JP3061965B2 - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JP3061965B2
JP3061965B2 JP4326250A JP32625092A JP3061965B2 JP 3061965 B2 JP3061965 B2 JP 3061965B2 JP 4326250 A JP4326250 A JP 4326250A JP 32625092 A JP32625092 A JP 32625092A JP 3061965 B2 JP3061965 B2 JP 3061965B2
Authority
JP
Japan
Prior art keywords
ore
temperature
coke
jis
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4326250A
Other languages
Japanese (ja)
Other versions
JPH06145734A (en
Inventor
誠章 内藤
義弘 井上
一良 山口
邦義 阿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4326250A priority Critical patent/JP3061965B2/en
Publication of JPH06145734A publication Critical patent/JPH06145734A/en
Application granted granted Critical
Publication of JP3061965B2 publication Critical patent/JP3061965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は焼結鉱の被還元性に応じ
て高炉炉内における熱保存帯温度を制御することによっ
て、効率的で安定した高炉の操業を行う方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently and stably operating a blast furnace by controlling the temperature of a heat storage zone in a blast furnace according to the reducibility of a sintered ore.

【0002】[0002]

【従来の技術】高炉にあっては、焼結鉱、塊鉄鉱石を主
体(70%以上)とした鉄源と通常冶金用コークスを層
状に装入し、この鉄源を還元した後、金属状態に溶融し
て銑鉄を製造している。このさい、鉄源の還元効率を高
めるためにたとえば特公昭52−43169号公報に提
案のように、前記鉄源と小塊コークス(平均粒径20m
m)をあらかじめ混合しておき、この小塊コークス混合
鉄源と通常冶金用コークスを層状に装入することにより
炉内の通気性を改善して還元性の向上を図る手段があ
る。
2. Description of the Related Art In a blast furnace, an iron source mainly composed of sintered ore and lump ore (70% or more) and coke for ordinary metallurgy are charged in layers, and the iron source is reduced. It melts to a state and produces pig iron. At this time, in order to enhance the reduction efficiency of the iron source, as described in, for example, Japanese Patent Publication No. 52-43169, the iron source and small coke (average particle size of 20 m
m) is preliminarily mixed, and the small coke mixed iron source and the coke for ordinary metallurgy are charged in layers to improve air permeability in the furnace and improve reducibility.

【0003】この通常冶金用コークス(JIS反応性が
20%程度)を使用している高炉炉内での融着帯上方の
熱保存帯温度は1000℃程度であり、通常冶金用コー
クスが炉内でC+CO2 =2COのガス化反応を開始す
る温度と同等である。一方鉄源の軟化開始温度は110
0℃程度であり、この軟化が開始すると炉内での通気性
が悪化して還元ガスの浸透が不十分になる。このため、
通常冶金用コークスのみを使用すると熱保存帯温度が1
000℃程度と高温であることから、前記ガス化反応で
生成するCOを有効に活用することができず、しかも鉄
源の軟化に伴う通気性の悪化から鉄源と還元ガスの接触
が不均等となる結果、熱保存帯部分における鉄源の間接
還元を有効に活用できず、前記のように鉄源と小塊コー
クスを混合したとしても還元効率を大幅に向上すること
は困難であった。
[0003] The temperature of the heat preservation zone above the cohesive zone in a blast furnace using this normal metallurgical coke (JIS reactivity is about 20%) is about 1000 ° C. Is equal to the temperature at which the gasification reaction of C + CO 2 = 2CO is started. On the other hand, the softening start temperature of the iron source is 110
When the softening starts, the permeability in the furnace deteriorates, and the permeation of the reducing gas becomes insufficient. For this reason,
When only metallurgical coke is used, heat storage zone temperature is 1
Since the temperature is as high as about 000 ° C., the CO generated in the gasification reaction cannot be effectively used, and the contact between the iron source and the reducing gas is uneven due to deterioration in air permeability due to softening of the iron source. As a result, the indirect reduction of the iron source in the heat storage zone cannot be effectively utilized, and it has been difficult to significantly improve the reduction efficiency even when the iron source and the small coke are mixed as described above.

【0004】これを改善するため、特開平1−3617
0号公報に提案のように、25mm以下の高反応性コー
クスを通常冶金用コークスの一部と置換し、この置換し
た高反応性コークスを鉄源または通常冶金用コークスと
混合して高炉に装入するものがある。この高反応性コー
クスは反応性の高い微非粘結炭を冶金用コークス製造炭
に一部配合するか、反応促進触媒としての石灰石、アル
カリ類を冶金用コークス製造炭に配合して製造するもの
である。そして微非粘結炭、石灰石、アルカリ類の配合
量を調節してJIS反応性を調整する。
In order to improve this, Japanese Patent Application Laid-Open No. 1-3617 has been disclosed.
As proposed in Japanese Patent Publication No. 0, a highly reactive coke of 25 mm or less is replaced with a part of a normal metallurgical coke, and the replaced highly reactive coke is mixed with an iron source or a normal metallurgical coke and mounted in a blast furnace. There is something to enter. This highly reactive coke is produced by partially blending highly reactive non-coking coal into the metallurgical coke making coal, or by mixing limestone or alkali as a reaction promoting catalyst into the metallurgical coke making coal. It is. The JIS reactivity is adjusted by adjusting the amounts of the slightly non-coking coal, limestone and alkalis.

【0005】この高反応性コークスは通常冶金用コーク
スに比して反応性が高く、しかも粒径が比較的小さいこ
とから炉内のCO2 が高反応性コークス表面に接触して
C+CO2 =2COのガス化反応がより低温から活発に
行われる。その結果炉内に生じたCOガスが鉄源と有効
に反応して鉄源の還元反応が促進される。また前記C+
CO2 =2COのガス化反応が吸熱反応(−38.8k
cal/mol)であることから、高炉炉内の塊状帯部
分に形成される熱保存帯温度を低下することができる。
このため鉄源の軟化温度との間の温度差が大きくなり、
通気性の悪化が生じることがないので、前記生成したC
Oと鉄源の接触が均等となり還元効率が向上してコーク
ス比の低減を図ることが可能となる。
[0005] This highly reactive coke usually has higher reactivity than coke for metallurgy and has a relatively small particle size, so that CO 2 in the furnace comes into contact with the surface of the highly reactive coke and C + CO 2 = 2CO The gasification reaction is carried out more actively from a lower temperature. As a result, the CO gas generated in the furnace effectively reacts with the iron source to promote the reduction reaction of the iron source. The above C +
The gasification reaction of CO 2 = 2CO is an endothermic reaction (−38.8 k
cal / mol), it is possible to lower the temperature of the heat preservation zone formed in the massive band portion in the blast furnace.
This increases the temperature difference between the iron source and the softening temperature,
Since the air permeability does not deteriorate, the generated C
The contact between O and the iron source becomes uniform, the reduction efficiency is improved, and the coke ratio can be reduced.

【0006】[0006]

【発明が解決しようとする課題】しかし、前記鉄源とし
ての焼結鉱は常に一定の原料で製造することはできず、
その時々の原料事情により品質が変化するものである。
たとえば配合する原料の成分、特にAl23 が変化す
るとこれに起因して前記焼結鉱の被還元性が変化する。
たとえばAl23 が高くなると被還元性が悪化する傾
向となり、また反対にAl23 が低くなると被還元性
が良好となる傾向にある。この焼結鉱の被還元性が変動
した際に、前記熱保存帯温度を一定に維持していると還
元反応効率が変化して炉況が不安定となるとともに、こ
れに伴って燃料比が上昇する問題を有する。また高反応
性コークスで低減できる前記熱保存帯温度は900℃程
度であり、充分なものではなかった。
However, the sintered ore as the iron source cannot always be produced from a constant raw material.
The quality changes depending on the raw material circumstances at that time.
For example, when the components of the raw materials to be blended, particularly Al 2 O 3 , change, the reducibility of the sinter changes due to the change.
For example, as Al 2 O 3 increases, the reducibility tends to deteriorate, and conversely, as Al 2 O 3 decreases, the reducibility tends to improve. When the reducibility of the sinter changes, if the temperature of the heat storage zone is kept constant, the reduction reaction efficiency changes and the furnace condition becomes unstable, and the fuel ratio accordingly increases. Has the problem of rising. Further, the temperature of the heat preservation zone which can be reduced by high-reactivity coke was about 900 ° C., which was not sufficient.

【0007】本発明は前記熱保存帯温度を750℃程度
まで低下することを可能とし、さらにこの熱保存帯温度
を焼結鉱の被還元性に応じて制御することにより炉全体
の還元反応を促進させて、高い反応効率下で低燃料比で
安定した操業を行うことを課題とするものである。
The present invention makes it possible to lower the temperature of the heat storage zone to about 750 ° C., and to control the temperature of the heat storage zone according to the reducibility of the sinter to reduce the reduction reaction of the entire furnace. It is an object of the present invention to promote stable operation at a low fuel ratio under high reaction efficiency.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するものであり、その手段は焼結鉱、結晶水3%以上を
有する塊鉄鉱石を主体とする鉄鉱石、通常冶金用コーク
スおよびJIS反応性が30%以上で平均粒径25mm
以下の高反応性コークスを装入して操業を行う高炉の操
業方法において、前記焼結鉱の被還元性に応じて、前記
高反応性コークスの使用比率、JIS反応性、粒径また
前記鉄鉱石の使用比率、含有結晶水の少なくとも1
つを調整することにより高炉炉内の熱保存帯温度を制御
するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and includes a sintered ore, an iron ore mainly composed of lump ore having a crystallization water of 3% or more, a coke for ordinary metallurgy and JIS reactivity is 30% or more and average particle size is 25mm
In the blast furnace operating method of operating by charging the following highly reactive coke, in accordance with the reducibility of the sinter, the usage ratio of the highly reactive coke, JIS reactivity, particle size or
Is the usage ratio of the lump iron ore, and at least 1
The temperature of the heat preservation zone in the blast furnace is controlled by adjusting the temperature.

【0009】[0009]

【作用】本発明で使用する高反応性コークスはJIS反
応性が30%以上(JIS K2151−1977の反
応性試験方法で測定したときの値)で平均粒径が25m
m以下が必要である。これは先にあげた特開平1−36
710号公報に開示されているように、JIS反応性が
30%未満や平均粒径が25mmを越えるものでは熱保
存帯温度を低下する効果が見られないことによる。
The highly reactive coke used in the present invention has a JIS reactivity of 30% or more (measured by the reactivity test method of JIS K2151-1977) and an average particle size of 25 m.
m or less is required. This is disclosed in Japanese Patent Application Laid-Open No. 1-36.
As disclosed in Japanese Patent Publication No. 710, when the JIS reactivity is less than 30% or the average particle size exceeds 25 mm, the effect of lowering the heat storage zone temperature is not observed.

【0010】この高反応性コークスで低下可能な熱保存
帯温度はせいぜい900℃であることから、本発明者等
はさらに熱保存帯温度を低下するため種々実験検討した
結果、高反応性コークスに加えて3%以上の結晶水を含
有した塊鉄鉱石を装入することにより、上記熱保存帯温
度を750℃程度まで低減することが可能であることを
知見した。塊鉄鉱石の結晶水含有量を3%以上としたの
は、高炉に装入可能な塊鉄鉱石量は多くとも鉄源全体の
30重量%程度であることから、結晶水含有量を3%未
満とすると熱保存帯温度を低下する効果が少ないものと
なる。
Since the heat storage zone temperature which can be lowered by this highly reactive coke is at most 900 ° C., the present inventors conducted various experiments and studies to further lower the heat storage zone temperature. In addition, it has been found that by charging lump ore containing 3% or more of crystallization water, it is possible to reduce the heat storage zone temperature to about 750 ° C. The reason why the crystallization water content of lump iron ore is set to 3% or more is that the amount of lump iron ore that can be charged into a blast furnace is at most about 30% by weight of the entire iron source. If it is less than the above, the effect of lowering the heat storage zone temperature will be small.

【0011】次に、熱保存帯温度の制御方法について述
べる。なおこの熱保存帯温度を測定する方法としては、
高炉炉壁からゾンデを挿入して測定する方法が一般的で
あるがこれに限るものではない。図1は高反応性コーク
スの平均粒径、JIS反応性、使用比率増加分(通常冶
金用コークスとの使用比率)と熱保存帯温度の低下幅と
の関係を示したものであるが、これからわかるように、
高反応性コークスの使用比率を増加、細粒化、もしくは
JIS反応性を向上するに従って前記熱保存帯の温度低
下幅は大きくなる。言い換えれば、高反応性コークスの
使用比率、粒径、JIS反応性を調整することにより、
前記熱保存帯温度を制御することが可能であることが判
る。
Next, a method for controlling the temperature of the heat preservation zone will be described. As a method of measuring the heat storage zone temperature,
A method of measuring by inserting a sonde from the blast furnace wall is generally used, but the method is not limited to this. Fig. 1 shows the relationship between the average particle size of the highly reactive coke, the JIS reactivity, the increase in the usage ratio (usually the usage ratio with coke for metallurgy), and the decrease in the heat storage zone temperature. As you can see,
As the use ratio of the highly reactive coke is increased, the grain size is reduced, or the JIS reactivity is improved, the temperature reduction range of the heat storage zone increases. In other words, by adjusting the use ratio, particle size, and JIS reactivity of the highly reactive coke,
It turns out that it is possible to control the heat storage zone temperature.

【0012】図2は通常冶金用コークスの20重量%を
JIS反応性70、平均粒度10mmの高反応性コーク
スに置換して高炉操業を行っている際における3%以上
の結晶水を含有した塊鉄鉱石の使用比率増加分、含有結
晶水量と熱保存帯温度の低下幅との関係を示したもので
ある。これから判るように、塊鉄鉱石の使用量が増加す
ると熱保存帯温度の低下幅は増大し、含有結晶水量の多
い塊鉄鉱石を使用すると前記同様に熱保存帯温度の低下
幅は増大する。つまり、塊鉄鉱石の使用量を調整、含有
結晶水量の異なる塊鉄鉱石を使い分けることにより前記
熱保存帯温度を制御することが可能となる。
FIG. 2 shows a lump containing 3% or more of water of crystallization when operating a blast furnace by replacing 20% by weight of normal metallurgical coke with highly reactive coke having a JIS reactivity of 70 and an average particle size of 10 mm. This graph shows the relationship between the increase in the use ratio of iron ore, the amount of water of crystallization contained, and the decrease in the heat storage zone temperature. As can be seen from the figure, when the amount of lump ore used increases, the decrease in the heat storage zone temperature increases, and when lump ore containing a large amount of water of crystallization is used, the decrease in the heat storage zone temperature increases as described above. In other words, it is possible to control the heat storage zone temperature by adjusting the amount of lump ore used and using lump ore having different amounts of water of crystallization.

【0013】さらに、焼結鉱の被還元性(以下単にJI
S−RIと称する)と熱保存帯温度との関係について述
べる。図3は熱保存帯温度が1000℃の場合における
焼結鉱のJIS−RIと還元反応効率の関係を示す。こ
の図から焼結鉱のJIS−RIが低下すると還元反応効
率が急激に低下することが判る。
Further, the reducibility of the sintered ore (hereinafter simply referred to as JI
(Referred to as S-RI) and the heat storage zone temperature will be described. FIG. 3 shows the relationship between the JIS-RI of the sintered ore and the reduction reaction efficiency when the heat storage zone temperature is 1000 ° C. From this figure, it can be seen that when the JIS-RI of the sinter decreases, the reduction reaction efficiency sharply decreases.

【0014】一方、還元反応効率向上には熱保存帯の温
度を極力低くすることが望ましいが、シャフト上部の温
度が低下するため適正な熱保存帯温度の設定には高炉炉
頂から熱保存帯域までの焼結鉱の低温還元性が重要であ
る。そこでJIS−RIが55%、62%の各焼結鉱の
適正熱保存帯温度を求めるため、本発明者は実公平1−
27038号公報で提案の高炉内反応シミュレータを用
いて試験を行った。これは上部より多孔質塊鉄鉱石を充
填するとともに下部より還元ガスを導通して、該還元ガ
スと多孔質塊鉄鉱石を向流接触する炉芯管と該炉芯管の
一部を包囲して前記還元ガス下流側方向に移動自在に設
けた加熱器を有する装置である。
On the other hand, it is desirable to lower the temperature of the heat preservation zone as much as possible in order to improve the reduction reaction efficiency. The low-temperature reducibility of the sintered ore up to is important. Therefore, in order to determine the appropriate heat preservation zone temperature for each of the sinters having JIS-RI of 55% and 62%,
The test was performed using a blast furnace reaction simulator proposed in Japanese Patent No. 27038. This fills the porous lump ore from the upper part and conducts the reducing gas from the lower part to surround the furnace core tube and a part of the furnace core tube in countercurrent contact between the reducing gas and the porous lump ore. And a heater movably provided in the downstream direction of the reducing gas.

【0015】この結果、図4に示すように反応効率の最
も高い熱保存帯温度はJIS−RIが62%の焼結鉱の
場合には880℃であるが、JIS−RIが55%の焼
結鉱の場合には930℃であった。図5は焼結鉱のJI
S−RIと反応効率が最も良好となる適正熱保存帯温度
との関係を調査したものである。この図から判るよう
に、適正熱保存帯温度は焼結鉱のJIS−RIが大きく
なるに従って低下する。なおこの場合低下幅は焼結鉱の
全気孔率εにより多少異なる。
As a result, as shown in FIG. 4, the temperature of the thermal storage zone having the highest reaction efficiency is 880 ° C. in the case of a sintered ore having a JIS-RI of 62%, while the temperature of the sinter having a JIS-RI of 55% is 880 ° C. It was 930 ° C. in the case of consolidation. Figure 5 shows the sinter JI
It is an investigation of the relationship between S-RI and the appropriate heat storage zone temperature at which the reaction efficiency is the best. As can be seen from this figure, the appropriate heat storage zone temperature decreases as the JIS-RI of the sintered ore increases. In this case, the width of the decrease is slightly different depending on the total porosity ε of the sintered ore.

【0016】このように、本発明は焼結鉱の被還元性に
応じて炉内に装入する高反応性コークスの使用比率、粒
径、JIS反応性、含結晶水塊鉄鉱石の使用比率、含有
結晶水の異なる銘柄の塊鉄鉱石の少なくとも1つを調整
することにより炉内の融着帯上方に形成される熱保存帯
温度を最大の還元反応効率を享受できる適正値に制御す
るものであるが、前記熱保存帯温度の制御幅が小さい場
合には前記高反応性コークスの使用比率、粒径、JIS
反応性、前記含結晶水塊鉄鉱石の使用比率、含有結晶水
の異なる銘柄の塊鉄鉱石の調整手段の何れか1つを単独
に調整し、制御幅が大きい場合には前記調整手段を組み
合わせて複数調整することが好ましい。
As described above, according to the present invention, the proportion of the highly reactive coke charged into the furnace according to the reducibility of the sintered ore, the particle size, the JIS reactivity, and the proportion of the crystallized water lump iron ore are used. By controlling at least one of lump iron ores of different brands containing water of crystallization to control the temperature of a heat preservation zone formed above a cohesive zone in a furnace to an appropriate value capable of enjoying the maximum reduction reaction efficiency. However, when the control range of the heat storage zone temperature is small, the use ratio, particle size, and JIS of the highly reactive coke
Reactivity, the use ratio of the crystallized water lump ore, adjust any one of the lump ore adjusting means of different brands of the contained crystallization water alone, and when the control width is large, combine the adjusting means It is preferable to make a plurality of adjustments.

【0017】また、含結晶水塊鉄鉱石は炉内において熱
破壊が生じて炉内通気性が変動し易いため、まず高反応
性コークスで熱保存帯温度を制御し、不足分を含結晶水
塊鉄鉱石で制御することが好ましい。この場合高反応性
コークスの使用比率を調整することが粒径、JIS反応
性を調整するのに比して熱保存帯温度の制御幅が最も大
きく好ましいが、この調整に伴って通常冶金用コークス
または焼結鉱の量を調整することが必要となり煩雑であ
る。一方、高反応性コークスの粒径を調整することが上
記煩雑化を伴うことがなく好ましいが、細粒化し過ぎる
と高炉ガスに伴って飛散して歩留りが悪化したり、炉内
塊状体部分で目詰まりの原因となり通気性が悪化する場
合がある。さらに高反応性コークスのJIS反応性を調
整すると、炉内の通気性が変化せず、通常冶金用コーク
スまたは焼結鉱の量を調整する必要がなく高炉としては
最も好ましいが、所望のJIS反応性の高反応性コーク
スの造り込みに熟練を有する。
[0017] Further, since the crystallized water lump iron ore undergoes thermal destruction in the furnace and the air permeability in the furnace tends to fluctuate, first, the temperature of the heat preservation zone is controlled by high-reactivity coke, and the shortage is added to the crystallized water. It is preferable to control with lump ore. In this case, adjusting the usage ratio of the highly reactive coke has the greatest control width of the heat storage zone temperature as compared with adjusting the particle size and the JIS reactivity, but this adjustment usually involves coke for metallurgy. Alternatively, it is necessary to adjust the amount of sintered ore, which is complicated. On the other hand, it is preferable to adjust the particle size of the highly reactive coke without accompanying the above-described complication, but if the particle size is too small, the yield is deteriorated due to scattering with the blast furnace gas, or in the furnace mass part, This may cause clogging and deteriorate air permeability. Further, if the JIS reactivity of the highly reactive coke is adjusted, the permeability in the furnace does not change, and it is usually unnecessary to adjust the amount of coke or sinter for metallurgy. Has the skill to build highly reactive coke.

【0018】含結晶水塊鉄鉱石においては、結晶水の含
有量が高い塊鉄鉱石は熱保存帯温度を大きく低下させる
ことができるので好ましいが、そのぶん熱破壊が多く発
生して炉内通気性を悪くすることがある。これに対して
塊鉄鉱石の使用比率を調整することが炉内通気性を大き
く変動させることがないので好ましいが熱保存帯の温度
制御幅が小さい。このように、各調整手段には各々長
所、短所があるためにその時々の高炉操業状態に応じて
前記各調整手段を使い分けることが必要である。
In the case of water-containing lump iron ore, lump ore having a high content of water of crystallization is preferable because the heat storage zone temperature can be greatly reduced. May worsen sex. On the other hand, it is preferable to adjust the usage ratio of lump iron ore since the permeability in the furnace is not largely changed, but the temperature control width of the heat preservation zone is small. As described above, since each adjusting means has its advantages and disadvantages, it is necessary to use the adjusting means properly according to the operating state of the blast furnace at each time.

【0019】[0019]

【実施例】以下本発明の実施例を具体的に説明する。表
1に高反応性コークスと含結晶水塊鉄鉱石を使用し、焼
結鉱のJIS−RIに応じて熱保存帯温度を制御して高
炉を操業した実施例を示す。ここでA塊鉄鉱石は結晶水
を8.1%含有した塊鉄鉱石でローブリバー鉱であり、
B塊鉄鉱石は結晶水を3%含有した塊鉄鉱石でゴア鉱で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be specifically described below. Table 1 shows an example in which a blast furnace was operated using highly reactive coke and crystallized water lump iron ore, and controlling the heat storage zone temperature in accordance with JIS-RI of the sintered ore. Here, lump A ore is lump ore containing 8.1% of water of crystallization and is lobe river ore.
Lump ore B is lump ore containing 3% of water of crystallization and is gore ore.

【0020】[0020]

【表1】 [Table 1]

【0021】対象の高炉は内容積3000m3 の中型高
炉であり、装入原料のO/C(鉱石量/コークス量)が
4.2で、焼結鉱、塊鉄鉱石を主体とした鉄源(焼結
鉱、塊鉄鉱石、ペレット、優良塊鉱石(ハマスレー鉱
石、ニューマン鉱石等)から構成)と、通常冶金用コー
クス(JIS反応性20%、平均粒度50mm)を層状
に装入する。さらに羽口前フレーム温度を2180℃
(熱風温度1200℃、送風湿分25g/Nm3 −ai
r、酸素富化量0.013Nm3 /Nm3 −air、微
粉炭吹込み量100g/Nm3 −air)を維持しなが
ら操業を行っているものである。
The target blast furnace is a medium-sized blast furnace having an inner volume of 3000 m 3 , the O / C (ore amount / coke amount) of the charged material is 4.2, and an iron source mainly composed of sintered ore and lump iron ore. (Consisting of sintered ore, lump iron ore, pellets, excellent lump ore (Hamasley ore, Newman ore, etc.)) and coke for ordinary metallurgy (JIS reactivity 20%, average particle size 50 mm) are charged in layers. In addition, the temperature of the tuyere front frame is 2180 ° C.
(Hot air temperature 1200 ° C, blast moisture 25g / Nm 3 -ai
r, oxygen enrichment amount 0.013 Nm 3 / Nm 3 -air, pulverized coal injection amount 100 g / Nm 3 -air).

【0022】実施例1はJIS反応性が70%、粒径5
〜10mmの高反応性コークスの20%を通常冶金用コ
ークスに混合して操業していた状態(この状態での熱保
存帯温度は890℃)において、前記焼結鉱のJIS−
RIが60%から62%に変化した場合である。この焼
結鉱のJIS−RIが上昇すると該焼結鉱の最適還元反
応還元効率を示す熱保存帯温度が低温側に移動しても、
そのまま操業を行った結果、炉況が不安定(調整前)に
なったので、調整後に示すようにA塊鉄鉱石の使用比率
を増大して熱保存帯温度を制御した例である。
Example 1 has a JIS reactivity of 70% and a particle size of 5
In a state where 20% of highly reactive coke of 10 to 10 mm is mixed with ordinary metallurgical coke and operated (the heat storage zone temperature in this state is 890 ° C), the JIS-
This is the case where RI changes from 60% to 62%. When the JIS-RI of this sinter increases, even if the heat storage zone temperature indicating the optimal reduction reaction and reduction efficiency of the sinter moves to a lower temperature side,
As a result of the operation as it was, the furnace condition became unstable (before adjustment), and thus, as shown after the adjustment, the use ratio of lump iron ore A was increased to control the heat storage zone temperature.

【0023】これは、先ず焼結鉱のJIS−RIが62
%における最適熱保存帯温度は図5から880℃である
ことから、最適熱保存帯温度は10℃(890℃−88
0℃)低下している。これを基にA塊鉄鉱石の使用比率
増加分を図2に従って算定すると5%となる。このため
A塊鉄鉱石の使用比率を18%(13%+5%)にし、
前記優良塊鉄鉱石を5%減じて2%とした。これによ
り、熱保存帯温度を上記算定の880℃に制御して操業
を行った結果、炉況が安定し燃料比は484kg/t−
pigとなった。
This is because the JIS-RI of the sintered ore is 62
5 is 880 ° C. from FIG. 5, the optimal heat storage zone temperature is 10 ° C. (890 ° C.-88 ° C.).
0 ° C). Based on this, the use ratio increase of lump iron ore A is calculated according to FIG. 2 to be 5%. For this reason, the use ratio of lump iron ore A was set to 18% (13% + 5%),
The excellent lump iron ore was reduced by 5% to 2%. As a result, the operation was performed while controlling the temperature of the heat preservation zone to 880 ° C. as calculated above, and as a result, the reactor condition was stabilized and the fuel ratio was 484 kg / t-.
pig.

【0024】実施例2は焼結鉱のJIS−RIが55%
から68%に変化しても、熱保存帯温度を制御すること
なく操業を行った結果、炉況が不安定となり燃料比が4
84kg/t−pigに上昇した(調整前)ので、調整
後に示したように高反応性コークスの使用比率を調整し
て燃料比の低減を図った場合の例であって、このJIS
−RIの変化前の最適熱保存帯温度は図5から920℃
で、変化後の最適熱保存帯温度は850℃である。
In Example 2, the JIS-RI of the sintered ore was 55%.
Operating without controlling the heat storage zone temperature, the furnace condition became unstable and the fuel ratio was 4%.
Since it increased to 84 kg / t-pig (before adjustment), this is an example in which the fuel ratio is reduced by adjusting the usage ratio of the highly reactive coke as shown after the adjustment.
-The optimal thermal storage zone temperature before the change of RI is 920 ° C from FIG.
The optimum thermal storage zone temperature after the change is 850 ° C.

【0025】前記焼結鉱のJIS−RIの変化により最
適熱保存帯温度が70℃低下し、使用している高反応性
コークスはJIS反応性が70%、粒径が5〜10mm
であることから、図1により該高反応性コークスの使用
比率の増加分を算定すると15%となる。このため高反
応性コークスの使用比率を通常冶金用コークスの25%
(10%+15%)に調整して熱保存帯温度を上記最適
熱保存帯温度の920℃に制御維持した結果、燃料比を
473kg/t−pigと大幅に低減することができた
例である。
Due to the change in JIS-RI of the sintered ore, the optimum heat storage zone temperature is reduced by 70 ° C., and the highly reactive coke used has a JIS reactivity of 70% and a particle size of 5 to 10 mm.
Therefore, the increase in the use ratio of the highly reactive coke is calculated from FIG. 1 to be 15%. For this reason, the usage ratio of highly reactive coke is 25% of that of ordinary metallurgical coke.
This is an example in which the fuel ratio was greatly reduced to 473 kg / t-pig as a result of adjusting the temperature to (10% + 15%) and controlling and maintaining the heat storage zone temperature at 920 ° C., which is the optimum heat storage zone temperature. .

【0026】実施例3は焼結鉱のJIS−RIが62%
から55%に変化した際に、高反応性コークスのJIS
反応性の異なるものを使用して熱保存帯温度を制御した
例である。
In Example 3, the JIS-RI of the sintered ore was 62%.
JIS of high reactivity coke when it changes from 55% to 55%
This is an example in which the heat preservation zone temperature is controlled by using different reactivities.

【0027】実施例4は焼結鉱のJIS−RIが62%
から65%に変化した際に、高反応性コークスの粒径を
調整して熱保存帯温度を制御した例である。
In Example 4, the JIS-RI of the sintered ore was 62%.
In this example, the particle size of the highly reactive coke was adjusted to control the temperature of the heat preservation zone when the temperature changed from 65% to 65%.

【0028】実施例5は焼結鉱のJIS−RIが60%
から63%に変化した際に、含結晶水塊鉄鉱石の銘柄を
変え(A塊鉄鉱石→B塊鉄鉱石)て熱保存帯温度を制御
した例である。
In Example 5, the JIS-RI of the sintered ore was 60%.
This is an example in which the heat storage zone temperature is controlled by changing the brand of the crystal-containing water lump ore when changing from lump to 63%.

【0029】実施例6は焼結鉱のJIS−RIが52%
から75%に変化した際に、高反応性コークスのJIS
反応性、粒径、使用比率、含結晶水塊鉄鉱石の銘柄、使
用比率の全てを調整して熱保存帯温度を制御した例であ
る。またこれに加えてCaCO3 を含有する原料、例え
ば非焼成塊成鉱を使用すると、炉内でのCaCO3 の分
解吸熱反応により、熱保存帯温度をさらに低下すること
ができ好ましい。
In Example 6, the JIS-RI of the sintered ore was 52%.
JIS of highly reactive coke when it changes from 75% to 75%
This is an example in which the thermal preservation zone temperature is controlled by adjusting all of the reactivity, particle size, use ratio, brand of crystal-containing water lump iron ore, and use ratio. In addition, it is preferable to use a raw material containing CaCO 3 , for example, a non-calcined agglomerate, because the thermal endothermic reaction of CaCO 3 in the furnace can further lower the heat storage zone temperature.

【0030】[0030]

【発明の効果】以上説明したように、本発明においては
焼結鉱の被還元性が変動してもこれに応じて高反応性コ
ークスのJIS反応性、粒径、使用比率、塊鉄鉱石の含
有結晶水、使用比率を調整して適正な熱保存帯温度に制
御することにより、安定した炉況でかつ燃料比を低減し
て効率的な高炉操業が可能となり、この分野における効
果は多大なものである。
As described above, according to the present invention, even if the reducibility of the sintered ore fluctuates, the JIS reactivity, particle size, usage ratio, and lump iron ore of the highly reactive coke are correspondingly changed. By controlling the contained water of crystallization and the usage ratio to an appropriate heat storage zone temperature, it is possible to operate the blast furnace efficiently with a stable furnace condition and a reduced fuel ratio, and the effect in this field is enormous. Things.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高反応性コークスのJIS反応性、粒径別の使
用比率増加分と熱保存帯温度の低下幅との関係を示すグ
ラフ
FIG. 1 is a graph showing the relationship between the JIS reactivity of highly reactive coke, the increase in the usage ratio by particle size, and the decrease in the heat storage zone temperature.

【図2】A、B塊鉄鉱石別の使用比率増加分と熱保存帯
温度の低下幅との関係を示すグラフ
FIG. 2 is a graph showing the relationship between the increase in the usage ratio for each of the iron ore blocks A and B and the decrease in the heat storage zone temperature.

【図3】熱保存帯温度が1000℃の状態で、焼結鉱の
JIS−RI(被還元性指数)が変化した場合の還元反
応効率を示すグラフ
FIG. 3 is a graph showing the reduction reaction efficiency when the JIS-RI (reducible index) of the sinter changes when the heat storage zone temperature is 1000 ° C.

【図4】焼結鉱のJIS−RIが55%、62%の場合
における反応効率と熱保存帯温度との関係を示すグラフ
FIG. 4 is a graph showing the relationship between the reaction efficiency and the heat storage zone temperature when the JIS-RI of the sintered ore is 55% or 62%.

【図5】焼結鉱のJIS−RIと最適熱保存帯温度との
関係を示すグラフ
FIG. 5 is a graph showing a relationship between JIS-RI of a sintered ore and an optimum heat storage zone temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿南 邦義 大分県大分市大字西ノ洲1番地 新日本 製鐵株式会社 大分製鐵所内 (56)参考文献 特開 平2−200711(JP,A) 特開 平2−200712(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21B 5/00 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Kuniyoshi Anan, Oita, Oita, Oita, 1st section, Nishinoshima, Nippon Steel Corporation Oita Works (56) References JP-A-2-200711 (JP, A) JP Hei 2-200712 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C21B 5/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 焼結鉱、結晶水3%以上を有する塊鉄鉱
石を主体とする鉄鉱石、通常冶金用コークスおよびJI
S反応性が30%以上で平均粒径25mm以下の高反応
性コークスを装入して操業を行う高炉の操業方法におい
て、前記焼結鉱の被還元性に応じて、前記高反応性コー
クスの使用比率、JIS反応性、粒径または前記鉄鉱
石の使用比率、含有結晶水の少なくとも1つを調整する
ことにより高炉炉内の熱保存帯温度を制御することを特
徴とする高炉操業方法。
1. Sinter ore, iron ore mainly composed of lump ore having 3% or more of water of crystallization, usually coke for metallurgy and JI
In a blast furnace operating method in which a highly reactive coke having an S reactivity of 30% or more and an average particle diameter of 25 mm or less is charged, the blast furnace is operated in accordance with the reducibility of the sinter. A method for operating a blast furnace, comprising controlling at least one of a usage ratio, JIS reactivity, a particle size or a usage ratio of the lump ore, and a contained crystal water to control a heat preservation zone temperature in a blast furnace.
JP4326250A 1992-11-12 1992-11-12 Blast furnace operation method Expired - Fee Related JP3061965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4326250A JP3061965B2 (en) 1992-11-12 1992-11-12 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4326250A JP3061965B2 (en) 1992-11-12 1992-11-12 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH06145734A JPH06145734A (en) 1994-05-27
JP3061965B2 true JP3061965B2 (en) 2000-07-10

Family

ID=18185676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4326250A Expired - Fee Related JP3061965B2 (en) 1992-11-12 1992-11-12 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3061965B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997712B2 (en) * 2005-04-07 2012-08-08 住友金属工業株式会社 Blast furnace operation method
JP6119700B2 (en) * 2014-08-29 2017-04-26 Jfeスチール株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
JPH06145734A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
EP2450459B1 (en) Blast-furnace operation method
EP1160336A1 (en) Method of and apparatus for manufacturing metallic iron
EP2930249B1 (en) Method for operating blast furnace and method for producing molten pig iron
RU2442826C2 (en) Method and device for production of granulated metallic iron
KR100571063B1 (en) Carbon containing nonfired agglomerated ore for blast furnace and production method thereof
JP3731361B2 (en) Method for producing sintered ore
JP3061965B2 (en) Blast furnace operation method
JP4984488B2 (en) Method for producing semi-reduced sintered ore
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP2008088476A (en) Method for operating blast furnace
JP4529838B2 (en) Sinter ore and blast furnace operation method
JPH0913107A (en) Operation of blast furnace
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
JP3068967B2 (en) Blast furnace operation method
JP3863104B2 (en) Blast furnace operation method
JP3014556B2 (en) Blast furnace operation method
JPH0812975A (en) Iron ore-loaded formed coke, production of formed coke, and operation of blast furnace
JP4078285B2 (en) Blast furnace operation method
JP4085493B2 (en) Manufacturing method of high quality sintered ore
JP5012138B2 (en) Blast furnace operation method
JP3829516B2 (en) Blast furnace operation method
JPH06145730A (en) Operation method for blast furnace
JP3014549B2 (en) Blast furnace operation method
JP2000290709A (en) Method for charging raw material into blast furnace
JPH034609B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000328

LAPS Cancellation because of no payment of annual fees