高炉軸心部に固体還元剤を装入して
炉内上昇ガスを中心流化し、軟化融着体の形状をシャー
プな逆V字状に維持すると共に、炉芯部の通気性および
通液性を適正に維持するための高炉操業方法に関するも
のである。尚本明細書では、固体還元剤として最も代表
的なコークスを用いる場合を主体にして説明を進める。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of operating a blast furnace by charging a solid reducing agent and ore from the top of a blast furnace and stacking a solid reducing agent layer and an ore layer. In this method, a solid reducing agent is charged into the shaft center of the blast furnace to make the gas rising in the furnace into a central flow, maintain the shape of the softened and fused body in a sharp inverted V shape, and improve the ventilation and liquid flow of the furnace core. This relates to blast furnace operating methods to maintain proper properties. In this specification, the explanation will mainly be based on the case where coke, which is the most typical solid reducing agent, is used.

[従来の技術] 高炉を安定にしかも効率良く操業するには、炉内を上昇
するガス流分布を適正上制御することが重要である。た
とえば第7図は高炉操業状況を示す断面模式図であり、
図中OAは鉱石層、CAはコークス層、Kは塊状帯、S
Mは軟化融着帯、Coは炉芯コークス層、Lはレースウ
ェイ、Bは羽口、Fは溶銑、Eは出湯口を夫々示す。即
ち高炉頂部から交互に装入される鉱石0とコークスCは
層状を呈しつつ徐々に降下し、羽口Bから吹込まれる熱
風とコークスとの反応によって生成する還元性ガス(C
O)の作用で鉱石0は塊状’tKを降下する過程で還元
され、軟化融着isMを形成した後炉芯コークス層CO
の隙間を伝って炉底部に溜まる。そしてこの溶銑Fは、
定期的にまたは連続的に出湯口Eより抜き出される。
[Prior Art] In order to operate a blast furnace stably and efficiently, it is important to appropriately control the gas flow distribution rising inside the furnace. For example, Figure 7 is a schematic cross-sectional diagram showing the operational status of a blast furnace.
In the figure, OA is the ore layer, CA is the coke layer, K is the massive zone, and S
M is a softened cohesive zone, Co is a furnace core coke layer, L is a raceway, B is a tuyere, F is a hot metal, and E is a tap hole. That is, ore 0 and coke C, which are alternately charged from the top of the blast furnace, gradually descend while forming layers, and the reducing gas (C
Due to the action of O), ore 0 is reduced in the process of falling through the lumpy 'tK, and after forming softened and fused isM, the core coke layer CO
It travels through the gaps and accumulates at the bottom of the furnace. And this hot metal F is
It is extracted periodically or continuously from the tap E.

この様な高炉操業の効率および安定性を高めるための制
御法については多くの提案がなされているが、現在のほ
ぼ確立した考えでは、たとえば本願出願人の出願に係る
特開昭60−56003号公報に既に記載し、また特公
昭61−42896号や特開昭61−227109号に
も開示されている様に、高炉上昇ガスを中心流化して軟
化融着帯SMの形状を逆V字形に維持したときに操業効
率が最も高く且つ安定すると言われている。そこでこの
様な操業状況を確保するための手段として、鉱石0やコ
ークスCの装入方法、積層形状、通気性等について様々
の改良研究が進められている。
Many proposals have been made regarding control methods to improve the efficiency and stability of blast furnace operation, but the current almost established idea is that, for example, Japanese Patent Laid-Open No. 60-56003 filed by the applicant of the present invention As already described in the official gazette and also disclosed in Japanese Patent Publication No. 61-42896 and Japanese Patent Application Laid-Open No. 61-227109, the blast furnace rising gas is made into a central flow, and the shape of the softened cohesive zone SM is made into an inverted V-shape. It is said that operational efficiency is highest and most stable when maintained. Therefore, as a means to ensure such operational conditions, various improvement studies are being carried out on the charging method of ore 0 and coke C, the stacked shape, air permeability, etc.

本発明者らはかねてより高炉操業の効率および安定性の
向上を目的として研究を進めているが、過去の数多くの
高炉解体調査の結果を統計的に整理し、更に高炉内の物
買穆動シミュレーションを検問した結果次の様な事実を
明らかにすることができた。
The inventors of the present invention have been conducting research for some time with the aim of improving the efficiency and stability of blast furnace operation. As a result of examining the simulation, we were able to clarify the following facts.

第8図(^) 、 (B)は塊状帯Kにおける軸心部の
通気性と操業状況の関係を示した縦断面模式図であり、
塊状fKにおける軸心部の通気性が良好である場合は、
高炉上昇ガスは中心流指向となるため、鉱石の還元反応
は周辺部よりも軸心部の方が早い位置(即ち高い位置)
から進みはじめ、その結果軟化融着帯SMは第8図(A
)に示す如くシャープな逆V字形で安定する。しかし軸
心部の通気性が悪くなると、通気抵抗が大きいため上昇
ガスは高炉周壁側へ指向せざるを得す、その結果周壁側
にも早期還元反応進行領域ができて軟化融着帯SMは第
8図(B)に示す如くW字形を呈することになり、風圧
変動や炉壁側への熱損失の増大、荷下り異常等が頻発し
、操業状況は著しく不安定になる。
Figures 8(^) and (B) are schematic longitudinal cross-sectional views showing the relationship between the permeability of the axial center of the massive zone K and the operating conditions;
If the central part of the block fK has good ventilation,
Since the blast furnace rising gas is oriented toward the center, the reduction reaction of the ore occurs faster at the axial center than at the periphery (i.e., at a higher position).
As a result, the softened cohesive zone SM is shown in Figure 8 (A
), it is stable in a sharp inverted V-shape. However, when the permeability of the shaft center becomes poor, the rising gas has no choice but to be directed toward the peripheral wall of the blast furnace due to the large ventilation resistance.As a result, an area where the early reduction reaction progresses is formed on the peripheral wall as well, and the softened cohesive zone SM is As shown in FIG. 8(B), the furnace takes on a W-shape, and wind pressure fluctuations, increased heat loss to the furnace wall side, unloading abnormalities, etc. occur frequently, and the operating conditions become extremely unstable.

N9図(A) 、 (B)は炉芯コークス層Coの通気
性が炉況に与える影響を説明するための縦断面模式図で
あり、炉芯コークス層COの通気性が良好である場合、
羽口Bから吹き込まれる熱風は通気性のよい炉芯コーク
ス層Coの中心部まで進行し易くなっているので、第9
図(A)の白抜き矢印で示す如く炉軸心寄りのガスが多
くなり、上昇ガスは中心流を形成して軟化融着帯SMの
形状も逆V字形で安定に保たれる。これに対し第9図(
B)は炉芯コークス層Coの通気性が悪い場合の状況を
示したものであり、炉芯コークス層Coの通気抵抗が大
きいため羽口Bから吹き込まれる熱風は高炉壁面方向に
分流せざるを得す、それに伴なって周辺部の鉱石0が第
8図(B)の場合と同様に早い位置(高い位置)から還
元を受けはじめ、その結果は軟化融着fsMはW字形と
なって炉壁に近い側の高さ方向への通気抵抗は一層小さ
くなり、上昇ガスの周辺流は更に助長されて炉況はます
ます不安定になる。
N9 diagrams (A) and (B) are vertical cross-sectional schematic diagrams for explaining the influence that the permeability of the furnace core coke layer Co has on the furnace condition, and when the permeability of the furnace core coke layer CO is good,
The hot air blown from the tuyere B easily advances to the center of the core coke layer Co, which has good ventilation.
As shown by the white arrow in Figure (A), the amount of gas closer to the reactor axis increases, the rising gas forms a central flow, and the shape of the softened cohesive zone SM is also stably maintained in an inverted V-shape. In contrast, Fig. 9 (
B) shows the situation when the permeability of the core coke layer Co is poor, and because the ventilation resistance of the furnace core coke layer Co is large, the hot air blown from the tuyere B has to be diverted toward the blast furnace wall. As a result, ore 0 in the peripheral area begins to undergo reduction from an earlier position (higher position) as in the case of Fig. 8 (B), and as a result, the softened and fused fsM becomes W-shaped and the furnace The ventilation resistance in the height direction on the side closer to the wall becomes even smaller, the peripheral flow of rising gas is further promoted, and the furnace condition becomes even more unstable.

一方第10図(^) 、 (B)は炉芯コークス層co
の通液性が炉況に与える影響を示した炉床部における横
断面模式図であり、炉芯コークス層Coの通液性が良好
である場合は、第10図(A)に実線矢印で示す如く溶
銑Fは炉芯の中央部を含めて炉床全体から5遍なく出湯
口E方向へ流・れるため、炉底周辺壁が集中的に侵食を
受ける様なことはない、ところが炉芯コークス層coの
通液性が悪く従って炉芯部の通液抵抗が大きい場合は、
第10図(B)に実線矢印で示す如く出銑中の溶銑Fは
周辺流を形成せざるを得す、炉底周辺壁は著しい侵食を
受けることになる。
On the other hand, Fig. 10 (^) and (B) show the furnace core coke layer co
Fig. 10 (A) is a schematic cross-sectional view of the hearth section showing the influence of liquid permeability on the furnace condition. As shown, the hot metal F flows evenly from the entire hearth, including the center of the hearth, in the direction of the tap E, so the walls around the hearth bottom are not intensively eroded. If the coke layer co has poor liquid permeability and therefore the liquid permeation resistance in the furnace core is large,
As shown by the solid arrow in FIG. 10(B), the hot metal F during tapping is forced to form a peripheral flow, and the peripheral wall of the furnace bottom is subject to significant erosion.

そこで本発明者らはこれらの事実に基づき、炉芯コーク
ス層Coの通気性または通液性の制御を目的とし・て、
炉頂軸芯部にコークス(固体還元剤)を別装入する方法
を開発し、別途発明を完成した(特願昭62−2209
81号)。
Therefore, based on these facts, the present inventors aimed at controlling the air permeability or liquid permeability of the furnace core coke layer Co.
He developed a method of separately charging coke (solid reducing agent) into the core of the top of the furnace, and completed a separate invention (Patent application No. 62-2209).
No. 81).

この発明は炉芯コークス層COが高炉軸心部を降下する
コークスによフて更新されることに着目し、高炉頂部か
らコークスおよび鉱石を装入するに当たり、鉱石層の軸
心部領域にコークスCを装入するかまたはコークス層の
軸心部領域に通気性及び通液性の向上に適したコークス
を適宜装入することによって炉芯の通気性や通液性を適
正に制御しようとするものであフた。またこの発明によ
れば、軸心部の特定領域に装入されるコークス量は全装
入コークスの0.2重量%以上であると規定されている
This invention focuses on the fact that the core coke layer CO is renewed by the coke that descends down the shaft center of the blast furnace. The air permeability and liquid permeability of the furnace core are appropriately controlled by charging C or appropriately charging coke suitable for improving air permeability and liquid permeability in the axial center region of the coke layer. It was full of stuff. Further, according to the present invention, the amount of coke charged into a specific region of the shaft center portion is specified to be 0.2% by weight or more of the total coke charged.

[発明が解決しようとする課題] ところでコークスの軸心装入は、軸心装入専用シュート
を用いることによフて、その目的は一応達成される。
[Problems to be Solved by the Invention] By the way, the purpose of charging coke into the core can be achieved by using a chute exclusively for charging the core.

第11図は軸心装入法の一例を示す説明図であり、この
図はベル式高炉の場合を示しており、原料装入用ベルと
は別に炉頂軸心部のみにコークスCを装入するためのシ
ュート4を設けている。尚軸心装入を実施するに当たっ
てはベルムーバブル方式によって行なう場合もあるが、
この場合も手順はほぼ同様である。
Fig. 11 is an explanatory diagram showing an example of the axial center charging method. This figure shows the case of a bell-type blast furnace, in which coke C is charged only to the axial center at the top of the furnace, separate from the raw material charging bell. A chute 4 is provided for entry. In addition, when carrying out shaft center loading, there are cases where it is carried out using the bell removable method.
The procedure is almost the same in this case as well.

コークス層CAはベルからの一斉(若しくは数バッチ分
割)投入によって形成されている。そl・てその上へ鉱
石層をOAを形成するに当たっては、鉱石0を装入する
に先立つ゛〔まず炉頂軸心部へシュート4から所定量の
コークスCを装入し[第11図(A) ] 、次いでそ
の周辺へベル1から鉱石0を装入する[第11図(B)
]。そうすると炉頂軸心部はコークスCで占められるた
めこれが堰として作用し、鉱石0は炉頂軸心部へ流入す
ることができず、その結果、炉内における周辺側は鉱石
層OAとコークス層CAが相互に重なりあった通常の堆
積構造となるが、炉軸心部は実質的にコークスのみから
なる柱状層となる。尚−つの鉱石層を形成するのに、鉱
石を数バッチに分割して投入する場合もあるが、その場
合においてもシュートから炉軸心部へのコークスは、鉱
石の投入に先立ち一度に投入されているのが一般的であ
る[後述の第1図CB)および第5図(B)に係る説明
参照]。
The coke layer CA is formed by charging the coke all at once (or in several batches) from the bell. To form an OA with an ore layer on top of it, before charging ore 0, a predetermined amount of coke C is first charged from the chute 4 to the axial center of the furnace top. Figure (A) ], then ore 0 is charged from bell 1 to the surrounding area [Figure 11 (B)
]. Then, since the furnace top axis is occupied by coke C, this acts as a weir, and ore 0 cannot flow into the furnace top axis, and as a result, the peripheral side of the furnace is the ore layer OA and the coke layer. A normal stacked structure in which CAs overlap each other is formed, but the core of the furnace becomes a columnar layer consisting essentially only of coke. In order to form one ore layer, the ore may be charged in several batches, but even in that case, the coke from the chute to the core of the furnace is injected all at once before the ore is introduced. [See the explanation regarding FIG. 1 CB) and FIG. 5(B) described later].

しかしながらこれまでのコークス軸心装入方法では、全
装入コークスに対して0.2%以上のコークスを、生産
性(操業作業性)を低下させることなく炉軸心部に装入
するには、比較的大規模な装置(例えば前記シュート4
)を設ける必要があり、設備コストが高くなるという問
題があった。
However, with the conventional coke core charging method, it is difficult to charge 0.2% or more coke into the furnace core without reducing productivity (operational workability) based on the total coke charged. , relatively large-scale equipment (for example, the chute 4
), which raised the problem of increased equipment costs.

また高炉操業の向上を図るという観点から投入鉱石量を
増加させようとしても、それに応じて−・度に軸心装入
されるコークス量を任意に増加するには限度があり、例
えば一定量のコークスに対して鉱石量のみを増加させて
も、該コークスは鉱石によって覆われてしまい、このコ
ークスに関してはガス流分布制御性の向上に寄与しなく
なる。
Furthermore, even if an attempt is made to increase the amount of ore input from the perspective of improving blast furnace operation, there is a limit to the ability to arbitrarily increase the amount of coke charged at the shaft center in accordance with the increase in the amount of ore charged. Even if only the amount of ore is increased relative to coke, the coke will be covered with ore, and this coke will not contribute to improving gas flow distribution controllability.

本発明はこの様な事情に着目してなされたものであって
、その目的は既存の設備を用いても軸心装入コークス量
を任意に増大し得る様な、或は大規模な装置を設けずど
も最適な軸心装入を実施できる様な高炉操業方法を提供
することにある。
The present invention has been made in view of these circumstances, and its purpose is to develop a system that can arbitrarily increase the amount of coke charged in the core even using existing equipment, or to develop a large-scale system. It is an object of the present invention to provide a blast furnace operating method that allows optimum shaft center charging even without the provision of such a method.

[課題を解決する為の手段] 上記目的を達成することのできた本発明方法の構成は、
高炉頂部から固体還元剤および鉱石を装入し、固体還元
剤層および鉱石層を積層して高炉操業する方法であフて
、前記鉱石層のうち任意の鉱石層の形成に際して、鉱石
の装入を複数回に分け、各回の鉱石装入に当たっては、
高炉軸心部の特定領域に固体還元剤を装入した後、その
周辺に鉱石を装入する様にして鉱石層を形成し、高炉の
操業を行なう点に要旨を有するもの゛である。
[Means for solving the problem] The structure of the method of the present invention that can achieve the above object is as follows:
A solid reducing agent and ore are charged from the top of the blast furnace, and the solid reducing agent layer and ore layer are stacked to operate the blast furnace. Divide into multiple times, and when charging ore each time,
The gist of this method is to charge a solid reducing agent into a specific region of the blast furnace axis, and then charge ore around it to form an ore layer and operate the blast furnace.

[作用および実施例コ 本発明の要点は鉱石層の軸心部に装入されるコークスを
これまでの様に1回の装入操作で1度に投入するという
ことをせずに、鉱石の装入バッチ数を複数としつつ各バ
ッチ毎にコークスを分割して装入るものであり、これに
よ)て上記目的が見事に達成されることを見出したもの
である。
[Function and Examples] The main point of the present invention is that the coke charged into the axial center of the ore layer is not charged all at once in one charging operation as in the past. It has been found that the above object can be successfully achieved by charging a plurality of batches and dividing the coke into each batch.

以下説明の便宜上各コークス層CAおよび各鉱石層OA
を夫々2バツチで形成する場合について示すが、これは
本発明を実施する際のバッチ回数を制限するものではな
い。
For convenience of explanation below, each coke layer CA and each ore layer OA
Although the case where each batch is formed in two batches is shown, this does not limit the number of batches when carrying out the present invention.

第1図は高炉内堆積状況を示す概念図であり、第1図(
A)は通常の高炉操業、第1図(B)は従来の軸心装入
、第1図(C) 、 (D)は本発明方法による軸心装
入の各場合について示したものである。尚図中CI 、
 C2、は各バッチ毎に装入されるコークス、ol、0
2は各バッチ毎に装入される鉱石を示す。
Figure 1 is a conceptual diagram showing the deposition situation in the blast furnace.
A) shows normal blast furnace operation, FIG. 1(B) shows conventional shaft charging, and FIGS. 1(C) and (D) show shaft charging according to the method of the present invention. . In addition, CI in the figure,
C2 is the coke charged for each batch, ol, 0
2 indicates the ore charged for each batch.

これまでのコークス軸心装入では、第1図(B)に示す
様に、鉱石olの装入に先立ち(即ちコークスC2の装
入後)1度に装入されていたのであるが、本発明方法で
は鉱石01.02の各バッチの夫々に先立ち軸心装入コ
ークスCを高炉軸心部の特定領域に装入する様にしたの
で、装入毎のコークス量を増すことなく全軸心装入量を
増加させることかできた。尚コークスの軸心装入量を増
加させるだけであるならば第1図(B)に示した方法に
よっても可能であるが、この様な方法では高炉軸心部の
装入希望領域[第1図(D)のrで示す]を不用意に広
げることにもなり、コークス軸心装入の本来の効果が達
成されなくなる懸念がある。
In conventional coke axial charging, as shown in Figure 1 (B), the coke was charged at once before the ore ol was charged (that is, after the coke C2 was charged). In the method of the invention, core-charging coke C is charged to a specific area of the blast furnace shaft prior to each batch of ore 01.02, so that the entire core can be charged without increasing the amount of coke for each charge. It was possible to increase the amount charged. If you only want to increase the amount of coke charged at the core of the blast furnace, it is possible to use the method shown in Fig. 1 (B). [indicated by r in Figure (D)] may be expanded carelessly, and there is a concern that the original effect of coke axial charging may not be achieved.

本発明者らが既存の装置を用いて実験したところによる
と、本発明による複数回分割投入を実施することによっ
て、各チャージ毎(ここでチャージとは第11図(A)
においてUで示す単位、即ちコークス層OAと鉱石層O
Aの両方で完結される積層状態の基本装入単位を意味す
る)のコークス軸心装入総量を任意に増加させることが
でき、第1図に示した例では、400kgか・ら600
 kg。
According to experiments conducted by the present inventors using an existing device, it has been found that by carrying out the split injection multiple times according to the present invention, each charge (here, charge is shown in FIG. 11(A))
The units indicated by U, namely the coke layer OA and the ore layer O
It is possible to arbitrarily increase the total amount of coke axially charged (meaning the basic charging unit in a laminated state completed by both A and A), and in the example shown in Fig. 1, from 400 kg to 600 kg.
kg.

1.000kgへ段階的に増加させており、この100
0kgというのは、全装入コークス量の約3%に相当す
る量であった。こうして軸心装入コークス量を増加させ
るに従い、中心ガス流が安定すると共にスリップ回数の
減少が図れ、それに伴ないpc比(羽口から吹込む石炭
粉の割合)も増大させることができた。これまでpc比
の増大に際しては炉壁部への熱負荷と圧損の増大が懸念
されてきたが、軸心装入の採用とアーマノツチの調整に
よって熱負荷と圧損の増大を抑制し、銑中SLを上昇さ
せることなく操業することができた。
The weight is gradually increased to 1,000 kg, and this 100
0 kg was an amount equivalent to about 3% of the total amount of coke charged. In this way, as the amount of coke charged in the shaft center was increased, the central gas flow was stabilized and the number of slips was reduced, and the PC ratio (ratio of coal powder blown in from the tuyere) was also increased accordingly. Until now, when increasing the PC ratio, there had been concerns about an increase in heat load and pressure loss on the furnace wall, but by adopting axial center charging and adjusting the armour-notch, increases in heat load and pressure loss could be suppressed, and the SL during pig iron It was possible to operate without raising the temperature.

第2図は炉内状況を示す等温線図であり、第2図(A)
は通常の高炉操業の場合(軸心装入を実施しない場合)
、第2図(B)は軸心装入コークス量を500 Kg/
チャージ(溶銑トン当たり6.9kg )とした場合、
第2図(C)は軸心装入コークス量を1000にg/チ
ャージ(溶銑トン当たり14.0kg)とした場合の夫
々について示したものである。
Figure 2 is an isothermal diagram showing the situation inside the furnace, and Figure 2 (A)
is for normal blast furnace operation (without core charging)
, Figure 2 (B) shows the amount of coke charged in the shaft center at 500 kg/
When charged (6.9 kg per ton of hot metal),
FIG. 2(C) shows the case where the amount of coke charged in the shaft center is 1000 g/charge (14.0 kg per ton of hot metal).

第2図から明らかであるが、軸心装入コークス量を増加
させるに伴ない、融着帯形状はシャープな逆V字状を呈
していることが分かる。尚この時のpc比は、第2図(
A)の場合が65にg/l(溶銑トン当たり)、第2図
(B)の場合が74にg/11第2図(C)の場合が7
7Kg/lであった。
As is clear from FIG. 2, as the amount of coke charged in the shaft center increases, the shape of the cohesive zone takes on a sharp inverted V-shape. The PC ratio at this time is shown in Figure 2 (
Case A) is 65 g/l (per ton of hot metal), Figure 2 (B) is 74 g/11, Figure 2 (C) is 7
It was 7Kg/l.

また軸心装入コークス量を増加させるに伴ない、第3図
の矢印に示す様に炉口ガス温度の上昇が認められ、また
第4図に示す様に炉口軸心部のガス温度の変動が少なく
なった。
Furthermore, as the amount of coke charged at the core increases, the gas temperature at the furnace mouth increases as shown by the arrow in Figure 3, and as shown in Figure 4, the gas temperature at the core at the furnace mouth increases. There are fewer fluctuations.

上記の説明では各チャージ毎の軸心装入コークス量を任
意に増加させる場合について示したが、本発明の実施は
この様な場合に限らず、装置の大型化を緩和するという
観点からしても有効である。例えば第5図は従来の軸心
装入方法による炉内堆積状況を示す概念図であり、第6
図は本発明方法による炉内堆積状況を示す概念図である
。第5.6図を比較すると明らかであるが、同じ層厚の
鉱石層(0,1+02)を形成する場合において軸心部
にコークスの柱状層を形成すること′が中心的課題であ
るという点からすれば、コークスの分割装入による本発
明方法(第6図)では1度に装入する場合(第5図)に
比べて各回の装入量を約1/4に減らすことができる。
In the above explanation, the case where the amount of coke charged in the shaft center for each charge is arbitrarily increased is shown, but the present invention is not limited to such a case, but can also be implemented from the viewpoint of reducing the size of the equipment. is also valid. For example, FIG.
The figure is a conceptual diagram showing the in-furnace deposition situation according to the method of the present invention. It is clear from a comparison of Figure 5.6 that when forming ore layers of the same thickness (0, 1+02), the central issue is to form a columnar layer of coke at the axial center. Therefore, in the method of the present invention (FIG. 6) in which coke is charged in parts, the amount charged each time can be reduced to about 1/4 compared to the case in which coke is charged at once (FIG. 5).

このことは軸心部コークス装入専用装置の小型化が図れ
ることをも意味する。また同一量のコークスを軸心に装
入する場合を想定しても分割して装入することによって
装置の小型化が図れる。これらのことは高炉内のガス流
の制御性を向上させる観点からしても極めて有効である
This also means that the device dedicated to charging coke in the shaft center can be made smaller. Further, even if it is assumed that the same amount of coke is charged into the shaft center, the apparatus can be made smaller by charging the coke in parts. These things are extremely effective from the viewpoint of improving the controllability of gas flow in the blast furnace.

尚以上の説明におけるコークス軸心装入の構成は鉱石層
OAの形成に際して鉱石層OAの軸心部に一定量以上の
コークスを装入するものであったが、軸心コークス層C
0の通気性または通液性を向上させて高炉操業の安定化
を図るという趣旨からすれば、軸心装入用コークスとし
ては冷間・熱間強度が強く粉化し難い(即ち通液性の良
い)良質コークスを一定量以上装入することが一層効果
的である。また本発明の実施に当たっては、チャージ毎
に軸心装入しなければならない訳ではなく、2〜5チヤ
ージの中から選ばれる任意のチャージにおいてコークス
の軸心装入を行なう様にしてもよい。
The structure of coke axial charging in the above explanation was such that more than a certain amount of coke was charged into the axial center of the ore layer OA when the ore layer OA was formed, but the axial center coke layer C
Considering the purpose of stabilizing blast furnace operation by improving the air permeability or liquid permeability of 0, coke for shaft core charging has strong cold and hot strength and is difficult to powder (i.e., has low liquid permeability). It is more effective to charge a certain amount or more of high quality coke. Furthermore, in carrying out the present invention, it is not necessary to charge the coke at the center of the coke for each charge, but the coke may be charged at the center of the shaft at any charge selected from 2 to 5 charges.

[発明の効果] 本発明は以上の様に構成されており、既存の設置を用い
ても軸心装入コークス量を任意に増大でき、安定した高
炉操業が約束される。また本発明方法の実施は大規模な
装置を設けずとも、最適なコークス軸心装入が達成でき
るという点からしても有効である。
[Effects of the Invention] The present invention is configured as described above, and even if the existing installation is used, the amount of coke charged in the shaft center can be increased arbitrarily, and stable blast furnace operation is guaranteed. The method of the present invention is also effective in that optimum coke core charging can be achieved without the need for large-scale equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(^)〜(D)は高炉内堆積状況を示す概念図、
第2図は(A)〜(C)は炉内状況を示す等温線図、第
3図は炉すの径方向におけるガス温度分布を示すグラフ
、第4図はコークス軸心装入量と炉口中心ガス温度変動
の関係を示すグラフ、第5図は従来の軸心装入方法によ
る炉内堆積状況を示す概念図、第6図は本発明方法によ
る炉内堆積状況を示す概念図、第7図は高炉操業時の内
部状況を示す縦断面模式図、第8図(A) 、 (B)
は炉内上昇ガス流分布と軟化融着帯形状の関係を示す縦
断面模式図、第9図(A) 、 (B)は炉芯コークス
層の通気性と軟化融着帯形状の関係を示す縦断面模式図
、第10図(A) 、 (B)は炉芯コークス層の通液
性と溶銑流分布を示す横断面模式図、第11図(A) 
、 (B)は軸心装入法の一例を示す説明図である。 1・・・ベル      4・・・シュートOA・・・
鉱石層    CA・・・コークス層K・・・塊状  
    B・・・羽口L・・・レースウェイ  CO・
・・炉芯E・・・出湯口     C,C1,C2・・
・コークス0 、01.02・・・鉱石
Figures 1 (^) to (D) are conceptual diagrams showing the deposition situation in the blast furnace;
In Figure 2, (A) to (C) are isothermal diagrams showing the situation inside the furnace, Figure 3 is a graph showing the gas temperature distribution in the radial direction of the furnace, and Figure 4 is a graph showing the amount of coke axially charged and the furnace temperature. A graph showing the relationship between center-of-mouth gas temperature fluctuations, FIG. 5 is a conceptual diagram showing the deposition situation in the furnace by the conventional axial center charging method, FIG. 6 is a conceptual diagram showing the deposition situation in the furnace by the method of the present invention, and FIG. Figure 7 is a vertical cross-sectional schematic diagram showing the internal situation during blast furnace operation, and Figures 8 (A) and (B).
Figure 9 (A) and (B) show the relationship between the permeability of the furnace core coke layer and the shape of the softened cohesive zone. A schematic vertical cross-sectional view, Figures 10 (A) and (B) are a schematic cross-sectional view showing the liquid permeability of the core coke layer and hot metal flow distribution, and Figure 11 (A).
, (B) is an explanatory diagram showing an example of a shaft center insertion method. 1...Bell 4...Shoot OA...
Ore layer CA...coke layer K...massive
B...Tuyere L...Raceway CO・
・・Furnace core E・・Outlet C, C1, C2・・・
・Coke 0, 01.02...Ore

Claims (1)

【特許請求の範囲】[Claims] 高炉頂部から固体還元剤および鉱石を装入し、固体還元
剤層および鉱石層を積層して高炉操業する方法であって
、前記鉱石層のうち任意の鉱石層の形成に際して、鉱石
の装入を複数回に分け、各回の鉱石装入に当たっては、
高炉軸心部の特定領域に固体還元剤を装入した後、その
周辺に鉱石を装入する様にして鉱石層を形成し、高炉の
操業を行なうことを特徴とする高炉操業方法。
A method of operating a blast furnace by charging a solid reducing agent and ore from the top of the blast furnace and stacking a solid reducing agent layer and an ore layer, the method comprising: charging the ore when forming an arbitrary ore layer among the ore layers; The ore is charged in multiple times, and each time the ore is charged,
A blast furnace operating method characterized by charging a solid reducing agent into a specific region of the blast furnace shaft center, and then charging ore around it to form an ore layer and operating the blast furnace.
JP1049145A 1989-02-28 1989-02-28 Blast furnace operation method Expired - Fee Related JPH0692608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049145A JPH0692608B2 (en) 1989-02-28 1989-02-28 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049145A JPH0692608B2 (en) 1989-02-28 1989-02-28 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH02228408A true JPH02228408A (en) 1990-09-11
JPH0692608B2 JPH0692608B2 (en) 1994-11-16

Family

ID=12822925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049145A Expired - Fee Related JPH0692608B2 (en) 1989-02-28 1989-02-28 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JPH0692608B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323305A (en) * 2000-05-16 2001-11-22 Nkk Corp Method for charging center coke in bell-less blast furnace
JP2008056985A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Method for operating blast furnace
JP2021175822A (en) * 2020-04-22 2021-11-04 Jfeスチール株式会社 Method for charging center coke

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056003A (en) * 1983-09-02 1985-04-01 Kobe Steel Ltd Method for charging coke into blast furnace
JPS6142896U (en) * 1984-08-21 1986-03-19 株式会社東芝 electrical equipment
JPS63153385A (en) * 1986-08-26 1988-06-25 川崎製鉄株式会社 Method and system of operating vertical type furnace
JPS649373A (en) * 1987-06-30 1989-01-12 Sharp Kk Fault diagnosing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056003A (en) * 1983-09-02 1985-04-01 Kobe Steel Ltd Method for charging coke into blast furnace
JPS6142896U (en) * 1984-08-21 1986-03-19 株式会社東芝 electrical equipment
JPS63153385A (en) * 1986-08-26 1988-06-25 川崎製鉄株式会社 Method and system of operating vertical type furnace
JPS649373A (en) * 1987-06-30 1989-01-12 Sharp Kk Fault diagnosing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323305A (en) * 2000-05-16 2001-11-22 Nkk Corp Method for charging center coke in bell-less blast furnace
JP2008056985A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Method for operating blast furnace
JP2021175822A (en) * 2020-04-22 2021-11-04 Jfeスチール株式会社 Method for charging center coke

Also Published As

Publication number Publication date
JPH0692608B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
JP4745731B2 (en) Method of melting hot metal with cupola
EP1076102A2 (en) Pressure control in direct melting process
JPWO2013179541A1 (en) Raw material charging method for bell-less blast furnace
JP4269847B2 (en) Raw material charging method for bell-less blast furnace
US4430116A (en) Method and apparatus for heating or heating and reduction raw materials for a metallurgical furnace utilizing waste gases from the same furnace
JPH02228408A (en) Method for operating blast furnace
US1948695A (en) Method and apparatus for the production of molten steel
US3932173A (en) Inductially heated gas lift pump action method for melt reduction
US1945341A (en) Reduction and smelting of ores
JP4725167B2 (en) Raw material charging method to blast furnace
KR930004473B1 (en) Process for making iron in the blast furnace
RU2625620C1 (en) Blast-furnace smelting method
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JP3171066B2 (en) Blast furnace operation method
RU2247154C2 (en) Apparatus for direct reduction of iron oxides
US4009871A (en) Metallurgical furnace
JPH08283814A (en) Apparatus for producing molten iron and method therefor
JP2000336412A (en) Operation of blast furnace
JP4941122B2 (en) Blast furnace operation method
KR20240035546A (en) Molten iron manufacturing method
US121226A (en) Improvement in processes for the manufacture of iron
JP3465295B2 (en) Operation method and specification setting method of coke packed bed type smelting reduction furnace
JPH11286706A (en) Blast furnace operation method
JPS62294127A (en) Reducing method for iron oxide in shaft furnace
JPH0448010A (en) Method for charging raw material into blast furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees