JPS58199842A - Melt smelting method of powdery manganese ore - Google Patents

Melt smelting method of powdery manganese ore

Info

Publication number
JPS58199842A
JPS58199842A JP8085182A JP8085182A JPS58199842A JP S58199842 A JPS58199842 A JP S58199842A JP 8085182 A JP8085182 A JP 8085182A JP 8085182 A JP8085182 A JP 8085182A JP S58199842 A JPS58199842 A JP S58199842A
Authority
JP
Japan
Prior art keywords
furnace
limestone
ore
reduction
smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8085182A
Other languages
Japanese (ja)
Other versions
JPS6248749B2 (en
Inventor
Mitsuo Kadoto
角戸 三男
Toshihiro Inatani
稲谷 稔宏
Eiji Katayama
英司 片山
Hisamitsu Koitabashi
小板橋 寿光
Shiko Takada
高田 至康
Hisao Hamada
浜田 尚夫
Nobuo Tsuchitani
槌谷 暢男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8085182A priority Critical patent/JPS58199842A/en
Publication of JPS58199842A publication Critical patent/JPS58199842A/en
Publication of JPS6248749B2 publication Critical patent/JPS6248749B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To stabilize operation and to improve the yield of Mn, by introducing preliminarily reduced powdery Mn ore and limestone into a reduction furnace, supplying lumped and powdery limestone selectively and performing reduction by melting under control of the compsn. of slag. CONSTITUTION:Powdery Mn ore 4 and powdery limestone 5 are charged into a preliminary reduction furnace 2 and are thereby reduced preliminarily. The preliminarily reduced Mn ore 4 and limestone 5 are blown together with high temp. air 8 from tuyeres 3 through a transfer pipe 7 into a melt reduction furnace 1. A carboneous material 9 and lumped limestone 10 are charged into the furnace 1 from the upper part thereof. The ratio of the limestone 5 to be blown through the tuyeres 3 in this stage is 100-50% of the entire amt. of the limestone, and the remaining limestone 10 is charged from the upper part of the furnace. The reduction by melting is accomplished in such a reaction atmosphere in which the slag 12 to be discharged from the furnace 1 consists, by weight %, of 27-45% CaO, 27-45% SiO2, 10-20% Al2O3 and <12% MgO. Molten metal 12 is drawn out through a discharge port 13.

Description

【発明の詳細な説明】 本発明は、粉状マンガン鉱石の溶融MfR法に関するも
のであり、とくに予備還元した粉状のマンガン鉱石・石
灰石全竪形溶融還元炉にて、塊・粉石灰石OF内供給手
段の選択とスラグ調整下に溶融還元炉内わせることで有
刹に溶融フェロマンガンを得る方法について提案する一 従来、フェロオンガン製造のために採用されるマンガン
鉱石の溶融製錬法としては、電気炉法や高炉法が一般的
なものであった0 そのうち、電気炉法は、電力原単位がsoo。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molten MfR method for powdered manganese ore, and in particular, in a pre-reduced powdered manganese ore/limestone all-vertical smelting reduction furnace, it is possible to reduce We propose a method for obtaining molten ferro-manganese in a timely manner by selecting a supply means and placing it in a smelting reduction furnace with slag adjustment.Conventionally, the manganese ore melting and smelting method adopted for the production of ferro-manganese is as follows: The electric furnace method and the blast furnace method were the most common methods.0 Of these, the electric furnace method has a very low unit power consumption.

KWH/*にも達し、きわめてコスト高である。しかも
、原料として塊鉱石、tたは事前処理による塊成化鉱石
な必要としているために、粉状鉱石は必スペレット、焼
結鉱、ブリケットなどに塊成化されて使用されなければ
ならないOその塊成化の処理は、溶剤、結合剤などの余
分の原料、および燃料や動力など余分なエネルギーを必
要とする・さらに、熱間゛塊成化のために焼成炉を用い
るこの処理の場合、通常No、 SoX等の有害なガス
およびダストの発生【伴い、これらがそのまま放散され
れば大気汚染の原因となるので、その防止設備Il設が
行なわれるが、これには多大の費用が必要となる。
The cost is extremely high, reaching KWH/*. Moreover, since lump ore, or pre-treated agglomerated ore, is required as a raw material, powdered ore must be used after being agglomerated into pellets, sintered ore, briquettes, etc. The agglomeration process requires extra raw materials such as solvents and binders, and extra energy such as fuel and power.Furthermore, in this process, which uses a kiln for hot agglomeration, Normally, harmful gases such as No. 2 and SoX and dust are generated (accompanying this, if these are emitted as they are, they can cause air pollution, so equipment to prevent this is installed, but this requires a large amount of cost. Become.

、これに対し高炉法は、エネルギーの面では電炉法より
は効率が良いが、シャフト炉であるために、炉内の通気
性を確保するために、前述と同様に塊鉱石または粉鉱石
の塊成化処理が必要であるとともに、塊状鉱石とコーク
スを炉内に層状に堆積させるので、強度の高hコークス
を必要とする0強度の高いコークスを製造するためには
、原料脚として資源的に将来不足が予想され、かつ価格
が高い強粘結炭を必要とするか、あるいは弱粘結炭、一
般炭を用いる場合には改質、5”バインダーなどを必要
とし1製造コストの上昇につながるなどの間■点がある
◎ 本発明は、粉状マンガン鉱石を原料としてg厳フェロマ
ンガンtM造する上記従来技術の欠点を克服することを
目的として開発した方法であり、その要旨とする構成は
、 粉状マンガン鉱石を流動層予備還元炉にて予備還元し、
ひきつづき竪mlIw融遺元炉に導いて製錬することに
より溶融フェロマンガンを製造する方法において、 粉状マンガン鉱石および粉状石灰石を、上記溶融還元炉
発生の高@還元ガスを導入する流動層予備還元炉に供給
して予備還元し、 その予備還元した初秋のマンガン鉱石およびフラックス
の混合物を羽目を通して^温空気とともにs*mye炉
内に吹込み、かつその炉内には全投入量のうちの少なく
とも509gは粉状のものを羽目を通じて軟込みまたそ
の残量は炉上部より塊状物として炭材とともに装入する
粉・境石灰石を供給し、 そして、溶融還元炉排出スラグの組成が重1優で、M、
O<is慢になるような反応雰囲気のもとで溶融還元を
行うこと【特徴とする点にある0以下にその構成の詳細
を説明する・ 図面の第1図は本発明の溶融製線法の実施に際して用い
る設備例であり、流動層方式の予備111兄炉2と竪形
の溶融還元炉lとで構成されている・上配溶融遺元炉l
には、その下部に上下の2段に分けて設置された炉周方
向の複数個所に羽口S−8′を有する。
On the other hand, the blast furnace method is more efficient than the electric furnace method in terms of energy consumption, but since it is a shaft furnace, in order to ensure ventilation inside the furnace, lumps of lump ore or fine ore must be In addition to requiring chemical conversion treatment, lump ore and coke are deposited in layers in the furnace, so in order to produce high-strength coke that requires high-strength coke, it is necessary to use resources as a raw material base. It is expected that there will be a shortage in the future, and it requires strong coking coal which is expensive, or if weak coking coal or steam coal is used, it will require modification, a 5" binder, etc., which will lead to an increase in manufacturing costs. The present invention is a method developed for the purpose of overcoming the drawbacks of the above-mentioned conventional technology for producing ferromanganese tM using powdered manganese ore as a raw material, and its gist is as follows: , Powdered manganese ore is pre-reduced in a fluidized bed pre-reduction furnace,
In a method for producing molten ferromanganese by subsequently introducing it into a vertical smelting furnace and smelting it, powdered manganese ore and powdered limestone are placed in a fluidized bed preliminary in which the high-reduction gas generated in the smelting and reduction furnace is introduced. The mixture of pre-reduced manganese ore and flux is fed into the reduction furnace and pre-reduced, and the mixture of pre-reduced manganese ore and flux is blown into the s*mye furnace together with warm air, and only a small amount of the total input amount is injected into the furnace. At least 509g of powder is softened through the slag, and the remaining amount is used to supply powder and limestone, which is charged as lumps from the upper part of the furnace together with carbonaceous materials, and the composition of the slag discharged from the smelting reduction furnace is So, M,
Melting reduction is carried out in a reaction atmosphere where O This is an example of equipment used in the implementation of
The furnace has tuyeres S-8' at a plurality of locations in the circumferential direction of the furnace, which are installed in two stages, upper and lower, in the lower part of the furnace.

上記予備還元炉2内に装入された粉状のマンガン鉱石鳴
、および粉状石灰石暴け、轟該炉内に導入された溶融還
元炉lから発生)高温遺児ガス(排ガス)6に接して流
動反応を起し熱分解を伴って予備還元される。
The powdered manganese ore charged in the preliminary reduction furnace 2 and the powdered limestone flowing in contact with the high-temperature orphan gas (exhaust gas) 6 (generated from the smelting reduction furnace 1 introduced into the furnace) A reaction occurs and is pre-reduced with thermal decomposition.

こうして予備還元された粉粒状のマンガン鉱石とフラッ
クスは、移送管?【通じて高温空気6とともに上段に位
置する前記羽口3から反応雰囲気調整された溶融還元炉
l内に吹込まれる・なお、下段羽口8′には高温空気8
のみが送風される。
The granular manganese ore and flux that have been pre-reduced in this way are transferred to a transfer pipe? [The high-temperature air 6 is blown into the smelting and reduction furnace l in which the reaction atmosphere is adjusted from the tuyere 3 located in the upper stage.
Only the air is blown.

また1、該溶融還元炉lの上部からは炭材9と塊状石灰
石10とが装入される・そのうち炭材9としては、弱粘
結炭、低強度コークス、チャーあるhは木−等の塊状物
を用いる。
1. Carbon material 9 and lump limestone 10 are charged from the upper part of the smelting reduction furnace 1. Of these, the carbon material 9 is weakly coking coal, low-strength coke, and the charred material is made of wood, etc. Use lumps.

両方を用いる。−こうした石灰石の使い方は粉塊使用の
バランスが取り易くなり無駄がなくなる利点がある。そ
の粉塊の使い分けであるが、粉状石灰石は上段羽口8か
ら吹込み、塊状石灰石は炉上部から装入される0石灰石
全量のうち、羽口8がら吹込む粉状石灰石の割合は、5
04以上:即ち160嗟〜110憾が良い0残りは塊状
で炉上部より装入する・実験結果に工れは羽口8から吹
込む粉状石灰石が6011よりさらに減量すると、次の
(1)  羽口先でのマンガン鉱石の溶融速度が遅くな
って、鉱石の吹込み量が低下(生産性が低下)した・マ
ンガン鉱石を羽口先ですみやかに溶融させるためには、
粉鉱石と粉石灰石などの7ラツクスがよく接触しかつ、
一定量以上のフラックス量であることが重要である。す
なわち羽口先、)嘗鉱石。溶融速度、対し−C,ユ、炉
上□、ら装入した石灰石の影響は少なく一諸に吹込んだ
粉石灰石の量に影響を受け、その量が石灰石全量の50
憾よりさらに下がると溶融速度はだんだん低下した。6
0憾以上ではすみ中かに#!融し、円滑な操業が維持で
きた。
Use both. -This method of using limestone has the advantage of making it easier to balance the use of powder and eliminating waste. Regarding the usage of the powdered lumps, powdered limestone is injected from the upper tuyere 8, and lumpy limestone is charged from the upper part of the furnace.Out of the total amount of limestone, the proportion of powdered limestone injected from the tuyere 8 is as follows: 5
04 or more: That is, 160 to 110 is good 0 The remainder is in lumps and is charged from the upper part of the furnace.The experimental results show that if the amount of powdered limestone injected from tuyere 8 is further reduced than 6011, the following (1) The melting speed of manganese ore at the tip of the tuyere has become slow and the amount of ore injected has decreased (productivity has decreased).In order to melt manganese ore quickly at the tip of the tuyere,
7 lacs such as powdered ore and powdered limestone are in good contact and
It is important that the amount of flux be a certain amount or more. i.e. tuyere tip,) 嘗ore. The melting rate has little effect on the amount of limestone charged into the furnace, and is influenced by the amount of powdered limestone injected into the furnace.
The melting rate gradually decreased as the temperature decreased further. 6
Crab in the corner with more than 0 regrets #! We were able to maintain smooth operations.

(s)  Mn歩留が低下した。融体中マンガン酸化物
の固体還元剤による還元速度およびマンガン歩留は一般
にO&O/S iOs比が高いと良い、マンガン歩留は
炉床でのスラグ−メタル反応速度が重要であるが、鉱石
と、石灰石などのフラックスが一緒に羽口から吹込まれ
て初期融体を生成した時からS融還元が進行するので、
滴下過程での還元速度もマンガン歩留に影響を与、する
。すなわち、羽口から吹込む粉石灰石の量が全量の60
憾よりさらに下がると初期融体中の0100割合が少な
くなって(すなわちOaO/S 10 s比が小さくな
って)滴下過檻でのマンガン酸化物の還元速度が低下し
たことがマンガン歩留の低下に影響したと考えられるン したがって、以上の結果より、羽口から粉鉱石と一諸に
吹込む粉石灰石の量は全装入量の100〜50嘔が適量
範囲であり、残りは塊状で炉十部ン鉱石および同フラッ
クス等が吹込まれると、炭材・粉状石灰石の充填された
炉内は、L、下段羽口8.8′の先端附近において充填
層中の炭材が燃焼してm@n元雰元気囲気っているので
、当該予備還元鉱および粉状石灰石等は加熱されて溶融
し、充填層内を滴下する間に固体炭材により直接還元さ
れて溶融状態のメタル11およびスラグ12Tt生成す
る。そして、下部領域の底部に蓄留されて、間歇的に排
出手段によって溶融達送風の排出口111から排出され
る。
(s) Mn yield decreased. Generally speaking, the reduction rate of manganese oxide in the melt by a solid reducing agent and the manganese yield are better when the O&O/SiOs ratio is high.The slag-metal reaction rate in the hearth is important for the manganese yield, but , S fusion reduction progresses from the time when a flux such as limestone is blown into the tuyere together to form an initial melt.
The reduction rate during the dropping process also affects the manganese yield. In other words, the amount of powdered limestone injected from the tuyere is 60% of the total amount.
When the temperature decreases further, the 0100 ratio in the initial melt decreases (that is, the OaO/S 10 s ratio decreases), and the reduction rate of manganese oxides in the dropping overcage decreases, resulting in a decrease in manganese yield. Therefore, from the above results, the appropriate amount of powdered limestone to be injected from the tuyeres together with the powdered ore is 100 to 50% of the total charging amount, and the rest is in the form of lumps and is injected into the furnace. When Juben ore and flux, etc. are injected into the furnace filled with carbonaceous material and powdered limestone, the carbonaceous material in the packed bed burns near the tip of L, lower tuyere 8.8'. Since the atmosphere is m@n, the pre-reduced ore and powdered limestone are heated and melted, and while dripping in the packed bed, they are directly reduced by the solid carbonaceous material to form the molten metal 11. and slag 12Tt is generated. Then, it is stored at the bottom of the lower region, and is intermittently discharged from the molten air outlet 111 by the discharge means.

上述のような溶融還元を進行きせる中で、本発明の場合
、炉外排出スラグの組成を次のような範囲のものに維持
した反応雰囲気を形成することで、操IIO安定とマン
ガン歩留の向上とを図ることにした・すなわち、1’ 
Ml、noを除くスラグ中の主要会成分を重置憾で; 0亀0 : 27〜46 %、  810  :  2
  ? 〜46 係、  A/20810.209G、
M、O< l ! I G、m限定しeoこのように限
定した理由は、スラグ中のM、O置が11憾を越えると
融点が急激に高くなり、操業が不安定となることが判っ
たからであり、この意味でM、O使用量の限度を124
未満とした。他の8次分であるOaO,St、、 A/
、08は、融点、Mn歩留、粘性についての検討の結果
にもとづいて足めたものである。すなわち、第2図は、
S i 010 aO−ム’*088元状態図(M、O
lo 4一定、MnOを除く)憂示したもので、図中の
点A、B、G、D、Eお↓び1で囲まれた領域が、本発
明排出スラグ組成の適正領域である〇 例えば、* A−F (510s : 45冬)を超え
るS10 の量はInの歩留が急激に悪くなる領域であ
す、また1A−B、+3〜a、0−D、D−x。
While the above-mentioned smelting reduction progresses, in the case of the present invention, by creating a reaction atmosphere that maintains the composition of the slag discharged outside the furnace within the following range, the stability of IIO operation and the manganese yield can be improved. I decided to try to improve ・i.e. 1'
The main constituents in the slag except Ml and no are overlaid; 0: 27-46%, 810: 2
? ~46 Section, A/20810.209G,
M, O < l! The reason for this limitation is that it has been found that when the M and O content in the slag exceeds 11, the melting point rises rapidly and operation becomes unstable. The limit for M and O usage is set to 124.
less than The other 8th order components OaO, St, , A/
, 08 were added based on the results of studies regarding the melting point, Mn yield, and viscosity. In other words, Figure 2 is
S i 010 aO-M'*088 original state diagram (M, O
lo 4 constant, except for MnO), and the area surrounded by points A, B, G, D, E↓ and 1 in the figure is the appropriate area for the discharged slag composition of the present invention. For example: , *A-F (510s: 45 winters) The amount of S10 exceeding (510s: 45 winter) is a region where the yield of In deteriorates rapidly, and 1A-B, +3~a, 0-D, D-x.

E−F外の領域では融点および/遣たは粘性が高くなり
、炉操業を困難にするものであった0次に、本発明の実
施例を揚起する0 (1)原料 予備還元iノガン鉱石 供給量880 k
f/hr予備還元率 6(1 粒    度  Q、5mm以下 (1石灰石全供給@   10gke/hr羽口から吹
込む扮状石灰石麺 ? 6 kg/hr (全量の70
優)溶融還元炉上部から 装入する味状石灰石j18 B ’q/ hr (全量
の80係)(8)炭素系固体還元剤:コークス供給量8
501q/hr粒度分布15〜80 TYL/m (4)IIMli元炉への送風9 14001m/hr
送風温度  800〜900℃ 送風羽口 上下各壱本 計8本 (a)溶融金属(フェロマンガン)生産量 2hOkf
/hr(@)溶融スラグ組成 0a0404.ム/、0
.1111.8in、804゜M2O6%−MnOto
n 溶融スラグ排出量 200呻/hr 上記実施例による操業例では、安価な炭材(コークス)
の他熱風だけで円清な操業ができ、エネルギーコストを
大幅に低減することができたOしかモ、マンガンの歩留
(フェロマンガン2aokg/hr)も従来法に較べる
と同−Fした。
In the region outside E-F, the melting point and/or viscosity become high, making furnace operation difficult. Ore supply amount 880k
f/hr Preliminary reduction rate 6 (1 grain size Q, 5 mm or less (1 total supply of limestone @ 10 gke/hr) Limestone noodles in the form of blown through the tuyeres? 6 kg/hr (70 of the total amount
Excellent) Flavored limestone charged from the top of the smelting reduction furnace j18 B'q/hr (80 parts of the total amount) (8) Carbon-based solid reducing agent: Coke supply amount 8
501q/hr Particle size distribution 15-80 TYL/m (4) Air blowing to IIMli main furnace 9 14001m/hr
Blow temperature: 800-900℃ Blow tuyeres: 1 each on the upper and lower sides, 8 in total (a) Molten metal (ferromanganese) production volume: 2hOkf
/hr (@) Molten slag composition 0a0404. Mu/, 0
.. 1111.8in, 804゜M2O6%-MnOto
n Molten slag discharge amount 200 m/hr In the operation example according to the above embodiment, cheap carbon material (coke)
In addition, it was possible to operate smoothly using only hot air, significantly reducing energy costs, and the yield of manganese (ferromanganese 2 aokg/hr) was also the same as that of the conventional method.

以上本発明の効果をまとめると以下のようになる。The effects of the present invention can be summarized as follows.

(1)  マンガン鉱石を粉状のit使用できるので、
塊状化不要である。また溶融還元炉の排ガスな予備還元
に利用できエネルギーが節減される。
(1) Since manganese ore can be used in powder form,
No clumping required. In addition, the exhaust gas from the smelting reduction furnace can be used for preliminary reduction, saving energy.

(1)  前記スラグ組成虻囲に制御することにより、
操業安定とマンガン歩留の高水準維持が達成できる。
(1) By controlling the slag composition within the range,
It is possible to achieve operational stability and maintain a high level of manganese yield.

(8)  石灰石の粉・塊使用バランスがとり易く全量
を使用できる。また石灰石は全量粉砕しなくてよいので
、粉砕コストの削減が達成される@
(8) It is easy to balance the use of limestone powder and lumps, and the entire amount can be used. Also, since the entire amount of limestone does not need to be crushed, a reduction in crushing costs can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法に採用される溶融還元設備の路線図、 第2図はスラグ組成の適正領域を示すSin、 −0a
O−ムt、088元状r、aである。 l・・・溶融還元炉、   ト・・与備還元炉、8.8
′・・・羽目、 番・・・粉状マンガン鉱石、5・・・
粉状石灰石、   6・・・排ガス、マ・・・移送管、
8・・・高温空気、9・・・塊炭材、10・・・境石灰
石、11・・・溶融メタル、12・・・スラグ、1B・
・・排出口。 特許出願人 川崎製鉄株式会社 第11 第2 St’Oz 9t
Figure 1 is a route map of the smelting reduction equipment adopted in the method of the present invention, Figure 2 shows the appropriate range of slag composition, Sin, -0a
O-mu t, 088 elemental state r, a. l... Melting reduction furnace, G... Yobi reduction furnace, 8.8
'...Win, No....Powdered manganese ore, 5...
Powdered limestone, 6...exhaust gas, ma...transfer pipe,
8... High temperature air, 9... Lump carbonaceous material, 10... Boundary limestone, 11... Molten metal, 12... Slag, 1B.
··Vent. Patent applicant Kawasaki Steel Corporation No. 11 No. 2 St'Oz 9t

Claims (1)

【特許請求の範囲】 L 粉状マンガン磁石を流動層予備還元炉にて予備還元
し、ひきつづき!渥溶融還元炉に導いて製錬することに
より溶融フェロマンガンを製造する方法において、 粉状マンガン鉱石および粉状石灰石を、上記溶*a元炉
発生の高温還元ガスを導入する流動層予備還元炉に供給
上で予備還元し、その予備還元した粉状のマンガン鉱石
および7ラツクスの混合物な羽口な通して高温空気とと
もに溶融還元炉内に吹込み、かつその炉内には全投入量
のうちの少なくともhO嘔は粉状のものを羽口を通じて
吹込みまたその残量は炉上部より塊状物として炭材とと
もに装入する看・境石灰石を供給し、 そして、溶融還元炉排出スラグの組成が重量憾で、ot
o : 2フ〜4h嘔、8i0. : sフル0]、ム
/、O,: l O〜1ull、電、O<■1になるよ
うな反応gm気のもとて溶融還元を行うこと1*黴とす
る粉状マンガン鉱石の溶融製錬法・
[Claims] L Powdered manganese magnets are pre-reduced in a fluidized bed pre-reduction furnace and continued! In a method for producing molten ferromanganese by introducing it into a smelting reduction furnace and smelting it, powdered manganese ore and powdered limestone are introduced into a fluidized bed pre-reduction furnace into which high-temperature reducing gas generated from the molten*a main furnace is introduced. A mixture of the pre-reduced powdered manganese ore and 7 lux is blown into a smelting reduction furnace together with high-temperature air through a tuyere, and only a small amount of the total input amount is injected into the furnace. At the very least, powder is injected through the tuyere, and the remaining amount is used to supply limestone, which is charged as lumps from the upper part of the furnace together with carbonaceous material, and the composition of the slag discharged from the smelting and reduction furnace is determined. It's heavy and ot
o: 2h to 4h, 8i0. : s full 0], Mu/, O, : l O ~ 1 ull, electric, O < ■ 1 Reaction gm Melting reduction under atmosphere 1 * Melting of powdered manganese ore to mold Smelting method/
JP8085182A 1982-05-15 1982-05-15 Melt smelting method of powdery manganese ore Granted JPS58199842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8085182A JPS58199842A (en) 1982-05-15 1982-05-15 Melt smelting method of powdery manganese ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8085182A JPS58199842A (en) 1982-05-15 1982-05-15 Melt smelting method of powdery manganese ore

Publications (2)

Publication Number Publication Date
JPS58199842A true JPS58199842A (en) 1983-11-21
JPS6248749B2 JPS6248749B2 (en) 1987-10-15

Family

ID=13729846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8085182A Granted JPS58199842A (en) 1982-05-15 1982-05-15 Melt smelting method of powdery manganese ore

Country Status (1)

Country Link
JP (1) JPS58199842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314839A (en) * 1986-07-04 1988-01-22 Kawasaki Steel Corp Operating method for vertical type ferromanganese smelting furnace
KR101166240B1 (en) 2010-03-26 2012-07-16 재단법인 포항산업과학연구원 The smelter of manganese ores and smelting method of thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314839A (en) * 1986-07-04 1988-01-22 Kawasaki Steel Corp Operating method for vertical type ferromanganese smelting furnace
KR101166240B1 (en) 2010-03-26 2012-07-16 재단법인 포항산업과학연구원 The smelter of manganese ores and smelting method of thereof

Also Published As

Publication number Publication date
JPS6248749B2 (en) 1987-10-15

Similar Documents

Publication Publication Date Title
JP2020527192A (en) Method of manufacturing metallic iron
JP2000192153A (en) Sintered ore and production thereof, and operation of blast furnace
KR20040057191A (en) A method for making molten iron by using hot compaction of fine dri and calcined additives in non-coking coal based iron making process
JPS58199842A (en) Melt smelting method of powdery manganese ore
US5698009A (en) Method for agglomerating pre-reduced hot iron ore particles to produce ingot iron
US4106929A (en) Process for preparing a ferrochromium by using a blast furnace
RU2158316C1 (en) Method of production of wash sinter
CN114908263B (en) Preparation method of silicon-manganese alloy
JP3848453B2 (en) Manufacturing method of metallic iron
JP2011179090A (en) Method for producing granulated iron
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
JPS62167809A (en) Production of molten chromium iron
JP3395573B2 (en) Method for producing and using sinter
JP2000290709A (en) Method for charging raw material into blast furnace
JPH0242884B2 (en)
JPH032922B2 (en)
JP5626072B2 (en) Operation method of vertical melting furnace
JP5971482B2 (en) Agglomerate production method
JPH0314889B2 (en)
JPS61291930A (en) Manufacture of molten metal containing chromium
JPS61201709A (en) Method for operating blast furnace to attain low si content
JPS601368B2 (en) Method for manufacturing sintered ore
JPH032933B2 (en)
JPH01316406A (en) Production of chromium-containing molten iron
JPS63166920A (en) Method for operating smelting reduction furnace