JPH06145730A - Operation method for blast furnace - Google Patents

Operation method for blast furnace

Info

Publication number
JPH06145730A
JPH06145730A JP32624992A JP32624992A JPH06145730A JP H06145730 A JPH06145730 A JP H06145730A JP 32624992 A JP32624992 A JP 32624992A JP 32624992 A JP32624992 A JP 32624992A JP H06145730 A JPH06145730 A JP H06145730A
Authority
JP
Japan
Prior art keywords
coke
jis
highly reactive
blast furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32624992A
Other languages
Japanese (ja)
Inventor
Masaaki Naito
誠章 内藤
Takashi Nakayama
岳志 中山
Kazuhiro Shirahama
和弘 白浜
Tetsuzo Haga
徹三 芳我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32624992A priority Critical patent/JPH06145730A/en
Publication of JPH06145730A publication Critical patent/JPH06145730A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the reaction efficiency of a blast furnace and to lower a fuel ratio in the operation method using an iron source mainly consisting of sintered ore, ordinary coke and specific highly reactive coke by adjusting the ratio of using the highly reactive coke, etc., according to the reducibility of the sintered ore. CONSTITUTION:The blast furnace operation is executed by charging the sintered ore, pellets, lumped ore, ordinary coke for metallurgy and the highly reactive coke having <=25mm average grain size and >=30% JIS(Japanese Industrial Standards) reactivity into the blast furnace. One or more among the ratio of using the highly reactive coke, the grain size and JIS reactivity thereof are adjusted according to the reducibility of the sintered ore in this operation method. As a result, the temp. of a heat retaining temp. is controlled to an optimum value and the reduction reaction is accelerated, by which the safe operation is executed with the high reaction efficiency at the low fuel ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は焼結鉱の被還元性に応じ
て高炉炉内における熱保存帯温度を制御することによっ
て、効率的で安定した高炉の操業を行う方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a blast furnace efficiently and stably by controlling the temperature of the heat preservation zone in the blast furnace according to the reducibility of sinter.

【0002】[0002]

【従来の技術】高炉にあっては、焼結鉱、塊鉄鉱石を主
体(70%以上)とした鉄源と通常冶金用コークスを層
状に装入し、この鉄源を還元した後、金属状態に溶融し
て銑鉄を製造している。このさい、鉄源の還元効率を高
めるためにたとえば特公昭52−43169号公報に提
案のように、前記鉄源と小塊コークス(平均粒径20m
m)をあらかじめ混合しておき、この小塊コークス混合
鉄源と通常冶金用コークスを層状に装入することにより
炉内の通気性を改善して還元性の向上を図る手段があ
る。
2. Description of the Related Art In a blast furnace, a sinter ore or an agglomerated iron ore (70% or more) as an iron source and ordinary metallurgical coke are charged in layers, and after reducing the iron source, the metal It is melted into a state and pig iron is manufactured. At this time, in order to improve the reduction efficiency of the iron source, for example, as proposed in Japanese Patent Publication No. 52-43169, the iron source and the small coke (average particle size 20 m
m) is mixed in advance, and this small lump coke mixed iron source and ordinary metallurgical coke are charged in layers to improve the air permeability in the furnace to improve the reducibility.

【0003】この通常冶金用コークス(JIS反応性が
20%程度)を使用している高炉炉内での融着帯上方の
熱保存帯温度は1000℃程度であり、通常冶金用コー
クスが炉内でC+CO2 =2COのガス化反応を開始す
る温度と同等である。一方鉄源の軟化開始温度は110
0℃程度であり、この軟化が開始すると炉内での通気性
が悪化して還元ガスの浸透が不十分になる。このため、
通常冶金用コークスのみを使用すると熱保存帯温度が1
000℃程度と高温であることから、前記ガス化反応で
生成するCOを有効に活用することができず、しかも鉄
源の軟化に伴う通気性の悪化から鉄源と還元ガスの接触
が不均等となる結果、熱保存帯部分における鉄源の間接
還元を有効に活用できず、前記のように鉄源と小塊コー
クスを混合したとしても還元効率を大幅に向上すること
は困難であった。
The temperature of the heat preservation zone above the fusion zone is about 1000 ° C. in the blast furnace in which this ordinary metallurgical coke (JIS reactivity is about 20%) is used. It is equivalent to the temperature at which the gasification reaction of C + CO 2 = 2CO is started. On the other hand, the softening start temperature of the iron source is 110
The temperature is about 0 ° C., and when this softening starts, the gas permeability in the furnace deteriorates and the permeation of the reducing gas becomes insufficient. For this reason,
If only normal metallurgical coke is used, the heat preservation zone temperature is 1
Since the temperature is as high as about 000 ° C, CO generated in the gasification reaction cannot be effectively utilized, and the air source is deteriorated due to softening of the iron source, resulting in uneven contact between the iron source and the reducing gas. As a result, the indirect reduction of the iron source in the heat preservation zone cannot be effectively utilized, and it is difficult to significantly improve the reduction efficiency even if the iron source and the small coke are mixed as described above.

【0004】これを改善するため、特開平1−3617
0号公報に提案のように、25mm以下の高反応性コー
クスを通常冶金用コークスの一部と置換し、この置換し
た高反応性コークスを鉄源または通常冶金用コークスと
混合して高炉に装入するものがある。この高反応性コー
クスは反応性の高い微非粘結炭を冶金用コークス製造炭
に一部配合するか、反応促進触媒としての石灰石、アル
カリ類を冶金用コークス製造炭に配合して製造するもの
である。そして微非粘結炭、石灰石、アルカリ類の配合
量を調節してJIS反応性を調整する。
In order to improve this, Japanese Patent Laid-Open No. 1-3617
As proposed in Japanese Patent No. 0, the highly reactive coke having a size of 25 mm or less is replaced with a part of the ordinary metallurgical coke, and the substituted highly reactive coke is mixed with an iron source or the ordinary metallurgical coke and loaded into a blast furnace. There is something to enter. This highly reactive coke is produced by partially mixing highly reactive, slightly non-caking coal into the metallurgical coke-producing coal, or by incorporating limestone and alkalis as a reaction-promoting catalyst into the metallurgical coke-producing carbon. Is. Then, the JIS reactivity is adjusted by adjusting the blending amounts of the slightly non-caking coal, limestone, and alkalis.

【0005】この高反応性コークスは通常冶金用コーク
スに比して反応性が高く、しかも粒径が比較的小さいこ
とから炉内のCO2 が高反応性コークス表面に接触して
C+CO2 =2COのガス化反応がより低温から活発に
行われる。その結果炉内に生じたCOガスが鉄源と有効
に反応して鉄源の還元反応が促進される。また前記C+
CO2 =2COのガス化反応が吸熱反応(−38.8k
cal/mol)であることから、高炉炉内の塊状帯部
分に形成される熱保存帯温度を低下することができる。
このため鉄源の軟化温度との間の温度差が大きくなり、
通気性の悪化が生じることがないので、前記生成したC
Oと鉄源の接触が均等となり還元効率が向上してコーク
ス比の低減を図ることが可能となる。
This highly reactive coke is usually more reactive than metallurgical coke and has a relatively small particle size, so that CO 2 in the furnace comes into contact with the highly reactive coke surface and C + CO 2 = 2CO. The gasification reaction of is carried out actively from a lower temperature. As a result, the CO gas generated in the furnace effectively reacts with the iron source to accelerate the reduction reaction of the iron source. In addition, C +
The gasification reaction of CO 2 = 2CO is an endothermic reaction (-38.8k
cal / mol), it is possible to lower the temperature of the heat preservation zone formed in the massive zone in the blast furnace.
Therefore, the temperature difference between the softening temperature of the iron source becomes large,
Since the air permeability does not deteriorate, the generated C
The contact between O and the iron source becomes even, the reduction efficiency is improved, and the coke ratio can be reduced.

【0006】[0006]

【発明が解決しようとする課題】しかし、前記鉄源とし
ての焼結鉱は常に一定の原料で製造することはできず、
その時々の原料事情により品質が変化するものである。
たとえば配合する原料の成分、特にAl23 が変化す
るとこれに起因して前記焼結鉱の被還元性が変化する。
たとえばAl23 が高くなると被還元性が悪化する傾
向となり、また反対にAl23 が低くなると被還元性
が良好となる傾向にある。この焼結鉱の被還元性が変動
した際に、前記熱保存帯温度を一定に維持していると還
元反応効率が変化して炉況が不安定となるとともに、こ
れに伴って燃料比が上昇する問題を有する。
However, the sintered ore as the iron source cannot always be manufactured with a constant raw material,
The quality changes depending on the raw material situation at that time.
For example, if the components of the raw materials to be mixed, especially Al 2 O 3 , change, the reducibility of the sinter changes.
For example, if Al 2 O 3 is high, the reducibility tends to deteriorate, and conversely, if Al 2 O 3 is low, the reducibility tends to be good. When the reducibility of this sinter changes, if the heat preservation zone temperature is kept constant, the reduction reaction efficiency changes and the furnace condition becomes unstable, and the fuel ratio changes accordingly. Have the problem of rising.

【0007】本発明は焼結鉱の被還元性に応じて、炉内
の熱保存帯温度を最適値に制御することにより炉全体の
還元反応を促進させて、高い反応効率下で低燃料比で安
定した操業を行うことを課題とするものである。
The present invention promotes the reduction reaction of the entire furnace by controlling the temperature of the heat preservation zone in the furnace to an optimum value in accordance with the reducibility of the sinter, and at a high reaction efficiency, a low fuel ratio is achieved. The challenge is to carry out stable operations in the area.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するものであって、その手段は焼結鉱を主体とする鉄源
と通常冶金用コークスとJIS反応性が30%以上で平
均粒径が25mm以下の高反応性コークスを装入して操
業を行う高炉の操業方法において、前記焼結鉱の被還元
性に応じて前記高反応性コークスの使用比率、粒径、J
IS反応性の少なくとも1つを調整することにより高炉
炉内の熱保存帯温度を制御するものである。
Means for Solving the Problems The present invention is to solve the above-mentioned problems by means of an iron source mainly composed of sinter, ordinary metallurgical coke, JIS reactivity of 30% or more and average grain size. In a method of operating a blast furnace in which a highly reactive coke having a diameter of 25 mm or less is charged and operated, a use ratio of the highly reactive coke, a particle size, J
The temperature of the heat preservation zone in the blast furnace is controlled by adjusting at least one of the IS reactivity.

【0009】[0009]

【作用】本発明で使用する高反応性コークスはJIS反
応性が30%以上(JIS K2151−1977の反
応性試験方法で測定したときの値)で平均粒径が25m
m以下が必要である。これは先にあげた特開平1−36
710号公報に開示されているように、JIS反応性が
30%未満や平均粒径が25mmを越えるものでは熱保
存帯温度を低下する効果が見られないことによる。
The highly reactive coke used in the present invention has a JIS reactivity of 30% or more (value measured by the reactivity test method of JIS K2151-1977) and an average particle size of 25 m.
m or less is required. This is the above-mentioned Japanese Patent Laid-Open No. 1-36.
As disclosed in Japanese Patent No. 710, when the JIS reactivity is less than 30% or the average particle size exceeds 25 mm, the effect of lowering the thermal storage zone temperature is not observed.

【0010】次に、熱保存帯温度の制御方法について述
べる。なおこの熱保存帯温度を測定する方法としては、
高炉炉壁からゾンデを挿入して測定する方法が一般的で
あるがこれに限るものではない。図1は高反応性コーク
スの平均粒径、JIS反応性、使用比率増加分(通常冶
金用コークスとの使用比率)と熱保存帯温度の低下幅と
の関係を示したものであるが、これからわかるように、
高反応性コークスの使用比率を増加、細粒化、もしくは
JIS反応性を向上するに従って前記熱保存帯の温度低
下幅は大きくなる。言い換えれば、高反応性コークスの
使用比率、粒径、JIS反応性を調整することにより、
前記熱保存帯温度を制御することが可能であることが判
る。
Next, a method of controlling the heat storage zone temperature will be described. As a method of measuring this heat preservation zone temperature,
The method of inserting the sonde from the furnace wall of the blast furnace is generally used, but the method is not limited to this. Figure 1 shows the relationship between the average particle size of highly reactive coke, JIS reactivity, increase in usage ratio (usage ratio with ordinary metallurgical coke) and the extent of decrease in heat storage zone temperature. As you can see
As the use ratio of the highly reactive coke is increased, the particles are made finer, or the JIS reactivity is improved, the temperature decrease width of the heat preservation zone becomes larger. In other words, by adjusting the usage ratio of highly reactive coke, particle size, and JIS reactivity,
It will be appreciated that it is possible to control the heat storage zone temperature.

【0011】さらに、焼結鉱の被還元性(以下単にJI
S−RIと称する)と熱保存帯温度との関係について述
べる。図2は熱保存帯温度が1000℃の場合における
焼結鉱のJIS−RIと還元反応効率の関係を示す。こ
の図から焼結鉱のJIS−RIが低下すると還元反応効
率が急激に低下することが判る。
Furthermore, the reducibility of sintered ore (hereinafter simply referred to as JI
The relationship between S-RI) and the heat storage zone temperature will be described. FIG. 2 shows the relationship between the JIS-RI and the reduction reaction efficiency of the sintered ore when the heat preservation zone temperature is 1000 ° C. From this figure, it can be seen that the reduction reaction efficiency drops sharply when the JIS-RI of the sinter decreases.

【0012】一方、還元反応効率向上には熱保存帯の温
度を極力低くすることが望ましいが、シャフト上部の温
度が低下するため適正な熱保存帯温度の設定には高炉炉
頂から熱保存帯域までの焼結鉱の低温還元性が重要であ
る。そこでJIS−RIが55%、62%の各焼結鉱の
適正熱保存帯温度を求めるため、本発明者は実公平1−
27038号公報で提案の高炉内反応シミュレータを用
いて試験を行った。これは上部より塊鉄鉱石を充填する
とともに下部より還元ガスを導通して、還元ガスと塊鉄
鉱石を向流接触する炉芯管と、炉芯管の一部を包囲して
前記還元ガス下流側方向に移動自在に設けた加熱器を有
する装置である。
On the other hand, it is desirable to lower the temperature of the heat preservation zone as much as possible in order to improve the efficiency of the reduction reaction, but since the temperature of the upper part of the shaft is lowered, the heat preservation zone temperature should be set appropriately from the top of the blast furnace to set the heat preservation zone temperature appropriately. The low-temperature reducibility of sinter is important. Therefore, in order to obtain the proper heat preservation zone temperature of each sintered ore with JIS-RI of 55% and 62%, the present inventor has
Tests were carried out using the blast furnace reaction simulator proposed in Japanese Patent No. 27038. This is filled with lump iron ore from the upper part and conducts reducing gas from the lower part, and a furnace core tube that makes countercurrent contact between the reducing gas and the lump iron ore, and surrounds a part of the furnace core tube to downstream the reducing gas. It is an apparatus having a heater provided so as to be movable in the lateral direction.

【0013】この結果、図3に示すようにJIS−RI
が62%の焼結鉱の場合には還元反応効率の最も高い熱
保存帯温度(以下適正熱保存帯温度と称す)は900℃
であり(なおこの場合熱保存帯温度を900℃以下に低
下することができず、これ以下における焼結鉱の還元反
応効率は不明)、JIS−RIが55%の焼結鉱の場合
には930℃であった。つまり、焼結鉱のJIS−RI
の値に応じて適正熱保存帯温度が異なることを示してい
る。
As a result, as shown in FIG. 3, JIS-RI
In the case of 62% sinter, the heat preservation zone temperature with the highest reduction reaction efficiency (hereinafter referred to as the proper heat preservation zone temperature) is 900 ° C.
(In this case, the temperature of the heat preservation zone cannot be lowered to 900 ° C. or lower, and the reduction reaction efficiency of the sintered ore below this is unknown), and in the case of the sintered ore of JIS-RI of 55%, It was 930 ° C. In other words, JIS-RI of sinter
It indicates that the appropriate heat storage zone temperature varies depending on the value of.

【0014】図4は上記図3に基づいて、焼結鉱のJI
S−RIと反応効率が最も良好となる適正熱保存温度と
の関係を調査したものである。この図からわかるよう
に、適正熱保存温度は焼結鉱のJIS−RIが60%以
上では900℃であり、JIS−RIが60%以下では
そのJIS−RIの低下に伴って適正熱保存帯温度が上
昇する。
FIG. 4 is based on FIG.
The relationship between S-RI and the proper heat storage temperature at which the reaction efficiency is the best is investigated. As can be seen from this figure, the optimum heat storage temperature is 900 ° C. when the JIS-RI of the sinter is 60% or more, and the optimum heat storage zone is as the JIS-RI decreases when the JIS-RI is 60% or less. The temperature rises.

【0015】このように本発明は焼結鉱のJIS−RI
を基にして炉内に装入する高反応性コークスの使用比
率、粒径、JIS反応性を調整することにより、炉内の
融着帯上方に形成される熱保存帯温度を最大の還元反応
効率を享受できる適正値に制御するものであるが、前記
熱保存帯温度の制御幅が小さい場合には前記高反応性コ
ークスの使用比率、粒径、JIS反応性の何れか1つを
単独に調整し、制御幅が大きい場合には使用比率、粒
径、JIS反応性を組み合わせて複数調整することが好
ましい。
As described above, the present invention is based on JIS-RI of sintered ore.
By adjusting the usage ratio, particle size, and JIS reactivity of the highly reactive coke charged into the furnace based on the above, the reduction reaction that maximizes the temperature of the heat preservation zone formed above the cohesive zone in the furnace Although it is controlled to an appropriate value that can enjoy efficiency, when the control width of the heat preservation zone temperature is small, any one of the use ratio of the highly reactive coke, the particle size, and the JIS reactivity is independently used. When the control width is large, it is preferable to make a plurality of adjustments by combining the use ratio, particle size, and JIS reactivity.

【0016】また前記高反応性コークスの使用比率を調
整することが、粒径、JIS反応性を調整するのに比し
て熱保存帯温度の制御幅が最も大きく好ましいが、この
調整に伴って通常冶金用コークスまたは焼結鉱の量を調
整することが必要となり煩雑である。一方、高反応性コ
ークスの粒径を調整することが上記煩雑化を伴うことが
なく好ましいが、細粒化し過ぎると高炉ガスに伴って飛
散して歩留りが悪化したり、炉内塊状体部分で目詰まり
の原因となり通気性が悪化する場合がある。さらに高反
応性コークスのJIS反応性を調整すると、炉内の通気
性が変化せず、通常冶金用コークスまたは焼結鉱の量を
調整する必要がなく高炉としては最も好ましいが、所望
のJIS反応性の高反応性コークスの造り込みに熟練を
有する。このように、各々長所、短所があるためにその
時々の高炉操業状態に応じて前記使用比率、粒径、JI
S反応性の調整手段を使い分けることが必要である。
Further, it is preferable to adjust the use ratio of the high-reactivity coke because the control range of the heat preservation zone temperature is the largest as compared with the case of adjusting the particle size and JIS reactivity. It is usually complicated because it is necessary to adjust the amount of metallurgical coke or sintered ore. On the other hand, it is preferable to adjust the particle size of the highly reactive coke without causing the above-mentioned complication, but if the particle size is too fine, the yield will deteriorate due to scattering with the blast furnace gas, or in the in-furnace agglomerate part. It may cause clogging and deteriorate air permeability. Furthermore, if the JIS reactivity of the highly reactive coke is adjusted, the air permeability in the furnace does not change, and usually there is no need to adjust the amount of coke for metallurgy or sinter, which is most preferable as a blast furnace, but the desired JIS reaction Has skill in making highly reactive coke. As described above, since each has its advantages and disadvantages, the usage ratio, particle size, JI
It is necessary to properly use the means for adjusting the S reactivity.

【0017】[0017]

【実施例】以下、本発明の実施例を具体的に説明する。
表1に高反応性コークスを使用し、焼結鉱のJIS−R
Iに応じて熱保存帯温度を制御して高炉を操業した実施
例を示す。
EXAMPLES Examples of the present invention will be specifically described below.
Table 1 shows the highly reactive coke and JIS-R
An example in which the blast furnace is operated by controlling the heat preservation zone temperature according to I is shown.

【0018】[0018]

【表1】 [Table 1]

【0019】対象の高炉は内容積3000m3 の中型高
炉であり、焼結鉱を主体とした鉄源(焼結鉱80%、ペ
レット10%、優良塊鉱石(ハマスレー鉱石、ニューマ
ン鉱石等)10%)と、通常冶金用大塊コークス(JI
S反応性20%、平均粒径50mm)を層状に装入す
る。さらに、羽口先温度を2180℃(熱風温度120
0℃、送風湿分25g/Nm3 −air、酸素富化量
0.013Nm3 /Nm3−air、微粉炭吹込み量1
00g/Nm3 −air)に維持しながら操業を行って
いる。
The target blast furnace is a medium-sized blast furnace with an internal volume of 3000 m 3 , and an iron source mainly composed of sinter (80% sinter, 10% pellets, 10% fine ore (Hamasley ore, Newman ore, etc.)) ) And normal large metallurgical coke (JI
S reactivity 20%, average particle size 50 mm) is charged in layers. Further, the tuyere temperature is 2180 ° C (hot air temperature 120
0 ° C., blowing moisture 25g / Nm 3 -air, oxygen-enriched amount 0.013Nm 3 / Nm 3 -air, pulverized coal blowing amount 1
The operation is carried out while maintaining the value of 00 g / Nm 3 -air).

【0020】実施例1はJIS反応性が70%、粒径5
〜10mmの高反応性コークスの10%を通常冶金用大
塊コークスに混合して操業していた状態において、前記
焼結鉱のJIS−RIが68%から62%に変化した場
合の例である。「調整前」は焼結鉱のJIS−RIが変
化してもそのまま操業を行い炉況が不安定になり始めた
ことを示すものであり、「調整後」はこの不安定になり
始めた炉況を安定させるために前記焼結鉱のJIS−R
Iに変化に応じて、高反応性コークスの使用比率を調整
して熱保存帯温度を制御したものである。
Example 1 has a JIS reactivity of 70% and a particle size of 5
It is an example of a case where JIS-RI of the sinter changes from 68% to 62% in a state where 10% of highly reactive coke of 10 mm is mixed with a large coke for ordinary metallurgy and is operating. . “Before adjustment” indicates that the furnace started to become unstable by continuing operation even if the JIS-RI of the sinter changed, and “after adjustment” indicates that the furnace began to become unstable. JIS-R of the sinter in order to stabilize the situation
The heat preservation zone temperature is controlled by adjusting the usage ratio of the highly reactive coke according to the change in I.

【0021】この調整に当っては、まず以下の手順で最
適熱保存帯温度の制御幅を算定する。すなわち(1)焼
結鉱のJIS−RIが62%における最適熱保存帯温度
が図4から900℃である。(2)現状(調整前)の熱
保存帯温度が950℃である。(3)この(1)、
(2)から該熱保存帯温度低下幅は50℃である。
In this adjustment, the control width of the optimum heat preservation zone temperature is first calculated by the following procedure. That is, (1) the optimum heat preservation zone temperature when the JIS-RI of the sintered ore is 62% is 900 ° C. from FIG. (2) The current heat preservation zone temperature (before adjustment) is 950 ° C. (3) This (1),
From (2), the temperature reduction width of the heat preservation zone is 50 ° C.

【0022】次に、上記(3)をもとにJIS反応性が
70%、粒径が5mm〜10mmの高反応性コークスの
使用比率の増加分を図1に従って算定すると15%にな
る。そして、調整前の高反応性コークスに上記算定した
使用比率増加分を追加して、その合計が25%になるよ
うにして、通常冶金用大塊コークス(調整前に比して1
5%減)と混合して炉内に装入した。これにより、熱保
存帯温度を上記算定の900℃に制御して操業を行った
結果、炉況が安定し燃料比が485kg/t−pigに
低下した。
Next, based on the above (3), the increase in the use ratio of the highly reactive coke having a JIS reactivity of 70% and a particle size of 5 mm to 10 mm is calculated according to FIG. 1 to be 15%. Then, by adding the increase in the usage rate calculated above to the high reactivity coke before adjustment so that the total becomes 25%, large coke for normal metallurgy (1% compared to before adjustment)
5% reduction) and charged into the furnace. As a result, the heat preservation zone temperature was controlled to 900 ° C. calculated as above, and the operation was carried out. As a result, the furnace condition became stable and the fuel ratio fell to 485 kg / t-pig.

【0023】実施例2および実施例3は焼結鉱のJIS
−RIが62%から68%に変化した場合である。「調
整前」は焼結鉱のJIS−RIが変化してもそのまま操
業を行い炉況が不安定になり始めたことを示すものであ
り、「調整後」はこの不安定になり始めた炉況を安定さ
せるために前記焼結鉱のJIS−RIの変化に応じて、
高反応性コークスのJIS反応性(実施例2および実施
例3)、粒径(実施例2)を調整して熱保存帯温度を制
御したものである。
Examples 2 and 3 are JIS of sintered ore.
-This is the case where RI changed from 62% to 68%. “Before adjustment” indicates that the furnace started to become unstable by continuing operation even if the JIS-RI of the sinter changed, and “after adjustment” indicates that the furnace began to become unstable. In order to stabilize the situation, according to the change in JIS-RI of the sinter,
The heat storage zone temperature was controlled by adjusting the JIS reactivity (Examples 2 and 3) and particle size (Example 2) of the highly reactive coke.

【0024】この調整は実施例2について説明すると前
記同様に、まず以下の手順で最適熱保存帯温度の制御幅
を算定する。(1)この焼結鉱のJIS−RIの変化後
の最適熱保存帯温度は焼結鉱のJIS−RIが68%に
なったことから、図4に示すように900℃である。
(2)現状(調整前)の熱保存帯温度が940℃であ
る。(3)この(1)、(2)から該熱保存帯温度低下
幅は40℃である。
This adjustment will be described with reference to the second embodiment. Similar to the above, first, the control width of the optimum heat storage zone temperature is calculated by the following procedure. (1) The optimum heat preservation zone temperature after the change of JIS-RI of this sinter is 900 ° C. as shown in FIG. 4 since the JIS-RI of the sinter reached 68%.
(2) The current heat preservation zone temperature (before adjustment) is 940 ° C. (3) From these (1) and (2), the temperature reduction range of the heat preservation zone is 40 ° C.

【0025】このため「調整後」に示すように、図1に
従って算定した高反応性コークスのJIS反応性(60
%→70%)および粒径(10〜15mm→5〜10m
m)に調整して熱保存帯温度を上記最適熱保存帯温度の
900℃に制御維持したものである。
Therefore, as shown in "after adjustment", the high reactivity coke JIS reactivity (60%) calculated according to FIG.
% → 70%) and particle size (10-15 mm → 5-10 m)
m) and the heat preservation zone temperature is controlled and maintained at 900 ° C. which is the optimum heat preservation zone temperature.

【0026】実施例4は焼結鉱のJIS−RIが62%
から55%に変化した場合の例であって、このJIS−
RIの変化に応じて高反応性コークスのJIS反応性
(60%→70%)および粒径(5〜10mm→10〜
15mm)、使用比率(20%→25%)を調整して熱
保存帯温度を上記図4から算出した930℃に制御維持
したものである。
In Example 4, JIS-RI of the sintered ore is 62%.
From the JIS-
JIS reactivity (60% → 70%) and particle size (5-10 mm → 10) of highly reactive coke depending on RI change.
15 mm) and the usage ratio (20% → 25%) were adjusted to control and maintain the thermal storage zone temperature at 930 ° C. calculated from FIG.

【0027】実施例5は焼結鉱のJIS−RIが62%
から66%に変化した場合の例であって、このJIS−
RIの変化に応じて高反応性コークスの粒径を10〜1
5mmから5〜10mmに調整(細粒化)して熱保存帯
温度を上記図4から算出した930℃に制御維持したも
のである。
In Example 5, JIS-RI of the sintered ore is 62%.
From the JIS-
Depending on the change of RI, the particle size of highly reactive coke is 10 to 1
It was adjusted (fine-grained) from 5 mm to 5-10 mm and the heat preservation zone temperature was controlled and maintained at 930 ° C. calculated from FIG.

【0028】[0028]

【発明の効果】以上説明したように、本発明においては
焼結鉱の被還元性に応じて高反応性コークスのJIS反
応性、粒径、使用量を調整して適正な熱保存帯温度に制
御することにより、燃料比を低減して効率的な高炉操業
が可能となりこの分野における効果は多大なものであ
る。
As described above, according to the present invention, the JIS reactivity, particle size, and amount of the highly reactive coke are adjusted according to the reducibility of the sinter to obtain an appropriate heat preservation zone temperature. By controlling, the fuel ratio can be reduced and efficient blast furnace operation becomes possible, and the effect in this field is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】高反応性コークスのJIS反応性、粒径別の使
用比率増加分と熱保存帯温度の低下幅との関係を示すグ
ラフ
FIG. 1 is a graph showing the relationship between the JIS reactivity of highly reactive coke, the increase in the usage ratio by particle size, and the decrease width of the heat storage zone temperature.

【図2】熱保存帯温度が1000℃で、焼結鉱のJIS
−RI(被還元性指数)が変化した場合の反応効率を示
すグラフ
[Fig. 2] JIS of sinter with heat preservation zone temperature of 1000 ° C
-A graph showing reaction efficiency when RI (reducibility index) changes

【図3】焼結鉱のJIS−RIが55%、62%の場合
における反応効率と熱保存帯温度との関係を示すグラフ
FIG. 3 is a graph showing the relationship between reaction efficiency and heat preservation zone temperature when JIS-RI of sinter is 55% and 62%.

【図4】焼結鉱のJIS−RIと最適熱保存帯温度との
関係を示すグラフ
FIG. 4 is a graph showing the relationship between JIS-RI of sintered ore and the optimum heat storage zone temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芳我 徹三 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tetsuzo Haga 1 Nishinosu, Oita City, Oita Prefecture Nippon Steel Co., Ltd. Oita Steel Works Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 焼結鉱を主体とする鉄源と通常冶金用コ
ークスとJIS反応性が30%以上で平均粒径が25m
m以下の高反応性コークスを装入して操業を行う高炉の
操業方法において、前記焼結鉱の被還元性に応じて前記
高反応性コークスの使用比率、粒径、JIS反応性の少
なくとも1つを調整することにより高炉炉内の熱保存帯
温度を制御することを特徴とする高炉の操業方法。
1. An iron source mainly composed of sinter, ordinary coke for metallurgy, JIS reactivity of 30% or more, and an average particle size of 25 m.
In a method of operating a blast furnace in which a highly reactive coke having a volume of m or less is charged and operated, at least one of the use ratio, particle size and JIS reactivity of the highly reactive coke is determined according to the reducibility of the sinter. The method for operating a blast furnace is characterized in that the temperature of the heat preservation zone in the blast furnace is controlled by adjusting one of the two.
JP32624992A 1992-11-12 1992-11-12 Operation method for blast furnace Withdrawn JPH06145730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32624992A JPH06145730A (en) 1992-11-12 1992-11-12 Operation method for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32624992A JPH06145730A (en) 1992-11-12 1992-11-12 Operation method for blast furnace

Publications (1)

Publication Number Publication Date
JPH06145730A true JPH06145730A (en) 1994-05-27

Family

ID=18185666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32624992A Withdrawn JPH06145730A (en) 1992-11-12 1992-11-12 Operation method for blast furnace

Country Status (1)

Country Link
JP (1) JPH06145730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111176A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Method for operating blast furnace while using ferrocoke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111176A (en) * 2006-10-31 2008-05-15 Jfe Steel Kk Method for operating blast furnace while using ferrocoke

Similar Documents

Publication Publication Date Title
EP2450459B1 (en) Blast-furnace operation method
JP5546675B1 (en) Blast furnace operating method and hot metal manufacturing method
EP2210959B1 (en) Process for producing molten iron
JP3731361B2 (en) Method for producing sintered ore
JP4529838B2 (en) Sinter ore and blast furnace operation method
JPH06145730A (en) Operation method for blast furnace
JP3061965B2 (en) Blast furnace operation method
JP4085493B2 (en) Manufacturing method of high quality sintered ore
JP3829516B2 (en) Blast furnace operation method
JP3014556B2 (en) Blast furnace operation method
JP3068967B2 (en) Blast furnace operation method
JPH09227958A (en) Operation of endless shifting type sintering machine and high-quality sintered ore
JPH0913107A (en) Operation of blast furnace
US20240167109A1 (en) Method for producing pig iron
JP3014549B2 (en) Blast furnace operation method
JP5693768B2 (en) Blast furnace operating method and hot metal manufacturing method
JP2000290709A (en) Method for charging raw material into blast furnace
JP2002020810A (en) Blast furnace operating method
JPH01263208A (en) Method for operating blast furnace
JP2002226904A (en) Method for operating blast furnace
KR20230159536A (en) How to operate a reduction reactor
JP2724208B2 (en) Blast furnace operation method
JPWO2003062473A1 (en) Manufacturing method of low silicon hot metal
JPH0788522B2 (en) Blast furnace operation method
JPH08260008A (en) Operation of blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201