JP2008088476A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2008088476A
JP2008088476A JP2006268414A JP2006268414A JP2008088476A JP 2008088476 A JP2008088476 A JP 2008088476A JP 2006268414 A JP2006268414 A JP 2006268414A JP 2006268414 A JP2006268414 A JP 2006268414A JP 2008088476 A JP2008088476 A JP 2008088476A
Authority
JP
Japan
Prior art keywords
coke
low
reactivity
strength
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006268414A
Other languages
Japanese (ja)
Other versions
JP4764304B2 (en
Inventor
Akito Kasai
昭人 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006268414A priority Critical patent/JP4764304B2/en
Publication of JP2008088476A publication Critical patent/JP2008088476A/en
Application granted granted Critical
Publication of JP4764304B2 publication Critical patent/JP4764304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace, which can further improve both air permeability in the blast furnace and reduction efficiency for ore compared to those in a conventional method, by integrally reviewing the technology of producing cokes and using them in the blast furnace. <P>SOLUTION: This technology of producing the cokes comprises the steps of: separately producing high-reactivity low-strength cokes (A) and low-reactivity high-strength cokes (B) in a coke oven (1); preparing small grains (A<SB>2</SB>) of the high-reactivity low-strength cokes by regulating the particle size of the high-reactivity low-strength cokes (A); and preparing large lumps (B<SB>1</SB>) of the low-reactivity high-strength cokes and small grains (B<SB>2</SB>) of the low-reactivity high-strength cokes by regulating the particle size of the low-reactivity high-strength cokes (B). The operation method comprises the steps of: preparing a mixture (D) by mixing the small grains (A<SB>2</SB>) of the high-reactivity low-strength cokes and the small grains (B<SB>2</SB>) of the low-reactivity high-strength cokes with ores (C); and alternately charging the mixture (D) and the large lump (B<SB>1</SB>) of the low-reactivity high-strength cokes into the blast furnace (6). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コークス炉で製造したコークスを還元材として用いて溶銑を製造する高炉の操業方法に関する。   The present invention relates to a method for operating a blast furnace in which hot metal is produced using coke produced in a coke oven as a reducing material.

近年、高炉用のコークスとして、高炉内通気性および鉱石の還元効率をともに向上させて高炉操業の改善を図るべく、高強度でかつ高反応性を兼備したものが望まれている。しかしながら、一般に室炉式コークス炉(以下、単に「コークス炉」という。)で製造したコークスの性状は、強度と反応性との間に負の相関関係があり、強度と反応性の両者を同時に高めることは困難である。すなわち、コークス原料である配合炭の粘結炭比率を増加するとコークスの強度は上昇するが、反応性が低下するとともに、高価な粘結炭の使用割合が増えるためコストアップとなる。逆に、非微粘結炭比率を増加すると反応性が上昇するとともに、安価な非微粘結炭の使用割合が増えるためコストダウンとなるが、強度が低下する。   In recent years, coke for blast furnaces having high strength and high reactivity has been desired in order to improve both blast furnace air permeability and ore reduction efficiency to improve blast furnace operation. However, in general, the properties of coke produced in a chamber-type coke oven (hereinafter simply referred to as “coke oven”) have a negative correlation between strength and reactivity. It is difficult to increase. That is, when the caking coal ratio of the blended coal, which is a coke raw material, is increased, the strength of the coke is increased, but the reactivity is lowered, and the use ratio of expensive caking coal is increased, resulting in an increase in cost. On the contrary, when the non-slightly caking coal ratio is increased, the reactivity is increased, and the use ratio of inexpensive non-slightly caking coal is increased, so that the cost is reduced, but the strength is lowered.

一方、コークス炉で製造したコークスを所定の粒度ごとに篩い分け、各粒度のコークスを高炉の異なる場所に装入することにより、高炉内の通気性や鉱石の還元性を改善し、高炉操業を改善しようとする方法が多数開示されている(例えば、特許文献1〜8参照)。しかしながら、これらの従来技術では、コークス炉で一定の配合条件のコークス原料(配合炭)を用いて製造したコークスを単に篩い分けしただけのものを用いているので、粒度は異なっても強度および反応性自体には変化がないため、必ずしも高炉の各装入場所それぞれに最適な性状のコークスが装入されたものとならず、上記改善効果が十分に得られない問題があった。
特開平7―286203号公報 特許第2752502号公報 特許第2769835号公報 特開昭57−174403号公報 特開2004−307928号公報 特開平2001−279307号公報 特許第3485787号公報 特開平6−264118号公報
On the other hand, the coke produced in the coke oven is sieved for each predetermined particle size, and the coke of each particle size is charged into different locations in the blast furnace, thereby improving the air permeability and ore reducibility in the blast furnace and improving the blast furnace operation. Many methods to be improved are disclosed (for example, refer to Patent Documents 1 to 8). However, in these conventional technologies, since coke produced by using a coke raw material (mixed coal) with a certain blending condition in a coke oven is simply sieved, strength and reaction are different even if the particle size is different. Since the property itself does not change, there is a problem that the coke having the optimum property is not always charged in each charging place of the blast furnace, and the above improvement effect cannot be obtained sufficiently.
JP-A-7-286203 Japanese Patent No. 2752502 Japanese Patent No. 2769835 JP 57-174403 A JP 2004-307928 A Japanese Patent Laid-Open No. 2001-279307 Japanese Patent No. 3485787 JP-A-6-264118

本発明は、かかる問題に鑑みてなされたもので、コークスの製造技術と高炉での使用技術とを一体的に見直すことにより、高炉内通気性および鉱石の還元効率をともに、従来法よりさらに向上しうる高炉操業方法を提供することを目的とする。   The present invention has been made in view of such problems. By reviewing the coke production technology and the technology used in the blast furnace, both the air permeability in the blast furnace and the reduction efficiency of the ore are further improved over the conventional method. It aims to provide a possible blast furnace operation method.

請求項1に記載の発明は、コークス炉で製造したコークスを還元材として用いて溶銑を製造する高炉の操業方法であって、下記〔1〕〜〔5〕の工程を備えたことを特徴とする高炉操業方法である。
〔1〕前記コークス炉にて高反応性低強度コークス(A)と低反応性高強度コークス(B)とを造り分けるコークス製造工程
〔2〕前記高反応性低強度コークス(A)を整粒して小粒高反応性低強度コークス(A)を調製する第1整粒工程
〔3〕前記低反応性高強度コークス(B)を整粒して大塊低反応性高強度コークス(B)と小粒低反応性高強度コークス(B)とを調製する第2整粒工程
〔4〕前記小粒高反応性低強度コークス(A)および前記小粒低反応性高強度コークス(B)を鉱石類(C)に混入して混合物(D)とする混合工程
〔5〕この混合物(D)と前記大塊低反応性高強度コークス(B)とを交互に前記高炉に装入する装入工程。
The invention described in claim 1 is a blast furnace operating method for producing hot metal using coke produced in a coke oven as a reducing material, comprising the following steps [1] to [5]: It is a blast furnace operation method.
[1] Coke production process for producing high-reactivity low-strength coke (A) and low-reactivity high-strength coke (B) in the coke oven [2] Particle size adjustment of the high-reactivity low-strength coke (A) First sizing step of preparing a small-grain high-reactivity low-strength coke (A 2 ) [3] The low-reactivity high-strength coke (B) is sized to provide a large mass low-reactivity high-strength coke (B 1 ) And small grain low reactivity high strength coke (B 2 ) [4] The small grain high reactivity low strength coke (A 2 ) and the small grain low reactivity high strength coke (B 2 ) Mixing step to mix in ore (C) to form mixture (D) [5] This mixture (D) and the large mass low-reactivity high-strength coke (B 1 ) are alternately charged into the blast furnace. The charging process.

請求項2に記載の発明は、前記高反応性低強度コークス(A)の反応性指数CRIを30超とするとともに、前記低反応性高強度コークス(B)のCRIとの差を5以上とし、かつ、前記低反応性高強度コークス(B)のドラム強度指数DI150 15と前記高反応性低強度コークス(A)のDI150 15との差を0.5以上とする請求項1に記載の高炉操業方法である。 The invention according to claim 2 is characterized in that the reactivity index CRI of the high reactivity low strength coke (A) exceeds 30 and the difference from the CRI of the low reactivity high strength coke (B) is 5 or more. and wherein said in claim 1, a difference of 0.5 or more and DI 0.99 15 low reactivity high strength coke (B) of the drum strength index DI 0.99 15 and the high reactivity low strength coke (a) This is the blast furnace operation method.

請求項3に記載の発明は、下記式1を満たすように、前記高炉への前記小粒高反応性低強度コークス(A)の装入量WA2[kg/t−pig]を調整する請求項1または2に記載の高炉操業方法である。
式1 WA2×%C/100≦CSL+C−WB2×%C/100−WPC×(1−%AshPC/100)×(1−%BRPC/100)
ここに、%Cは前記高反応性低強度コークス(A)のC含有率[質量%]、CSLは前記高炉におけるソリューションロスC量[kg/t−pig]、Cは溶銑中のC含有量[kg/t−pig]、WB2は前記低反応性高強度コークス(B)の前記高炉への装入量[kg/t−pig]、%Cは前記低反応性高強度コークス(B)のC含有率[質量%]、WPCは前記高炉における微粉炭比[kg/t−pig]、%AshPCは前記微粉炭の灰分[質量%]、%BRPCは前記微粉炭のレースウェイ内燃焼率[%]である。
According to a third aspect of the invention, so as to satisfy the following formula 1, wherein adjusting the charging amount W A2 [kg / t-pig ] of the small highly reactive low strength coke to the blast furnace (A 2) Item 3. A blast furnace operating method according to Item 1 or 2.
Formula 1 W A2 ×% C A / 100 ≦ C SL + C C -W B2 ×% C B / 100-W PC × (1-% Ash PC / 100) × (1-% BR PC / 100)
Here,% C A is the C content [% by mass] of the high-reactivity low-strength coke (A), C SL is the solution loss C amount [kg / t-pig] in the blast furnace, and C C is in the hot metal C content [kg / t-pig], W B2 is the charging amount to the blast furnace of the low reactivity high strength coke (B 2) [kg / t -pig],% C B is the low reactivity and high Strength Coke (B) C content [% by mass], W PC is the pulverized coal ratio in the blast furnace [kg / t-pig],% Ash PC is the ash content of the pulverized coal [% by mass],% BR PC is the above It is the combustion rate [%] in the raceway of pulverized coal.

請求項4に記載の発明は、前記式1に替えて下記式2を満たすように、前記高炉への前記高反応性低強度コークス(A)の装入量WA2[kg/t−pig]を調整する請求項3に記載の高炉操業方法である。
式2 WA2×%C/100≦CSL−WB2×%C/100−WPC×(1−%AshPC/100)×(1−%BRPC/100)
In the invention according to claim 4, the charging amount W A2 [kg / t-pig of the high-reactivity low-strength coke (A 2 ) into the blast furnace so that the following formula 2 is satisfied instead of the formula 1. ] Is a blast furnace operating method according to claim 3.
Formula 2 W A2 ×% C A / 100 ≦ C SL -W B2 ×% C B / 100-W PC × (1-% Ash PC / 100) × (1-% BR PC / 100)

請求項5に記載の発明は、前記コークス炉で使用する全石炭量に対する非微粘結炭の使用割合をX質量%としたとき、前記非微粘結炭の配合割合をX質量%より高めた配合炭(P)と、前記非微粘結炭の配合割合をX質量%より低めた配合炭(Q)とを作製し、これらの配合炭(PおよびQ)を前記コークス炉の別々の炭化室に装入して乾留することにより、前記高反応性低強度コークス(A)と前記低反応性高強度コークス(B)とを造り分ける請求項1〜4のいずれか1項に記載の高炉操業方法である。   In the invention according to claim 5, when the proportion of non-slightly caking coal relative to the total amount of coal used in the coke oven is X mass%, the blending ratio of the non-slightly caking coal is higher than X mass%. The blended coal (P) and the blended coal (Q) in which the blending ratio of the non-slightly caking coal is lower than X mass% are prepared, and these blended coals (P and Q) are separated from each other in the coke oven. The high-reactivity low-strength coke (A) and the low-reactivity high-strength coke (B) are separately formed by charging in a carbonization chamber and dry distillation. It is a blast furnace operation method.

本発明の高炉操業法によれば、高炉内の各所定装入場所にそれぞれ好適性状を備えたコークスを装入することにより、高炉内通気性および鉱石の還元効率をともに、従来法よりさらに向上できるようになり、その結果、高炉操業のさらなる安定化、効率化が実現できる。   According to the blast furnace operation method of the present invention, by introducing coke having suitable properties to each predetermined charging place in the blast furnace, both the blast furnace air permeability and the ore reduction efficiency are further improved over the conventional method. As a result, further stabilization and efficiency of blast furnace operation can be realized.

上述したように、本発明は下記〔1〕〜〔5〕の工程を備えたことを特徴とする。   As described above, the present invention includes the following steps [1] to [5].

〔1〕前記コークス炉にて高反応性低強度コークス(A)と低反応性高強度コークス(B)とを造り分けるコークス製造工程
〔2〕前記高反応性低強度コークス(A)を整粒して小粒高反応性低強度コークス(A)を調製する第1整粒工程
〔3〕前記低反応性高強度コークス(B)を整粒して大塊低反応性高強度コークス(B)と小粒低反応性高強度コークス(B)とを調製する第2整粒工程
〔4〕前記小粒高反応性低強度コークス(A)および前記小粒低反応性高強度コークス(B)を鉱石類(C)に混入して混合物(D)とする混合工程
〔5〕この混合物(D)と前記大塊低反応性高強度コークス(B)とを交互に前記高炉に装入する装入工程。
[1] Coke production process for producing high-reactivity low-strength coke (A) and low-reactivity high-strength coke (B) in the coke oven [2] Particle size adjustment of the high-reactivity low-strength coke (A) First sizing step of preparing a small-grain high-reactivity low-strength coke (A 2 ) [3] The low-reactivity high-strength coke (B) is sized to provide a large mass low-reactivity high-strength coke (B 1 ) And small grain low reactivity high strength coke (B 2 ) [4] The small grain high reactivity low strength coke (A 2 ) and the small grain low reactivity high strength coke (B 2 ) Mixing step to mix in ore (C) to form mixture (D) [5] This mixture (D) and the large mass low-reactivity high-strength coke (B 1 ) are alternately charged into the blast furnace. The charging process.

〔実施形態〕
以下、上記各工程について図面を参照しつつ詳細に説明する。図1は、本発明の一実施形態に係る、コークス炉および高炉からなる溶銑製造工程を説明するためのフロー図である。
Embodiment
Hereafter, each said process is demonstrated in detail, referring drawings. FIG. 1 is a flowchart for explaining a hot metal production process including a coke oven and a blast furnace according to an embodiment of the present invention.

・ コークス製造工程
本工程においては、コークス炉(1)にて高反応性低強度コークス(A)と低反応性高強度コークス(B)とを造り分ける。
-Coke production process In this process, a high-reactivity low-strength coke (A) and a low-reactivity high-strength coke (B) are separately produced in a coke oven (1).

ここで、高反応性低強度コークス(A)は、鉱石類に混合して鉱石の還元性を向上させる目的で用いられるものであることから、その反応性はできるだけ高くすることが望まれるが、他方その強度は過度に粉化しない程度に確保されていれば十分であり、スペーサとして用いられる通常のコークスほどの強度を必要としない。   Here, the high-reactivity low-strength coke (A) is used for the purpose of improving the reducibility of the ore by mixing with ores, so that the reactivity is desired to be as high as possible. On the other hand, it is sufficient if the strength is ensured to such an extent that it is not excessively pulverized, and the strength is not as high as that of ordinary coke used as a spacer.

一方、低反応性高強度コークス(B)は、主に塊コークスとして高炉内での通気性を確保するためのスペーサの役目を担うことから、その強度はできるだけ高くすることが望まれるが、他方その反応性は、上記高反応性低強度コークス(A)の並存によりそれほど必要とせず、通常のコークスよりも低くすることができる。   On the other hand, the low-reactivity high-strength coke (B) plays a role of a spacer for ensuring air permeability in the blast furnace mainly as a lump coke. The reactivity is not so required due to the coexistence of the high-reactivity low-strength coke (A), and can be made lower than that of ordinary coke.

以上の観点より、高反応性低強度コークス(A)の反応性指数CRIは、通常のコークスより高めの30超、さらには35以上、特に40のものが好ましく、また、低反応性高強度コークス(B)のCRIより5以上、さらには10以上高くするのが好ましい。ここで、CRIとは、粒径20±1mmのコークス200gを、1100℃にて、CO2ガスを5NL/minの流量で流して2h反応させた時のコークスの質量減少率(%表示)をいう。 From the above viewpoint, the reactivity index CRI of the highly reactive low strength coke (A) is preferably higher than that of ordinary coke, more than 30, more preferably 35 or more, particularly 40, and the low reactivity high strength coke. It is preferably 5 or more, more preferably 10 or more higher than the CRI of (B). Here, the CRI is the mass reduction rate (expressed in%) of coke when 200 g of coke having a particle size of 20 ± 1 mm is reacted at 1100 ° C. for 2 hours by flowing CO 2 gas at a flow rate of 5 NL / min. Say.

一方、低反応性高強度コークス(B)のドラム強度指数DI150 15は、高反応性低強度コークス(A)のDI150 15より0.5以上、さらには1.0以上高くするのが好ましい。ここで、DI150 15とは、JIS K2151に準じてドラム試験機で150回転後の15mm以上の塊の質量割合(%表示)をいう。 On the other hand, the drum strength index DI 0.99 15 low reactivity high strength coke (B) is, DI 0.99 15 than 0.5 or more highly reactive low strength coke (A), more preferably higher than 1.0 . Here, DI 150 15 refers to the mass ratio (expressed in%) of a lump of 15 mm or more after 150 revolutions in a drum tester according to JIS K2151.

上記2種類のコークス(AおよびB)は、コークス炉(1)にて例えば以下のようにして造り分けることができる。すなわち、全購入石炭の粘結炭(L)と非微粘結炭(M)との購入割合が固定されている場合、コークス炉(1)で使用する全購入石炭量(L+M)に対する非微粘結炭(M)の使用割合をX質量%としたとき、非微粘結炭(M)の配合割合をX質量%より高めた配合炭(P)と、非微粘結炭(M)の配合割合をX質量%より低めた配合炭(Q)とを所定の割合で作製し、これらの配合炭(PおよびQ)をコークス炉(1)の別々の炭化室に装入して乾留すればよい。これにより、配合炭(P)から高反応性低強度コークス(A)が、配合炭(Q)から低反応性高強度コークス(B)が、それぞれ製造できる。   The two types of coke (A and B) can be separately produced in the coke oven (1) as follows, for example. That is, when the purchase ratio of caking coal (L) and non-slightly caking coal (M) of all purchased coal is fixed, it is non-slight with respect to the total amount of purchased coal (L + M) used in the coke oven (1). When the use ratio of caking coal (M) is X mass%, the blending charcoal (P) in which the blending ratio of non-minor caking coal (M) is higher than X mass%, and non-minor caking coal (M) The blended coal (Q) with a blending ratio of less than X mass% is prepared at a predetermined ratio, and these blended coals (P and Q) are charged into separate carbonization chambers of the coke oven (1) and dry-distilled. do it. Thereby, a high-reactivity low-strength coke (A) can be produced from the coal blend (P), and a low-reactivity high-strength coke (B) can be produced from the coal blend (Q).

ここで、高反応性低強度コークス(A)は後述の第1整粒工程で粉砕等により小粒化されることから、配合炭(P)を乾留して高反応性低強度コークス(A)を製造する炭化室では、その炉温を従来より高めて予め乾留後のコークスを細粒化するようにしてもよい。一方、低反応性高強度コークス(B)は後述の第2整粒工程で説明するように主として大塊で用いることから、配合炭(Q)を乾留して低反応性高強度コークス(B)を製造する炭化室では、その炉温は従来と同じかやや低めて細粒化をできるだけ抑制するようにするのが好ましい。   Here, since the high-reactivity low-strength coke (A) is pulverized by pulverization or the like in the first sizing process described later, the coal blend (P) is subjected to dry distillation to obtain the high-reactivity low-strength coke (A). In the carbonization chamber to be manufactured, the furnace temperature may be raised compared to the prior art, and the coke after dry distillation may be refined in advance. On the other hand, the low-reactivity high-strength coke (B) is mainly used in a large mass as will be described in the second sizing step described later. In the carbonizing chamber for producing the above, it is preferable to keep the furnace temperature the same as or slightly lower than that of the conventional one so as to suppress the atomization.

・ 第1整粒工程
本工程においては、上記のようにしてコークス炉(1)で製造された高反応性低強度コークス(A)を整粒して小粒高反応性低強度コークス(A)を調製する。
· In the first granule sizing step this step, the coke oven as described above highly reactive low strength coke produced in (1) (A) and then sized small highly reactive low strength coke (A 2) To prepare.

ここで、小粒高反応性低強度コークス(A)とは、鉱石類と同程度の粒度まで小粒化したものをいい、粒径範囲の下限は高炉内ガスにより流動化しない下限サイズである5mm程度、上限は鉱石類の上限とほぼ同等の40mm、望ましくは30mm、さらに望ましくは20mm程度とする。 Here, the small high-reactivity low-strength coke (A 2 ) refers to one that has been reduced to the same particle size as ores, and the lower limit of the particle size range is the lower limit size that does not fluidize by blast furnace gas. The upper limit is about 40 mm, preferably about 30 mm, and more preferably about 20 mm, which is almost the same as the upper limit of ores.

このような粒度に調製するため、例えば高反応性低強度コークス(A)を破砕機(2)と篩(3)を組み合わせて整粒し、篩上を小粒高反応性低強度コークス(A)とし、篩下は後述の低反応性高強度コークスの篩下とともに粉コークス(F)とし焼結機で焼結鉱製造用の固体燃料として利用する。 In order to prepare such a particle size, for example, high-reactivity low-strength coke (A) is sized by combining a crusher (2) and a sieve (3), and a small high-reactivity low-strength coke (A 2 ) is placed on the sieve. ) And the coke under the low-reactivity high-strength coke (to be described later) together with powder coke (F) and used as a solid fuel for the production of sintered ore by a sintering machine.

〔3〕第2整粒工程
本工程では、低反応性高強度コークス(B)を整粒して大塊低反応性高強度コークス(B)と小粒低反応性高強度コークス(B)とを調製する。
[3] Second grain sizing step In this step, the low-reactivity high-strength coke (B) is sized to make a large mass low-reactivity high-strength coke (B 1 ) and small-grain low-reactivity high-strength coke (B 2 ). And prepare.

ここで、大塊低反応性高強度コークス(以下、単に「大塊コークス」ともいう。)(B)とは、通常の塊コークスと同等の粒度(例えば粒径40〜100mm)のものをいい、小粒低反応性高強度コークス(B)とは、それより小さい粒度(上記小粒高反応性低強度コークス(A)と同等の粒度)のものをいう。 Here, the large mass low-reactivity high strength coke (hereinafter also simply referred to as “large mass coke”) (B 1 ) is one having a particle size equivalent to that of ordinary mass coke (for example, a particle size of 40 to 100 mm). The small low-reactivity high-strength coke (B 2 ) refers to one having a smaller particle size (particle size equivalent to the above-mentioned small high-reactivity low-strength coke (A 2 )).

このような粒度に調製するため、低反応性高強度コークス(B)を従来と同様、二段の篩(4および5)を用いて整粒し、各篩上を大塊低反応性高強度コークス(B)および小粒低反応性高強度コークス(B)とし、篩下は上記高反応性低強度コークス(B)の篩下とともに粉コークス(F)とし焼結機で焼結鉱製造用の固体燃料として利用する。 In order to prepare such a particle size, the low-reactivity high-strength coke (B) is sized using a two-stage sieve (4 and 5) as before, and a large mass low-reactivity high-strength on each sieve. Coke (B 1 ) and small-grain low-reactivity high-strength coke (B 2 ), and the sieve under the above-mentioned high-reactivity low-strength coke (B) and powder coke (F). It is used as a solid fuel.

〔4〕混合工程
本工程では、上記第1および第2整粒工程で調製した、小粒高反応性低強度コークス(A)および小粒低反応性高強度コークス(B)(これらを総称して「小粒コークス」と呼ぶ。)を鉱石類(C)に混入して混合物(D)とする。
[4] Mixing step In this step, small high-reactivity low strength coke (A 2 ) and small low-reactivity high strength coke (B 2 ) prepared in the first and second sizing steps (collectively referring to these) (Referred to as “small coke”) in the ore (C) to form a mixture (D).

ここで、鉱石類とは、焼結鉱、ペレット、塊鉱石等の鉱石の他、必要により、石灰石、珪石等の造滓材を含むものをいう。   Here, the ores refer to those containing slag ore such as limestone and quartzite as necessary, in addition to ores such as sintered ore, pellets and lump ore.

小粒コークス(AおよびB)の鉱石類(C)への混入は、例えば従来と同様、ベルトコンベア上にそれぞれを所定量ずつ切り出すことにより行うことができる。 The mixing of the small coke (A 2 and B 2 ) into the ore (C) can be performed, for example, by cutting out a predetermined amount of each on a belt conveyor as in the conventional case.

ここで、鉱石類(C)への小粒コークス(AおよびB)の混入量、換言すれば、小粒コークス(AおよびB)の高炉への装入量[kg/t−pig]は、以下のようにして決定することができる。すなわち、まず、小粒低反応性高強度コークス(B)については、上記第2整粒工程で篩い分けにて得られた全量を用いることから自動的に定まる。次いで、下記式1を満たすように、高炉(6)への小粒高反応性低強度コークス(A)の装入量WA2[kg/t−pig]を定める。 Here, the amount of small coke (A 2 and B 2 ) mixed into the ore (C), in other words, the amount of small coke (A 2 and B 2 ) charged into the blast furnace [kg / t-pig] Can be determined as follows. That is, first, the small-sized low-reactivity high-strength coke (B 2 ) is automatically determined because the entire amount obtained by sieving in the second sizing step is used. Next, the charging amount W A2 [kg / t-pig] of the small high-reactivity low-strength coke (A 2 ) into the blast furnace (6) is determined so as to satisfy the following formula 1.

式1 WA2×%C/100≦CSL+C−WB2×%C/100−WPC×(1−%AshPC/100)×(1−%BRPC/100)
ここに、%Cは高反応性低強度コークス(A)のC含有率[質量%]、CSLは高炉(6)におけるソリューションロスC量[kg/t−pig]、Cは溶銑中のC含有量[kg/t−pig]、WB2は小粒低反応性高強度コークス(B)の高炉(6)への装入量[kg/t−pig]、%Cは低反応性高強度コークス(B)のC含有率[質量%]、WPCは前記高炉における微粉炭比[kg/t−pig]、%AshPCは前記微粉炭の灰分[質量%]、%BRPCは前記微粉炭のレースウェイ内燃焼率[%]である。
Formula 1 W A2 ×% C A / 100 ≦ C SL + C C -W B2 ×% C B / 100-W PC × (1-% Ash PC / 100) × (1-% BR PC / 100)
Here,% C A is the C content [% by mass] of the highly reactive low strength coke (A), C SL is the solution loss C amount [kg / t-pig] in the blast furnace (6), and C C is in the hot metal C content of [kg / t-pig], W B2 is charging amount to the blast furnace (6) of small low-reactive high-strength coke (B 2) [kg / t -pig],% C B is less reactive C content of high strength coke (B 2 ) [% by mass], W PC is the pulverized coal ratio in the blast furnace [kg / t-pig],% Ash PC is the ash content of the pulverized coal [% by mass],% BR PC is the combustion rate [%] of the pulverized coal in the raceway.

上記式1は以下の考え方より導出されたものである。すなわち、高炉(6)内においては、ソリューション反応および溶銑への浸炭に用いられるC源としては、粒度の小さい炭材から優先的に消費され、それらが消費され尽くしたあとで、最も粒度の大きい大塊コークスが消費される。よって、高炉(6)におけるソリューションロスC量CSLと溶銑中のC含有量(すなわち、浸炭量)Cとの合計量から、小粒コークス中のC量(AおよびBのC量の合計量)と、羽口から吹き込まれた微粉炭のうちレースウェイ内で燃焼し切らずに未燃焼のままレースウェイから流出した部分(レースウェイ内での未燃焼分)のC量とを差し引いた残部[CSL−(WA2×%C/100+WB2×%C/100)−WPC×(1−%AshPC/100)×(1−%BRPC/100)]が、大塊コークス(B)から消費されるC量に相当する。したがって、小粒コークス(A)の装入量を増加することにより、この大塊コークス(B)から消費されるC量を可及的に少なくすることができ、大塊コークス(B)の劣化が抑制され、高炉内の通気性および通液性を向上させることができる。しかしながら、小粒コークス(A)の装入量を過剰にすると、上記大塊コークス(B)のソリューションロス等によるC消費はなくなるものの、小粒コークス(Aおよび/またはB)が消費し切れずに残存してしまい却って還元材比が上昇してしまうので、上記大塊コークス(B)からの消費C量[CSL−(WA2×%C/100+WB2×%C/100)−WPC×(1−%AshPC/100)×(1−%BRPC/100)]≧0の範囲、つまり、WA2×%C/100≦CSL−WB2×%C/100−WPC×(1−%AshPC/100)×(1−%BRPC/100)の範囲で小粒コークス(A)の装入量WA2を調整するのがよいこととなる。 The above equation 1 is derived from the following concept. That is, in the blast furnace (6), the carbon source used for the solution reaction and carburizing of the hot metal is preferentially consumed from the carbon material having a small particle size, and after they are consumed up, the largest particle size is obtained. Large coke is consumed. Therefore, blast furnace (6) C content in solution loss C content C SL and the hot metal in (i.e., carburization amount) from the total amount of C C, C content in the small particle coke (A 2 and C content of B 2 of The total amount) and the amount of C in the portion of pulverized coal blown from the tuyere that has not burned in the raceway and has left the raceway unburned (unburned in the raceway) The remaining [C SL − (W A2 ×% C A / 100 + W B2 ×% C B / 100) −W PC × (1-% Ash PC / 100) × (1-% BR PC / 100)] is large. This corresponds to the amount of C consumed from the bulk coke (B 1 ). Therefore, by increasing the charging amount of the small particle coke (A 2), the large lump coke (B 1) can be reduced as much as possible the amount of C consumed by the large lump coke (B 1) Is suppressed, and the air permeability and liquid permeability in the blast furnace can be improved. However, if the charging amount of the small coke (A 2 ) is excessive, the C consumption due to the solution loss of the large coke (B 1 ) is eliminated, but the small coke (A 2 and / or B 2 ) is consumed. Since it remains without cutting and the ratio of the reducing material increases, the amount of C consumed from the large coke (B 1 ) [C SL − (W A2 ×% C A / 100 + W B2 ×% C B / 100) −W PC × (1-% Ash PC / 100) × (1-% BR PC / 100)] ≧ 0, that is, WA 2 ×% C A / 100 ≦ C SL −W B2 ×% C and thus it is preferable to adjust the charging amount W A2 of the small coke (a 2) in the range of B / 100-W PC × ( 1-% Ash PC / 100) × (1-% BR PC / 100) .

〔5〕装入工程
本工程においては、上記のようにして鉱石類(C)に小粒コークス(AおよびB)の配合割合を調整した混合物(D)と、大塊低反応性高強度コークス(B)とを交互に高炉(6)に装入する。
[5] Charging step In this step, the mixture (D) in which the blending ratio of the fine coke (A 2 and B 2 ) to the ore (C) is adjusted as described above, and the large mass low-reactivity high strength Coke (B 1 ) and the blast furnace (6) are alternately charged.

この結果、混合物(D)は鉱石層を形成するが、鉱石層中に高反応性の小粒コークス(A)を混入したことにより、鉱石の還元効率が従来よりさらに向上する。また、大塊低反応性高強度コークス(B)はコークス層を形成するが、当該大塊コークス(B)は、それ自身高強度であることに加え、上記鉱石層中の小粒コークス(A)の優先的な消費によってソリューションロス等による劣化が抑制されるので、高炉内通気性も従来よりさらに向上する。 As a result, although the mixture (D) forms an ore layer, the reduction efficiency of the ore is further improved as compared with the conventional method by mixing highly reactive small coke (A 2 ) in the ore layer. In addition, the large mass low-reactivity high strength coke (B 1 ) forms a coke layer. The large mass coke (B 1 ) itself has high strength, and in addition to the small coke ( Since the deterioration due to the solution loss or the like is suppressed by the preferential consumption of A 2 ), the air permeability in the blast furnace is further improved than before.

(変形例)
上記実施形態では、小粒コークス(A)の高炉への装入量は上記式1を満たす範囲とする例を示したが、これに替えて下記式2を満たす範囲としてもよい。
(Modification)
In the above embodiment, the charging amount of the blast furnace having a small particle coke (A 2) is an example in which the range satisfying the above formula 1, may be in the range satisfying the following formula 2 in place of this.

式2 WA2×%C/100≦CSL−WB2×%C/100−WPC×(1−%AshPC/100)×(1−%BRPC/100) Formula 2 W A2 ×% C A / 100 ≦ C SL -W B2 ×% C B / 100-W PC × (1-% Ash PC / 100) × (1-% BR PC / 100)

上記式2は、上記式1より溶銑への浸炭量Cを除外したものである。すなわち、大塊コークス(B)は、炉芯コークスを形成し、最終的には溶銑中に浸炭して消費されるものであるので、この浸炭分は大塊コークス(B)に受け持たせても、大塊コークス(B)の劣化にはさほどの影響を及ぼさないことから、ソリューションロス反応分のみを考慮したものである。 The above formula 2 is obtained by excluding the carburized amount C C to the molten iron from the formula 1. That is, the large coke (B 1 ) forms the core coke, and is eventually consumed by carburizing in the hot metal, so this carburized content is transferred to the large coke (B 1 ). In this case, only the solution loss reaction component is taken into consideration because it does not significantly affect the deterioration of the large block coke (B 1 ).

また上記実施形態では、高反応性低強度コークス(A)と低反応性高強度コークス(B)との造り分けを、室炉のみを用いて異なる組成の配合炭を別々の炭化室で乾留して製造する手段を例示したが、高反応性低強度コークス(A)は成型コークス法で製造し、低反応性高強度コークス(B)は室炉で製造する手段を用いてもよい。成型コークス法を用いることで所望の粒径のコークスを直接製造できるので、成型コークス製造設備を別途必要とするものの、小粒コークス(A)作製のための整粒工程を省略できるとともに、破砕による歩留低下を防止できるメリットがある。 Further, in the above embodiment, the high-reactivity low-strength coke (A) and the low-reactivity high-strength coke (B) are separately produced by dry distillation of blended coals having different compositions using only a chamber furnace in separate carbonization chambers. However, a high-reactivity low-strength coke (A) may be manufactured by a molding coke method, and a low-reactivity high-strength coke (B) may be manufactured in a chamber furnace. Since the coke having a desired particle size can be directly produced by using the molded coke method, a granulated coke production facility is separately required, but the sizing step for producing the small coke (A 2 ) can be omitted, and by crushing There is an advantage that yield reduction can be prevented.

また上記実施形態では、全購入石炭における粘結炭(L)と非微粘結炭(M)との購入割合が固定されている場合において、高反応性低強度コークス(A)と低反応性高強度コークス(B)の石炭配合(非微粘結炭(M)の配合割合)を調整することで、鉱石の還元効率および高炉内通気性を向上させる例を示したが、低反応性高強度コークス(B)の石炭配合(非微粘結炭(M)の配合割合)は現状どおりとして該コークスの反応性および強度は現状レベルに維持することによって高炉操業を現状レベルに維持しつつ、高反応性低強度コークス(A)製造のために非微粘結炭(M)の配合割合を高めた分だけ、全購入石炭における非微粘結炭(M)の購入割合を現状より増やすことでコークス製造コストを低減することも可能である。   Moreover, in the said embodiment, in the case where the purchase ratio of the caking coal (L) and the non-slightly caking coal (M) in all the purchased coal is fixed, the high reactivity low intensity | strength coke (A) and low reactivity An example of improving ore reduction efficiency and blast furnace air permeability by adjusting the coal blend of high-strength coke (B) (mixing ratio of non-slightly caking coal (M)) was shown. While maintaining the blast furnace operation at the current level by maintaining the reactivity and strength of the coke at the current level, the coal blend of the strength coke (B) (the blending ratio of non-slightly caking coal (M)) Increase the purchase ratio of non-slightly caking coal (M) in all purchased coals from the current level by increasing the blending ratio of non-slightly caking coal (M) to produce highly reactive low-strength coke (A). It is also possible to reduce coke production costs.

本発明の効果を確証するため、まず、全購入石炭の粘結炭(L)と非微粘結炭(M)との購入割合が固定されている場合についてシミュレーション計算を実施した。   In order to confirm the effect of the present invention, first, simulation calculation was performed for the case where the purchase ratio of the caking coal (L) and the non-caking caking coal (M) of all purchased coals is fixed.

本シミュレーション計算の前提条件は、国内の代表的な一貫製鉄所における高炉操業およびコークス炉操業の平均的なデータより以下のように定めた。なお、以下の数値のうち、一定値および基準値の表示のないものは固定値である。また、基準値は、コークスの造り分けを行わない従来技術(比較例)の場合における値である。また、コークス性状の変化量および高炉操業の変化量は、下記注1〜4にて注記するように、各種文献データを参照しつつ妥当な値に設定した。   The preconditions for this simulation calculation are as follows, based on the average data of blast furnace operation and coke oven operation at typical integrated steelworks in Japan. Of the following numerical values, constant values and reference values that are not displayed are fixed values. The reference value is a value in the case of the conventional technique (comparative example) in which the coke making is not performed. In addition, the amount of change in coke properties and the amount of change in blast furnace operation were set to appropriate values while referring to various literature data, as noted in the following notes 1 to 4.

(前提条件)
・ 購入石炭: 粘結炭 80%、非微粘結炭 20%(一定値)
・ コークス生産量: 395kg/t−pig(基準値)
・ コークスの粒度別割合:
通常コークスまたは低反応性高強度コークス: 大塊コークス 85%、小粒コークス 10%、粉コークス 5%
高反応性低強度コークス: 小粒コークス 95%、粉コークス 5%
・ コークスの灰分: 12質量%
・ 微粉炭比: 125kg/t−pig(基準値)
・ 微粉炭の灰分: 8質量%
・ 微粉炭のレースウェイ内燃焼率: 80%
・ 高炉におけるソリューションロスC量: 90kg/t−pig
・ コークス性状:
基準値: DI150 15:84.5、CRI:30.0
変化量: 非微粘結炭の配合割合:+10質量%あたり、DI150 15:−1.0(下記注1参照)、DI150 15:−1.0あたり、CRI:+5.0(下記注2参照)
・ 高炉操業の変化量: 大塊コークスのDI150 15:+1.0あたり、大塊コークス比:−10kg/t−pig(下記注3参照)、小粒コークスのCRI:+10あたり、微粉炭比:−4kg/t−pig(下記注4参照)
(Prerequisite)
・ Purchased coal: 80% caking coal, 20% non-caking coal (constant value)
・ Coke production: 395kg / t-pig (reference value)
・ Ratio of coke by particle size:
Normal coke or low-reactivity high-strength coke: Large coke 85%, small coke 10%, fine coke 5%
High-reactivity low-strength coke: small coke 95%, fine coke 5%
・ Coke ash: 12% by mass
・ Pulverized coal ratio: 125kg / t-pig (reference value)
・ Ash content of pulverized coal: 8% by mass
・ Burning rate of pulverized coal in the raceway: 80%
・ Solution loss C amount in blast furnace: 90kg / t-pig
・ Coke properties:
Reference value: DI 150 15 : 84.5, CRI: 30.0
Amount of change: Mixing ratio of non-slightly caking coal: +10 mass%, DI 150 15 : -1.0 (see note 1 below), DI 150 15 : per -1.0, CRI: +5.0 (note below) 2)
-Change in blast furnace operation: DI 150 15 for large coke: +1.0, large coke ratio: -10 kg / t-pig (see note 3 below), CRI for small coke: per +10, pulverized coal ratio: -4kg / t-pig (see note 4 below)

注1:(1)「特開2002−294250号公報」の表1における炭種とDI150/15実測値との関係、および(2)「坂輪ら:鉄鋼技術の流れ 第2シリーズ、第12巻、石炭・コークス、2002年12月20日発行、日本鉄鋼協会、p.102」の図4.2.5における冷間強度DI150 15(%)に及ぼす一般炭使用(+10%)の影響度合いを参考にして設定した。
注2:(3)「特開平10−36855号公報」の表2におけるコークス冷間強度DIの操業実績値とΣCRIとの関係を参考にして設定した。
注3:(4)「特開平6−108126号公報」の表1におけるコークス冷間強度(DI 150/50)(%)と燃料比(kg/t−pig)との関係、(5)「日本鉄鋼協会編、第3版 鉄鋼便覧第II巻 製銑・製鋼、昭和54年10月15日発行、丸善、p.259」の図5・84におけるDI30 15〔%〕とコークス比〔kg/t〕との関係に(6)「燃料協会誌、第58巻、第631号(1979)、p.933」の表3における各種DI指数間の関係式を用いて変換して得られた、DI150 15〔%〕とコークス比〔kg/t〕との関係、および(7)「ISIJ International、Vol.45(2005)、No.10、p.1376」のFig.17におけるDI 150−15(%)とRAR[還元材比](kg/t)との関係を参考にし、燃料比(還元材比)の減少は全量コークス比の減少とみなすことより設定した。
注4:(8)「ISIJ International、Vol.45(2005)、No.10、p.1382」のFig.6におけるJIS−RI=70%でのCRI(%)とRAR[還元材比](kg/t)との関係を参考にし、燃料比(還元材比)の減少は全量微粉炭比の減少とみなすことより設定した。
Note 1: (1) Relationship between charcoal types and DI150 / 15 measured values in Table 1 of “JP 2002-294250 A”, and (2) “Sakawa et al: Flow of Steel Technology, 2nd Series, Volume 12 , Coal and coke, issued on December 20, 2002, Japan Iron and Steel Institute, p.102 ", influence of steam coal (+ 10%) on cold strength DI 150 15 (%) in Fig. 4.2.5 Was set with reference to.
Note 2: (3) It was set with reference to the relationship between the actual operation value of coke cold strength DI and ΣCRI in Table 2 of “JP-A-10-36855”.
Note 3: (4) Relationship between coke cold strength (DI 150/50) (%) and fuel ratio (kg / t-pig) in Table 1 of “JP-A-6-108126”, (5) “ DI 30 15 [%] and coke ratio [kg] in Figures 5 and 84 of Japan Iron and Steel Institute, 3rd Edition, Steel Handbook, Volume II Steelmaking and Steelmaking, published on October 15, 1979, Maruzen, p.259 / T] (6) obtained by converting the relationship between various DI indices in Table 3 of “Journal of Fuel Association, Vol. 58, No. 631 (1979), p. 933”. , DI 150 15 [%] and coke ratio [kg / t], and (7) “ISIJ International, Vol. 45 (2005), No. 10, p. 1376” FIG. With reference to the relationship between DI 150-15 (%) and RAR [reducing material ratio] (kg / t) in No. 17, the reduction in the fuel ratio (reducing material ratio) was set by considering the reduction in the total amount of coke ratio.
Note 4: FIG. 8 of (8) “ISIJ International, Vol. 45 (2005), No. 10, p. 1382”. Referring to the relationship between CRI (%) and RAR [reduced material ratio] (kg / t) at JIS-RI = 70% in Fig. 6, the decrease in fuel ratio (reduced material ratio) is a decrease in the total pulverized coal ratio. Set by considering.

(計算条件)
[比較例](従来技術に相当)
コークス炉のすべての炭化室に装入する配合炭の配合割合を、購入石炭の割合と等しい、粘結炭80%、非微粘結炭20%(一定)とする。コークス炉で製造されたコークス(通常コークス)は、全量、大塊コークスと小粒コークスと粉コークスとに分級し、大塊コークスはコークス層に、小粒コークスは鉱石類に混合して鉱石層に装入する。
(Calculation condition)
[Comparative example] (equivalent to conventional technology)
The blending ratio of the blended coal charged in all the carbonization chambers of the coke oven is set to 80% caking coal and 20% non-slightly caking coal (constant) equal to the ratio of purchased coal. Coke produced in a coke oven (usually coke) is classified into large coke, small coke, and fine coke. Large coke is mixed with the coke layer, and small coke is mixed with ore and loaded into the ore layer. Enter.

[発明例1](上記実施形態に相当)
コークス炉の全炭化室の8.3%分の炭化室に装入する配合炭は、高反応性低強度コークスの原料として、その配合割合を、購入石炭の割合より非微粘結炭の配合割合を高めた、粘結炭40%、非微粘結炭60%とする。残りの炭化室に装入する配合炭は、低反応性高強度コークスの原料として、その配合割合は、購入石炭の割合と上記高反応性低強度コークス用原料の配合割合とからバランス計算により決定する。そして、コークス炉で製造された高反応性低強度コークスは、小粒コークスと粉コークスとに分級する一方、低反応性高強度コークスは、大塊コークスと小粒コークスと粉コークスとに分級し、大塊コークスはコークス層に、小粒コークスは鉱石類に混合して鉱石層に装入する。
[Invention Example 1] (corresponding to the above embodiment)
The blended coal charged to the carbonization chamber for 8.3% of the total coking chamber of the coke oven is a raw material for high-reactivity, low-strength coke, and the blending ratio is less than the ratio of purchased coal. The proportion is 40% caking coal and 60% non-caking coal. The blended coal to be charged into the remaining carbonization chamber is a raw material for low-reactivity and high-strength coke, and the blending ratio is determined by balance calculation from the proportion of purchased coal and the blending ratio of the raw material for high-reactivity and low-strength coke. To do. The high-reactivity low-strength coke produced in the coke oven is classified into small coke and powder coke, while the low-reactivity high-strength coke is classified into large coke, small coke, and powder coke. Bulk coke is mixed with the coke layer, and small coke is mixed with ore and charged into the ore layer.

(計算結果)
シミュレーション計算の結果を上記前提条件および計算条件とともに下記表1に示す。

Figure 2008088476
(Calculation result)
The results of the simulation calculation are shown in Table 1 below together with the above preconditions and calculation conditions.
Figure 2008088476

上記表1に示すように、発明例1は従来(比較例)に比べて、小粒コークス比が28kg/t-pig上昇(40→68kg/t−pig)し、これに伴って、還元材比一定の条件では大塊コークス比は28kg/t-pig低下することとなるが、大塊コークスのDI150 15が従来(比較例)より0.4(84.5→84.9)高くなることにより、大塊コークス比はさらに4kg/t-pig低下し、トータルで32kg/t−pig低下(336→304kg/t−pig)している。 As shown in Table 1 above, Invention Example 1 has a small coke ratio increased by 28 kg / t-pig (40 → 68 kg / t-pig) as compared with the conventional (comparative example), and accordingly, the reducing material ratio Under certain conditions, the large coke ratio will decrease by 28 kg / t-pig, but DI 150 15 for large coke will be 0.4 (84.5 → 84.9) higher than the conventional (comparative example). As a result, the large coke ratio is further reduced by 4 kg / t-pig, and the total mass is reduced by 32 kg / t-pig (336 → 304 kg / t-pig).

一方、高反応性低強度コークス由来の小粒コークス(小粒高反応性低強度コークス)(A)33kg/t−pigを鉱石層に添加したことにより、ソリューションロスC量90kg/t−pigのうち29kg/t−pig(33×(1−12/100)=29)分が通常コークスから高反応性低強度コークスに置換されている。したがって、微粉炭比は、従来(比較例)に比べて、3kg/t−pig低下((29/90)×(50−30)×0.4=3)している。以上の結果、還元材比はトータル7kg/t−pig低下(501→494kg/t−pig)しており、溶銑製造コストの大幅な低減効果が得られることが分かる。 On the other hand, by adding 33 kg / t-pig of small-grain coke derived from high-reactivity low-strength coke (small-grain high-reactivity low-strength coke) (A 2 ) to the ore layer, a solution loss C amount of 90 kg / t-pig 29 kg / t-pig (33 × (1-12 / 100) = 29) is replaced from normal coke to highly reactive low strength coke. Therefore, the pulverized coal ratio is reduced by 3 kg / t-pig ((29/90) × (50-30) × 0.4 = 3) compared to the conventional case (comparative example). As a result, the reducing material ratio is reduced by 7 kg / t-pig in total (501 → 494 kg / t-pig), and it can be seen that a significant reduction effect of the hot metal production cost can be obtained.

なお、発明例1では、大塊コークス比は従来(比較例)より32kg/t−pig減少(336kg/t−pig→304kg/t−pig)しているため、スペーサとしての機能が阻害されるようにも思える。しかしながら、大塊コークスのソリューションロスC量も従来(比較例)より24kg/t−pig減少(32→8kg/t−pig;大塊コークス量で27kg/t−pig減少に相当)しており、ソリューションロス反応にて消費されずに残存する大塊コークス量は従来(比較例)とほぼ同等であり、スペーサとしての機能にはほとんど影響を及ぼさない。   In Invention Example 1, the large coke ratio is reduced by 32 kg / t-pig (336 kg / t-pig → 304 kg / t-pig) compared to the conventional (comparative example), so that the function as a spacer is hindered. It seems like. However, the solution loss C amount of large coke is also reduced by 24 kg / t-pig from the conventional (comparative example) (32 → 8 kg / t-pig; equivalent to 27 kg / t-pig decrease in large coke amount) The amount of large coke that remains without being consumed in the solution loss reaction is almost the same as the conventional (comparative example), and hardly affects the function as a spacer.

次に、低反応性高強度コークス(B)における非微粘結炭(M)の配合割合は従来どおりに維持しつつ、高反応性低強度コークス(A)製造のため非微粘結炭(M)の配合割合を高めた場合についてシミュレーション計算を実施した。   Next, while maintaining the blending ratio of the non-slightly caking coal (M) in the low-reactivity high-strength coke (B) as before, the non-slightly-caking coal ( Simulation calculation was performed for the case where the blending ratio of M) was increased.

本シミュレーション計算の前提条件は、下記に示すように購入石炭の割合が一定値でなく基準値である(すなわち、購入石炭の割合が変化しうる)点を除き、上記実施例1と同様である。   The preconditions for this simulation calculation are the same as in Example 1 except that the proportion of purchased coal is not a constant value but a reference value (that is, the proportion of purchased coal can change) as shown below. .

(前提条件)[上記実施例1の前提条件との相違点のみを示す]
・ 購入石炭: 粘結炭 80%、非微粘結炭 20%(基準値)
(Prerequisites) [Only differences from the preconditions of Example 1 above are shown]
・ Purchased coal: 80% caking coal, 20% non-caking coal (standard value)

(計算条件)
[発明例2](上記実施形態の変形例に相当)
コークス炉の全炭化室の8.3%分の炭化室に装入する配合炭は、高反応性低強度コークスの原料として、その配合割合を、従来(上記実施例1の比較例、以下、単に「比較例」という。)より非微粘結炭の配合割合を高めた、粘結炭40%、非微粘結炭60%とする。残りの炭化室に装入する配合炭は、低反応性高強度コークス(=通常コークス)の原料として、従来(比較例)と同じ配合割合に維持する。そして、上記発明例1と同じく、コークス炉で製造された高反応性低強度コークスは、小粒コークスと粉コークスとに分級する一方、低反応性高強度コークス(=通常コークス)は、大塊コークスと小粒コークスと粉コークスとに分級し、大塊コークスはコークス層に、小粒コークスは鉱石類に混合して鉱石層に装入する。
(Calculation condition)
[Invention Example 2] (corresponding to a modification of the above embodiment)
The blended coal charged into the carbonization chamber for 8.3% of the total carbonization chamber of the coke oven is used as a raw material for high-reactivity low-strength coke, and the blending ratio is conventionally (comparative example of Example 1 above, hereinafter, It is simply referred to as “comparative example”). The blending ratio of non-slightly caking coal is increased to 40% caking coal and 60% non-slightly caking coal. The blended coal charged into the remaining carbonization chamber is maintained at the same blending ratio as the conventional (comparative example) as a raw material for the low-reactivity high-strength coke (= normal coke). And like the said invention example 1, while the highly reactive low intensity | strength coke manufactured with the coke oven is classified into a small grain coke and a powdery coke, low reactive high intensity | strength coke (= normal coke) is a large lump coke. The large coke is mixed with the coke layer, and the small coke is mixed with the ore and charged into the ore layer.

(計算結果)
シミュレーション計算の結果を、比較例と対比させて、上記前提条件および計算条件とともに下記表2に示す。

Figure 2008088476
(Calculation result)
The results of the simulation calculation are shown in Table 2 below together with the above preconditions and calculation conditions in comparison with the comparative example.
Figure 2008088476

上記表2より明らかなように、大塊コークスのDI150 15は従来(比較例)と同じに維持されていることから、上記発明例1のようなDI150 15の上昇による大塊コークス比のさらなる低減効果は得られない。しかしながら、高反応性低強度コークス由来の小粒コークス(小粒高反応性低強度コークス)(A)を上記発明例1と同じ33kg/t−pig分を鉱石層に添加したことにより、微粉炭比は、従来(比較例)に比べて、3kg/t−pig低下している。したがって、還元材比の低下は、上記発明例1の7kg/t−pigより少ないものの、3kg/t−pig(501→498kg/t−pig)の低減効果が得られている。 As is clear from Table 2 above, DI 150 15 of the large coke is maintained the same as the conventional (comparative example), and therefore, the large coke ratio of the large coke ratio due to the rise of DI 150 15 as in the inventive example 1 is increased. A further reduction effect cannot be obtained. However, by adding the same 33 kg / t-pig portion of the small coke derived from the high reactivity low strength coke (small particle high reactivity low strength coke) (A 2 ) to the ore layer as in Invention Example 1, the pulverized coal ratio Is 3 kg / t-pig lower than the conventional (comparative example). Therefore, although the reduction of the reducing material ratio is less than 7 kg / t-pig of Invention Example 1, a reduction effect of 3 kg / t-pig (501 → 498 kg / t-pig) is obtained.

これに加えて、上記発明例1および比較例に比較し、高価な粘結炭の購入割合が減少し、安価な非微粘結炭の購入割合が増加したことによって、コークスの製造コストが低減でき、上記還元材比の低下ともあいまって、溶銑製造コストの大幅な低減効果が得られる。   In addition to this, as compared with Invention Example 1 and Comparative Example, the purchase ratio of expensive caking coal decreased, and the purchase ratio of inexpensive non-caking coal increased, thereby reducing the production cost of coke. In combination with the reduction of the reducing material ratio, a significant effect of reducing the hot metal production cost can be obtained.

なお、発明例2では、大塊コークス比は従来(比較例)より28kg/t−pig(336kg/t−pig→308kg/t−pig)減少しているものの、大塊コークスのソリューションロスC量も従来(比較例)より24kg/t−pig(32→8kg/t−pig)減少(大塊コークス量で27kg/t−pig減少に相当)しており、ソリューションロス反応にて消費されずに残存する大塊コークス量は従来(比較例)とほとんど同じであり、スペーサとしての機能に影響を及ぼさないのは上記発明例1と同様である。   In Inventive Example 2, the mass loss coke ratio is 28 kg / t-pig (336 kg / t-pig → 308 kg / t-pig) less than the conventional (comparative example), but the solution loss C amount of the large mass coke. Has also been reduced by 24 kg / t-pig (32 → 8 kg / t-pig) compared to the conventional (comparative example) (corresponding to 27 kg / t-pig reduction in the amount of large coke) and is not consumed by the solution loss reaction. The amount of the remaining large coke is almost the same as that of the conventional (comparative example), and it is the same as that of the above-described invention example 1 that does not affect the function as the spacer.

本発明の一実施形態に係る、コークス炉および高炉からなる溶銑製造工程を説明するためのフロー図である。It is a flowchart for demonstrating the hot metal manufacturing process which consists of a coke oven and a blast furnace based on one Embodiment of this invention.

符号の説明Explanation of symbols

1:コークス炉
2:破砕機
3,4,5:篩
6:高炉
A:高反応性低強度コークス
:小粒高反応性低強度コークス(小粒コークス)
B:低反応性高強度コークス
:大塊低反応性高強度コークス(大塊コークス)
:小粒低反応性高強度コークス(小粒コークス)
C:鉱石類
D:混合物
F:粉コークス
L:粘結炭
M:非微粘結炭
P,Q:配合炭
1: coke oven 2: crusher 3,4,5: Sieve 6: blast furnace A: highly reactive low intensity Coke A 2: small highly reactive low strength coke (small coke)
B: Low reactive high strength coke B 1 : Large mass low reactive high strength coke (large mass coke)
B 2 : Small grain low-reactivity high strength coke (small grain coke)
C: ore D: mixture F: fine coke L: caking coal M: non-caking coal P, Q: blended coal

Claims (5)

コークス炉で製造したコークスを還元材として用いて溶銑を製造する高炉の操業方法であって、下記〔1〕〜〔5〕の工程を備えたことを特徴とする高炉操業方法。
〔1〕前記コークス炉にて高反応性低強度コークス(A)と低反応性高強度コークス(B)とを造り分けるコークス製造工程
〔2〕前記高反応性低強度コークス(A)を整粒して小粒高反応性低強度コークス(A)を調製する第1整粒工程
〔3〕前記低反応性高強度コークス(B)を整粒して大塊低反応性高強度コークス(B)と小粒低反応性高強度コークス(B)とを調製する第2整粒工程
〔4〕前記小粒高反応性低強度コークス(A)および前記小粒低反応性高強度コークス(B)を鉱石類(C)に混入して混合物(D)とする混合工程
〔5〕この混合物(D)と前記大塊低反応性高強度コークス(B)とを交互に前記高炉に装入する装入工程。
A method for operating a blast furnace in which hot metal is produced using coke produced in a coke oven as a reducing material, comprising the following steps [1] to [5].
[1] Coke production process for producing high-reactivity low-strength coke (A) and low-reactivity high-strength coke (B) in the coke oven [2] Particle size adjustment of the high-reactivity low-strength coke (A) First sizing step of preparing a small-grain high-reactivity low-strength coke (A 2 ) [3] The low-reactivity high-strength coke (B) is sized to provide a large mass low-reactivity high-strength coke (B 1 ) And small grain low reactivity high strength coke (B 2 ) [4] The small grain high reactivity low strength coke (A 2 ) and the small grain low reactivity high strength coke (B 2 ) Mixing step to mix in ore (C) to form mixture (D) [5] This mixture (D) and the large mass low-reactivity high-strength coke (B 1 ) are alternately charged into the blast furnace. The charging process.
前記高反応性低強度コークス(A)の反応性指数CRIを30超とするとともに、前記低反応性高強度コークス(B)のCRIとの差を5以上とし、かつ、前記低反応性高強度コークス(B)のドラム強度指数DI150 15と前記高反応性低強度コークス(A)のDI150 15との差を0.5以上とする請求項1に記載の高炉操業方法。 The reactivity index CRI of the high-reactivity low-strength coke (A) is greater than 30, the difference from the CRI of the low-reactivity high-strength coke (B) is 5 or more, and the low-reactivity high-strength blast furnace method according to claim 1 for the difference between the DI 0.99 15 coke (B) of the drum strength index DI 0.99 15 and the high reactivity low strength coke (a) 0.5 or more. 下記式1を満たすように、前記高炉への前記小粒高反応性低強度コークス(A)の装入量WA2[kg/t−pig]を調整する請求項1または2に記載の高炉操業方法。
式1 WA2×%C/100≦CSL+C−WB2×%C/100−WPC×(1−%AshPC/100)×(1−%BRPC/100)
ここに、%Cは前記高反応性低強度コークス(A)のC含有率[質量%]、CSLは前記高炉におけるソリューションロスC量[kg/t−pig]、Cは溶銑中のC含有量[kg/t−pig]、WB2は前記小粒低反応性高強度コークス(B)の前記高炉への装入量[kg/t−pig]、%Cは前記低反応性高強度コークス(B)のC含有率[質量%]、WPCは前記高炉における微粉炭比[kg/t−pig]、%AshPCは前記微粉炭の灰分[質量%]、%BRPCは前記微粉炭のレースウェイ内燃焼率[%]である。
So as to satisfy the following equation 1, blast furnace operation according to claim 1 or 2 for adjusting the charging amount W A2 [kg / t-pig ] of the small highly reactive low strength coke to the blast furnace (A 2) Method.
Formula 1 W A2 ×% C A / 100 ≦ C SL + C C -W B2 ×% C B / 100-W PC × (1-% Ash PC / 100) × (1-% BR PC / 100)
Here,% C A is the C content [% by mass] of the high-reactivity low-strength coke (A), C SL is the solution loss C amount [kg / t-pig] in the blast furnace, and C C is in the hot metal C content [kg / t-pig], W B2 is the charging amount of the blast furnace [kg / t-pig], % C B is the low reactivity of the small low-reactive high-strength coke (B 2) C content [% by mass] of high-strength coke (B 2 ), W PC is the pulverized coal ratio [kg / t-pig] in the blast furnace,% Ash PC is the ash content of the pulverized coal [% by mass],% BR PC Is the combustion rate [%] in the raceway of the pulverized coal.
前記式1に替えて下記式2を満たすように、前記高炉への前記小粒高反応性低強度コークス(A)の装入量WA2[kg/t−pig]を調整する請求項3に記載の高炉操業方法。
式2 WA2×%C/100≦CSL−WB2×%C/100−WPC×(1−%AshPC/100)×(1−%BRPC/100)
The charging amount W A2 [kg / t-pig] of the small high-reactivity low-strength coke (A 2 ) to the blast furnace is adjusted so as to satisfy the following formula 2 instead of the formula 1. The blast furnace operating method described.
Formula 2 W A2 ×% C A / 100 ≦ C SL -W B2 ×% C B / 100-W PC × (1-% Ash PC / 100) × (1-% BR PC / 100)
前記コークス炉で使用する全石炭量に対する非微粘結炭の使用割合をX質量%としたとき、前記非微粘結炭の配合割合をX質量%より高めた配合炭(P)と、前記非微粘結炭の配合割合をX質量%より低めた配合炭(Q)とを作製し、これらの配合炭(PおよびQ)を前記コークス炉の別々の炭化室に装入して乾留することにより、前記高反応性低強度コークス(A)と前記低反応性高強度コークス(B)とを造り分ける請求項1〜4のいずれか1項に記載の高炉操業方法。   When the use ratio of non-slightly caking coal relative to the total amount of coal used in the coke oven is X mass%, the blended coal (P) in which the blending ratio of the non-slightly caking coal is higher than X mass%, A blended coal (Q) having a blending ratio of non-slightly caking coal lower than X mass% is prepared, and these blended coals (P and Q) are charged into separate carbonization chambers of the coke oven and dry-distilled. The blast furnace operating method according to any one of claims 1 to 4, wherein the high-reactivity low-strength coke (A) and the low-reactivity high-strength coke (B) are separately produced.
JP2006268414A 2006-09-29 2006-09-29 Blast furnace operation method Active JP4764304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268414A JP4764304B2 (en) 2006-09-29 2006-09-29 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268414A JP4764304B2 (en) 2006-09-29 2006-09-29 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2008088476A true JP2008088476A (en) 2008-04-17
JP4764304B2 JP4764304B2 (en) 2011-08-31

Family

ID=39372939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268414A Active JP4764304B2 (en) 2006-09-29 2006-09-29 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4764304B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106320A (en) * 2006-10-26 2008-05-08 Jfe Steel Kk Method for operating blast furnace
JP2011038140A (en) * 2009-08-10 2011-02-24 Jfe Steel Corp Method for charging raw material into blast furnace
CN103773549A (en) * 2014-01-06 2014-05-07 日照绿能工贸有限公司 Coke caking agent and preparation process thereof
JP2015189983A (en) * 2014-03-27 2015-11-02 Jfeスチール株式会社 blast furnace operation method
KR20190064178A (en) * 2017-11-30 2019-06-10 주식회사 포스코 Manufacturing apparatus of molten iron and manufacturing method of molten iron

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436710A (en) * 1987-07-31 1989-02-07 Nippon Steel Corp Blast furnace operating method
JPH05295412A (en) * 1992-04-23 1993-11-09 Nippon Steel Corp Method for operating blast furnace
JPH08283804A (en) * 1995-02-15 1996-10-29 Sumitomo Metal Ind Ltd Operation of blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436710A (en) * 1987-07-31 1989-02-07 Nippon Steel Corp Blast furnace operating method
JPH05295412A (en) * 1992-04-23 1993-11-09 Nippon Steel Corp Method for operating blast furnace
JPH08283804A (en) * 1995-02-15 1996-10-29 Sumitomo Metal Ind Ltd Operation of blast furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106320A (en) * 2006-10-26 2008-05-08 Jfe Steel Kk Method for operating blast furnace
JP2011038140A (en) * 2009-08-10 2011-02-24 Jfe Steel Corp Method for charging raw material into blast furnace
CN103773549A (en) * 2014-01-06 2014-05-07 日照绿能工贸有限公司 Coke caking agent and preparation process thereof
JP2015189983A (en) * 2014-03-27 2015-11-02 Jfeスチール株式会社 blast furnace operation method
KR20190064178A (en) * 2017-11-30 2019-06-10 주식회사 포스코 Manufacturing apparatus of molten iron and manufacturing method of molten iron
KR102044317B1 (en) * 2017-11-30 2019-11-13 주식회사 포스코 Manufacturing apparatus of molten iron and manufacturing method of molten iron

Also Published As

Publication number Publication date
JP4764304B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4807103B2 (en) Blast furnace operation method
JP5064330B2 (en) Method for producing reduced iron and pig iron
US20120144734A1 (en) Method for manufacturing carbon iron composite
US9816151B2 (en) Method for operating blast furnace and method for producing molten pig iron
JP4764304B2 (en) Blast furnace operation method
KR20120023057A (en) Blast furnace operation method
WO2011099070A1 (en) Process for production of reduced iron, and process for production of pig iron
JP6119700B2 (en) Blast furnace operation method
JP2007246786A (en) Ferrocoke and method for producing sintered ore
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP5426997B2 (en) Blast furnace operation method
JP4311022B2 (en) Coke production method
JP4971662B2 (en) Blast furnace operation method
JP4529838B2 (en) Sinter ore and blast furnace operation method
JP6269549B2 (en) Blast furnace operation method
JP4325401B2 (en) Manufacturing method of low silicon hot metal
JP6123723B2 (en) Blast furnace operation method
JP7310858B2 (en) Blast furnace operation method
JP2023080449A (en) Blast furnace operation method
JP3651443B2 (en) Blast furnace operation method
JP6070131B2 (en) Method for producing reduced iron
JP5292884B2 (en) Blast furnace operation method
JP3061965B2 (en) Blast furnace operation method
JP2008045175A (en) Method for operating blast furnace
JP5626072B2 (en) Operation method of vertical melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4764304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150