JPH0425321B2 - - Google Patents

Info

Publication number
JPH0425321B2
JPH0425321B2 JP15839184A JP15839184A JPH0425321B2 JP H0425321 B2 JPH0425321 B2 JP H0425321B2 JP 15839184 A JP15839184 A JP 15839184A JP 15839184 A JP15839184 A JP 15839184A JP H0425321 B2 JPH0425321 B2 JP H0425321B2
Authority
JP
Japan
Prior art keywords
hot metal
blast furnace
ore
charged
manganese ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15839184A
Other languages
Japanese (ja)
Other versions
JPS6137902A (en
Inventor
Chisato Yamagata
Yoshimasa Kajiwara
Takanobu Inada
Shinichi Suyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15839184A priority Critical patent/JPS6137902A/en
Publication of JPS6137902A publication Critical patent/JPS6137902A/en
Publication of JPH0425321B2 publication Critical patent/JPH0425321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の技術分野 この発明は、製鋼工程での合金鉄使用量の低減
を主な目的として、高炉にマンガン鉱石を装入し
溶銑中Mn濃度を上昇させるとともに、溶銑中Si
濃度を低下させる高炉操業方法に関する。 従来技術とその問題点 高炉内における溶銑中へのSi移行は、炉床湯溜
部におけるスラグ−メタル反応よりもむしろSiO
ガスを媒介とするガス−メタル反応が主要な役割
を果している。SiOガスを媒介とする溶銑中への
Siの移行は、次の2つの過程に大別される(鉄と
銅vol.58 1972 219頁)。 すなわち、レースウエイ近傍の高温低酸素分
圧領域におけるコークス中灰分を主源とする
SiO2とコークス中の固定炭素との反応によるSiO
ガスの生成過程、軟化融着帯以下における上昇
ガス流中に含まれるSiOガスと滴下している溶銑
中の炭素との反応による溶銑中へのSi移行過程で
あり、この両過程を反応式で表わすと以下のよう
になる。 (SiO2)+C=SiO(g)+CO(g) SiO(g)+Si+CO(g) ここで、( )はその化合物がスラグ中に存在
することを示す慣用表記法であり、元素名の下線
はその成分が溶銑中に存在することを示す慣用表
記法である。また、(g)はその化合物が気体で
あることを示す慣用表記法である。従つて、溶銑
中Si濃度の制御方法としては、SiOガス発生反応
の制御と溶銑中へのSi移行反応の制御とがある。 実際の高炉操業において、前者の制御手段とし
ては、コークス中灰分量の制御による羽口前持ち
込みSiO2量の制御や羽口前温度制御によるSiOガ
ス発生速度の制御等が実施されている。後者の制
御手段としては、装入物分布制御に基づいたコー
クス比制御による融着帯レベルの管理や焼結鉱の
被還元性・軟化融着性状制御による融着帯レベル
の制御等がある(鉄と銅vol.68 1982 A129頁)。 溶銑中のSi濃度の制御方法としては、上記の高
炉内での溶銑中へのSi移行メカニズムに立脚した
制御手段以外に、送風羽口から酸化鉄を炉内に吹
込み、下記の反応によつて溶銑中Siを酸化させ
る、いわゆる炉内脱珪手段が開発されている(特
開昭53−87908、特開昭56−29601、特開昭58−
77508)。 Si+2FeO=(SiO2)+2Fe また、製鋼工程での合金鉄使用量の低減を主な
目的として、その時点での経済情勢に基づいて、
高炉にマンガン鉱石を装入し、溶銑中Mnを上昇
させる操業が従来から行なわれている。この操業
において、高炉に装入するマンガン鉱石は適正な
高炉使用粒度に比較して大きいため、破砕して篩
にかけ、篩上(5〜25mm)を塊鉱石として炉頂よ
り装入し、篩下(−5mm)は焼結鉱原料として配
合され、通常よりもMnが富化された焼結鉱とし
て高炉に装入されている。 塊マンガン鉱石または焼結鉱として高炉に装入
されたマンガン酸化物は、軟化融着帯以下におい
てマンガン歩留りがほぼ75%で装入マンガン量に
応じて溶銑中Mnが富化される。前記式の溶銑
中へのSi移行反応の速度式を以下に示すが、溶銑
中Mnの富化は、溶銑中Siの活量係数fsiを上昇さ
せるため溶銑中Siを低減させる効果がある。 SiO(g)+Si,CO(g) daSi/dt=A・kf・PSiO・a aSi=〓Si・〔%Si〕 logfSi=0.177〔%C〕+0.112〔%Si〕+ 0.281〔%Mn〕+0.057〔%S〕 しかしながら、上記した従来の溶銑中Mn富化
方法には、次のような問題点があつた。 まず、篩下(−5mm)を焼結鉱原料として使用
すると、焼結鉱原料中のK2Oが上昇し焼結機のコ
ークス原単位一定のままでは成品焼結鉱の還元粉
化指数(RDI)が悪化するため、成品焼結鉱の還
元粉化指数(RDI)を一定に維持するにはコーク
ス原単位を上昇させる必要があり、焼結鉱製造コ
ストのアツプにつながるという問題がある。 また、マンガン鉱石を高炉炉頂から装入した場
合の溶銑中Si低減効果は、送風羽口からマンガン
鉱石粉を吹き込んだ場合より小さいということで
ある。なお、高炉送風羽口からマンガン鉱石粉を
吹き込んだ場合の溶銑中Si低減効果としては、マ
ンガン鉱石中に含まれるマンガン酸化物と共に鉄
酸化物が、下記,式に示す脱珪反応を起こす
として説明される。 Si+2(MnO)=2Mn+(SiO2Si+2(FeO)=2Fe+(SiO2) この脱珪反応を利用して、マンガン酸化物粉を
送風羽口から高炉に吹き込む炉内脱珪方法につい
ては、例えば特願昭57−25983により公知である
が、従来の送風羽口吹き込み方法の場合、マンガ
ン鉱石を全量送風羽口から吹き込むためには、マ
ンガン鉱石全量を破砕する必要があり、破砕コス
トが非常に高くつくという欠点がある。 発明の目的 この発明は、製鋼工程での合金鉄使用量の低減
を主たる目的として、高炉にマンガン鉱石を装入
する高炉操業法における従来の前記問題点を解決
するためになされたものであり、マンガン鉱石を
焼結鉱に含有させることなく、しかも経済的に、
溶銑中Mnの上昇および溶銑中Siの低下をはかる
ことができる高炉操業方法を提案することを目的
とするものである。 発明の構成 この発明に係る高炉操業方法は、マンガン鉱石
を粒度調整した後、粗マンガン鉱石を高炉炉頂部
より装入するとともに、細粒マンガン鉱石を送風
羽口から高炉に吹き込むことにより、高炉から出
銑される溶銑のMn濃度を上昇させるとともに、
溶銑のSi濃度を低下させることを特徴とするもの
である。 すなわち、この発明は、マンガン鉱石を高炉に
装入するに際し、マンガン鉱石を破砕して篩上
(5〜25mm)を粗鉱石として炉頂より装入し、篩
下(−5mm)を送風羽口から吹き込む方法であ
る。 ここで、マンガン鉱石の篩上(5〜25mm)を高
炉炉頂より、篩下(−5mm)を送風羽口より吹き
込む方法をとつたのは、以下に示す理由による。 第1表にマンガン鉱石の組成の一例を示すが、
酸化鉄濃度の高い部分の方が機械的強度が低いた
め、篩下の方がマンガン酸化物濃度が低く、酸化
鉄濃度が高い。したがつて、マンガン酸化物濃度
の高い篩上を高炉に装入し、反応式によつて溶
銑中Siの低減をはかり、酸化鉄濃度の高い篩下を
送風羽口から吹き込んで反応式,によつて溶
銑中Siの低減をはかるという方法は、効率的に溶
銑中Siを低減させるという面からも、従来法に比
べて有利である。
Technical Field of the Invention This invention aims to reduce the amount of ferroalloy used in the steelmaking process, by charging manganese ore into a blast furnace to increase the Mn concentration in the hot metal, and by increasing the Mn concentration in the hot metal.
This invention relates to a blast furnace operating method for reducing concentration. Prior art and its problems Si migration into the hot metal in the blast furnace is caused by SiO2 rather than the slag-metal reaction in the hearth sump.
Gas-metal reactions mediated by gases play a major role. into hot metal using SiO gas as a medium
The transition of Si can be roughly divided into the following two processes (Iron and Copper Vol. 58, 1972, p. 219). In other words, the main source of coke is ash in the high temperature, low oxygen partial pressure region near the raceway.
SiO by reaction of SiO 2 with fixed carbon in coke
The gas generation process and the Si transfer process into the hot metal due to the reaction between the SiO gas contained in the rising gas flow below the softening cohesive zone and the carbon in the dripping hot metal, and these two processes can be expressed by a reaction equation. The expression is as follows. (SiO 2 ) + C = SiO (g) + CO (g) SiO (g) + C = Si + CO (g) where () is a conventional notation to indicate that the compound is present in the slag, and is an element The underlined name is a common notation to indicate that the component is present in the hot metal. Further, (g) is a common notation indicating that the compound is a gas. Therefore, methods for controlling the Si concentration in hot metal include controlling the SiO gas generation reaction and controlling the Si transfer reaction into the hot metal. In actual blast furnace operation, the former control means include controlling the amount of SiO 2 brought in before the tuyere by controlling the ash content in the coke, and controlling the SiO gas generation rate by controlling the temperature before the tuyere. The latter control means include controlling the cohesive zone level by controlling the coke ratio based on charge distribution control, and controlling the cohesive zone level by controlling the reducibility and softening and cohesive properties of sintered ore ( Iron and Copper vol.68 1982 A129 page). In addition to the above-mentioned control method based on the Si transfer mechanism into the hot metal in the blast furnace, methods for controlling the Si concentration in the hot metal include injecting iron oxide into the furnace through the blast tuyere and using the following reaction. A so-called in-furnace desiliconization method for oxidizing Si in hot metal has been developed (Japanese Patent Application Laid-open No. 53-87908, JP-A No. 56-29601, JP-A No. 58-
77508). Si + 2FeO = (SiO 2 ) + 2Fe Also, based on the economic situation at the time, with the main purpose of reducing the amount of ferroalloy used in the steelmaking process,
Blast furnaces have traditionally been operated by charging manganese ore to increase the Mn content in hot metal. In this operation, the manganese ore charged to the blast furnace is large compared to the appropriate particle size for use in the blast furnace, so it is crushed and sieved, and the top of the sieve (5 to 25 mm) is charged from the top of the furnace as lump ore. (-5 mm) is blended as a sintered ore raw material and charged into a blast furnace as a sintered ore enriched in Mn more than usual. Manganese oxide charged into a blast furnace as lump manganese ore or sintered ore has a manganese yield of approximately 75% below the softened cohesive zone, and the Mn in the hot metal is enriched according to the amount of manganese charged. The rate equation of the Si transfer reaction into hot metal according to the above equation is shown below. Enrichment of Mn in hot metal increases the activity coefficient fsi of Si in hot metal, so it has the effect of reducing Si in hot metal. SiO (g) + C = Si , CO (g) daSi/dt=A・kf・PSiO・a c aSi=〓Si・[%Si] logfSi=0.177[%C]+0.112[%Si]+0.281 [%Mn] + 0.057 [%S] However, the above-described conventional method for enriching Mn in hot metal has the following problems. First, when the undersieve (-5 mm) is used as a sinter raw material, the K 2 O in the sinter raw material increases, and if the coke consumption rate of the sintering machine remains constant, the reduction pulverization index of the finished sinter ( Therefore, in order to maintain a constant reduction intensification index (RDI) of finished sintered ore, it is necessary to increase the coke consumption rate, which leads to an increase in the production cost of sintered ore. Furthermore, the effect of reducing Si in hot metal when manganese ore is charged from the top of the blast furnace is smaller than when manganese ore powder is injected from the blast tuyere. The effect of reducing Si in hot metal when manganese ore powder is injected from the blast furnace air tuyeres is explained by assuming that iron oxides together with manganese oxides contained in manganese ore cause a desiliconization reaction as shown in the formula below. be done. Si + 2 (MnO) = 2 Mn + (SiO 2 ) Si + 2 (FeO) = 2Fe + (SiO 2 ) An in-furnace desiliconization method that utilizes this desiliconization reaction to blow manganese oxide powder into the blast furnace from the blast tuyere. For example, it is known from Japanese Patent Application No. 57-25983, but in the case of the conventional blow tuyere blowing method, in order to blow all the manganese ore through the blow tuyere, it is necessary to crush the entire amount of manganese ore. The disadvantage is that the cost is very high. Purpose of the Invention This invention was made in order to solve the above-mentioned problems in the conventional blast furnace operating method in which manganese ore is charged into a blast furnace, with the main purpose of reducing the amount of ferroalloy used in the steelmaking process. Economically, without including manganese ore in sintered ore,
The purpose of this study is to propose a blast furnace operating method that can increase Mn in hot metal and decrease Si in hot metal. Composition of the Invention The blast furnace operating method according to the present invention is such that after adjusting the particle size of manganese ore, coarse manganese ore is charged from the top of the blast furnace, and fine manganese ore is blown into the blast furnace from the blast tuyere. In addition to increasing the Mn concentration of hot metal that is tapped,
It is characterized by lowering the Si concentration of hot metal. That is, in this invention, when charging manganese ore into a blast furnace, the manganese ore is crushed and the upper part of the sieve (5 to 25 mm) is charged from the top of the furnace as coarse ore, and the lower part of the sieve (-5 mm) is charged through the blast tuyere. This is a method of blowing into the air. Here, the reason why a method was adopted in which the upper part of the sieve (5 to 25 mm) of the manganese ore was blown from the top of the blast furnace and the lower part (-5 mm) of the manganese ore was blown through the blast tuyere. Table 1 shows an example of the composition of manganese ore.
Since the mechanical strength is lower in the part with higher iron oxide concentration, the lower part of the sieve has lower manganese oxide concentration and higher iron oxide concentration. Therefore, the sieve top, which has a high concentration of manganese oxide, is charged into the blast furnace, and the Si content in the hot metal is reduced using the reaction formula, and the bottom sieve, which has a high iron oxide concentration, is blown into the blast furnace through the blast tuyere, and the reaction formula is carried out. Therefore, the method of reducing Si in hot metal is more advantageous than the conventional method in terms of efficiently reducing Si in hot metal.

【表】 なお、送風羽口からのマンガン鉱石吹き込みに
際しては、出銑口方位別の送風羽口からのマンガ
ン酸化物吹き込み量を調整し、かつその吹き込み
量に応じて当該方位の燃料吹き込み量または蒸気
吹き込み量を調整する方法をとることにより、出
銑口別の溶銑中Siおよび溶銑温度を一定の範囲に
維持することも可能となる。 実施例 A高炉(内容積2700m2)におけるこの発明の実
施結果を従来法と比較して第2表に示す。マンガ
ン鉱石は前記第1表に示す組成のものを使用し
た。 本実施例は、溶銑中Mn富化量ΔMnとして0.70
%を目標に操業を行なつた場合の例で、期間Aで
は従来法により、塊状のマンガン鉱石を破砕し、
篩上(5〜25mm)約60%を炉頂より装入するとと
もに、篩下(−5mm)約40%を焼結鉱原料として
使用した。マンガン鉱石の全使用量は40Kg/P−
Tで、内24Kg/P−Tが塊鉱石として装入され、
16Kg/P−Tが焼結鉱として高炉に装入された。 焼結鉱製造においては、焼結鉱中K2Oが0.01%
上昇したため、還元粉化指数(RDI)を一定とす
るため、粉コークス比は1.2Kg/P−Tの上昇と
なつた。また、溶銑中Mnは、ベースの0.20%か
ら0.91%まで予定通り富化され、溶銑中Siはベー
スの0.38%から0.24%まで低減された。 一方、期間Bでは本発明法を適用し、破砕した
マンガン鉱石の篩上(5〜25mm)を炉頂より装入
するとともに、篩下(−5mm)を送風羽口より吹
き込んだ。このときのマンガン鉱石使用量は従来
法と同じ40Kg/P−Tで、内24Kg/P−Tが粗鉱
石として炉頂より装入され、16Kg/P−Tが細粒
鉱石として送風羽口より吹き込まれた。 その結果、溶銑中Mnはベースの0.20%から
0.90%まで予定通り富化され、溶銑中Siもベース
の0.38%から0.19%まで低下した。
[Table] When injecting manganese ore from the blast tuyere, the amount of manganese oxide blown from the blast tuyere for each direction of the taphole is adjusted, and the amount of fuel blown in that direction or By adjusting the amount of steam blown, it is also possible to maintain the Si in the hot metal and the hot metal temperature within a certain range for each taphole. Example The results of implementing this invention in a blast furnace A (inner volume 2700 m 2 ) are shown in Table 2 in comparison with the conventional method. The manganese ore used had the composition shown in Table 1 above. In this example, the Mn enrichment amount ΔMn in hot metal is 0.70.
This is an example of operating with a target of
Approximately 60% of the upper sieve (5 to 25 mm) was charged from the top of the furnace, and approximately 40% of the lower sieve (-5 mm) was used as a sintered ore raw material. The total amount of manganese ore used is 40Kg/P-
At T, 24Kg/P-T of which was charged as lump ore,
16Kg/PT was charged into the blast furnace as sintered ore. In sintered ore production, K 2 O in sintered ore is 0.01%.
Because of this increase, the coke breeze ratio increased by 1.2Kg/P-T in order to keep the reduction index (RDI) constant. Additionally, Mn in the hot metal was enriched as planned from 0.20% to 0.91%, and Si in the hot metal was reduced from 0.38% to 0.24%. On the other hand, in period B, the method of the present invention was applied, and the top of the sieve (5 to 25 mm) of crushed manganese ore was charged from the top of the furnace, and the bottom of the sieve (-5 mm) was blown through the blast tuyere. The amount of manganese ore used at this time was 40Kg/PT, the same as in the conventional method, of which 24Kg/PT was charged as coarse ore from the top of the furnace, and 16Kg/PT was charged as fine ore from the blast tuyere. Infused. As a result, Mn in hot metal is from 0.20% of the base
The Si content in the hot metal was enriched to 0.90% as planned, and the Si content in the hot metal decreased from the base level of 0.38% to 0.19%.

【表】 以上説明したごとく、この発明方法によれば、
マンガン鉱石を焼結鉱に含有させずに高炉へ供給
するので、焼結鉱性状の変化を避けることがで
き、また送風羽口から吹き込むマンガン鉱石は篩
下のみでよいので従来の全量破砕方法に比べ破砕
コストが安価につき経済的であり、さらに溶銑中
Mnの富化効果は勿論のこと、羽口吹き込み分に
ついてはマンガン酸化物と共に酸化鉄も脱珪反応
に寄与するため、高い溶銑中Si低減効果が得られ
る。
[Table] As explained above, according to the method of this invention,
Since the manganese ore is supplied to the blast furnace without being included in the sintered ore, changes in the properties of the sintered ore can be avoided, and since the manganese ore that is blown through the blast tuyeres only needs to be placed under the sieve, it is possible to avoid the conventional total crushing method. It is economical as the crushing cost is low compared to
In addition to the Mn enrichment effect, iron oxide as well as manganese oxide in the tuyere injection contributes to the desiliconization reaction, resulting in a high Si reduction effect in hot metal.

Claims (1)

【特許請求の範囲】[Claims] 1 高炉にマンガン鉱石を装入し溶銑中Mn濃度
を上昇させる高炉の操業方法において、マンガン
鉱石を粒度調整した後、粗マンガン鉱石を高炉炉
頂部より装入するとともに、細粒マンガン鉱石を
送風羽口から高炉に吹き込むことにより、高炉か
ら出銑される溶銑のMn濃度を上昇させるととも
に、溶銑のSi濃度を低下させることを特徴とする
高炉の操業方法。
1 In a blast furnace operating method in which manganese ore is charged into a blast furnace to increase the Mn concentration in hot metal, after adjusting the particle size of the manganese ore, coarse manganese ore is charged from the top of the blast furnace, and fine-grained manganese ore is charged through the blast blade. A blast furnace operating method characterized by increasing the Mn concentration of hot metal tapped from the blast furnace and decreasing the Si concentration of the hot metal by blowing into the blast furnace through the mouth.
JP15839184A 1984-07-27 1984-07-27 Method for operating blast furnace Granted JPS6137902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15839184A JPS6137902A (en) 1984-07-27 1984-07-27 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15839184A JPS6137902A (en) 1984-07-27 1984-07-27 Method for operating blast furnace

Publications (2)

Publication Number Publication Date
JPS6137902A JPS6137902A (en) 1986-02-22
JPH0425321B2 true JPH0425321B2 (en) 1992-04-30

Family

ID=15670703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15839184A Granted JPS6137902A (en) 1984-07-27 1984-07-27 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPS6137902A (en)

Also Published As

Publication number Publication date
JPS6137902A (en) 1986-02-22

Similar Documents

Publication Publication Date Title
AU744754B2 (en) Method of making iron and steel
JPH0425321B2 (en)
JPH0913107A (en) Operation of blast furnace
JPS6156211A (en) Method for operating blast furnace
JP4598256B2 (en) Blast furnace operation method
JPH10298620A (en) Method for charging ore and the like into blast furnace
JPH0635604B2 (en) Blast furnace operation method
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JPS63176403A (en) Low si operation method for blast furnace
TW202421796A (en) Method for operating a smelting furnace installation
JP3017009B2 (en) Blast furnace operation method
TW202421798A (en) Method for operating a smelting furnace installation
JP2837282B2 (en) Production method of chromium-containing hot metal
JPH02285010A (en) Method for regulating si in molten pig iron
JPH05287339A (en) Method for operating blast furnace
JPH0913109A (en) Operation of blowing large quantity of pulverized fine coal into blast furnace
JP2000290709A (en) Method for charging raw material into blast furnace
JPH0313291B2 (en)
JPS61201709A (en) Method for operating blast furnace to attain low si content
JPH0788522B2 (en) Blast furnace operation method
JPS58199842A (en) Melt smelting method of powdery manganese ore
JPS63157807A (en) Operation of smelting reduction furnace with carbonic material packing layer
JPH03177509A (en) Method for charging difficult-to-reducing ore into blast furnace
JPH0637646B2 (en) Method for producing low Si concentration hot metal in blast furnace
JPH06145730A (en) Operation method for blast furnace