JPH05295412A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH05295412A
JPH05295412A JP12932792A JP12932792A JPH05295412A JP H05295412 A JPH05295412 A JP H05295412A JP 12932792 A JP12932792 A JP 12932792A JP 12932792 A JP12932792 A JP 12932792A JP H05295412 A JPH05295412 A JP H05295412A
Authority
JP
Japan
Prior art keywords
coke
blast furnace
furnace
heat load
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12932792A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamaguchi
一良 山口
Masaaki Naito
誠章 内藤
Taishi Horimi
泰資 堀見
Seiichi Morimoto
誠一 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12932792A priority Critical patent/JPH05295412A/en
Publication of JPH05295412A publication Critical patent/JPH05295412A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To reduce the fuel ratio with a high reducing efficiency and to stably operate a blast furnace with excellent productivity by replacing a part of lump cokes for blast furnace with a small lump high reactive coke. CONSTITUTION:A part of the metallurgical lump coke as heat source in the blast furnace operation and the reducing agent to iron ore is replaced with the small lump high reactive coke having >=30% JIS reactivity and <=25mm the average grain size and charged into the blast furnace by mixing the coke with the iron ore or making a layer state with the raw material of the iron ore, etc. In this case, the heat load over the part from a shaft lower part to a belly part in the blast furnace is measured and at least one side of the charging quantity or the JIS reactivity of the small lump high reactive coke into the furnace is adjusted so that the measured value exceeds the preset lower limited value. The bad burden permeability and the lowering of the reducing efficiency by stagnation, etc., of the descendent speed of the charged raw material caused by the lowering of the heat load are prevented, and molten iron is produced with a high reducing efficiency and excellent productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炉頂から装入する通常
冶金用コークスの一部を反応性を高めたコークスに置換
して使用することにより、燃料比を低下させ、生産性を
向上させた高炉操業法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention reduces the fuel ratio and improves productivity by replacing a part of the coke for ordinary metallurgy charged from the furnace top with coke having a higher reactivity. Blast furnace operation method.

【0002】[0002]

【従来の技術】通常の高炉にあっては、炉頂から鉄鉱石
および通常冶金用コークスを層状に装入し、この鉄鉱石
を炉内で還元した後、金属状態に溶融して溶銑を製造し
ている。このとき、鉄鉱石の還元効率を高めるため、特
公昭52−43169号公報にあっては、鉄鉱石と小塊
コークスをあらかじめ混合しておき、この混合物と通常
冶金用コークスを層状に装入することが開示されてい
る。このようにあらかじめコークスと混合した鉄鉱石を
使用することにより、炉内における通気性が改善され、
その還元性が向上する。
2. Description of the Related Art In a normal blast furnace, iron ore and ordinary metallurgical coke are charged in layers from the furnace top, and the iron ore is reduced in the furnace and then melted into a metallic state to produce hot metal. is doing. At this time, in order to increase the reduction efficiency of iron ore, in Japanese Patent Publication No. 52-43169, iron ore and small lump coke are mixed in advance, and this mixture and ordinary metallurgical coke are charged in layers. It is disclosed. By using iron ore pre-mixed with coke in this way, the air permeability in the furnace is improved,
Its reducibility is improved.

【0003】ところで、高炉の熱保存帯温度は1000
℃程度であり、この温度はコークスのガス化開始温度に
相当する。つまり、高炉内でC+CO2 =2COのコー
クスのガス化反応が起こるために、約1000℃以上の
温度が必要となる。鉄鉱石の還元は熱保存帯より高温領
域で約70%が生じるが、温度が高くなるに伴い還元平
衡ガス組成が高CO側となること、および鉄鉱石からの
融液生成が約1100℃以上で見られ、還元ガスの浸透
が不十分になることから、熱保存帯の温度が高いと鉄鉱
石の間接還元を有効に活用できず、還元効率もある値以
上に向上しない。
By the way, the heat preservation zone temperature of the blast furnace is 1000
The temperature is about ℃, and this temperature corresponds to the gasification start temperature of coke. In other words, a temperature of about 1000 ° C. or higher is necessary for the gasification reaction of coke of C + CO 2 = 2CO in the blast furnace. About 70% of the reduction of iron ore occurs in the higher temperature region than the heat preservation zone, but the reduction equilibrium gas composition becomes high CO side as the temperature rises, and the melt generation from iron ore is about 1100 ° C or more. However, since the infiltration of reducing gas becomes insufficient, the indirect reduction of iron ore cannot be effectively utilized when the temperature of the heat preservation zone is high, and the reduction efficiency does not improve beyond a certain value.

【0004】ところで、鉄鉱石と混合された小塊コーク
スは通常冶金用コークスと同じ性状であるから、粒度の
小さい分だけCO2 との反応がより活発である。しかし
鉄鉱石と混合しているため鉄鉱石のCO還元で生成した
CO2 がコークスのより近くにあり、反応が速いという
有利さだけで熱保存帯温度の低下を伴わないため、その
還元効率向上には限界があった。
By the way, since small lump coke mixed with iron ore usually has the same properties as metallurgical coke, the reaction with CO 2 is more active due to the smaller particle size. However, since it is mixed with iron ore, CO 2 generated by CO reduction of iron ore is closer to coke, and the reduction of the heat storage zone temperature is not accompanied by the advantage that the reaction is fast. There was a limit.

【0005】この限界を改善するために、高反応性コー
クスを通常冶金用コークスの全量あるいは一部と置換し
て使用することが操業として行われている。この高反応
性コークスは反応性が高いことから、高炉内のCO2
コークス表面に接触してC+CO2 =2COの反応がよ
り低温から活発に行われる。またその結果として炉内に
生じたCOガスが鉄鉱石と有効に反応して低級酸化物又
は金属状態に還元する反応が促進される。
In order to improve this limit, it is practiced to replace the highly reactive coke with the whole amount or a part of the metallurgical coke as an operation. Since this highly reactive coke is highly reactive, CO 2 in the blast furnace comes into contact with the surface of the coke, and the reaction of C + CO 2 = 2CO is actively performed from a lower temperature. Further, as a result, the CO gas generated in the furnace effectively reacts with the iron ore to reduce the reaction to the lower oxide or metal state.

【0006】C+CO2 =2COの反応は吸熱反応であ
り、高炉における熱保存帯温度を低下させることができ
る。従来法によるとき、1000℃程度の熱保存帯が生
成しその値がほとんど変化しないのに対して、高反応性
コークスを使用することによって熱保存帯温度を900
〜950℃に低下させることが可能となる。その結果、
還元平衡到達点に余裕ができるため還元がより進行する
ことになり、還元効率が向上しコークス比を低下させる
ことができる。
The reaction of C + CO 2 = 2CO is an endothermic reaction and can lower the heat preservation zone temperature in the blast furnace. When the conventional method is used, a heat storage zone of about 1000 ° C. is generated and its value hardly changes, whereas the heat storage zone temperature is set to 900 by using highly reactive coke.
It is possible to lower the temperature to 950 ° C. as a result,
Since there is a margin at the reduction equilibrium reaching point, the reduction proceeds further, the reduction efficiency is improved, and the coke ratio can be reduced.

【0007】[0007]

【発明が解決しようとする課題】ところで従来の高炉操
業において、炉頂における装入物分布調整範囲がそれほ
ど広くなく、かつ装入物分布のバラツキが大きいため、
炉周辺部O/Cが高くなったときにこの領域の鉱石の加
熱還元不足が生じ、シャフト下部から炉腹部にかけて装
入物降下停滞あるいはそれが長じて付着物生成を引き起
こし、通気不良、還元効率低下が起こる。この現象が起
こると、高炉のシャフト下部から炉腹部にかけての熱負
荷が低下する。よって通常は高炉のシャフト下部から炉
腹部にかけての熱負荷を監視し、この熱負荷がある値を
下回ったときに炉周辺部O/Cを低下させる装入物分布
調整を実施しているが、この調整は炉中心部O/C上昇
をもたらすため、その低下幅には限界があり、結果的に
全体のO/Cを低下させざるを得ず、燃料比が上昇し、
生産量が低下していた。
By the way, in the conventional blast furnace operation, since the charge distribution adjustment range at the furnace top is not so wide and the charge distribution varies widely,
When the O / C around the furnace becomes high, insufficient heating and reduction of the ore in this region occurs, and there is a stagnation of charge drop from the lower part of the shaft to the abdomen of the furnace or it causes deposit formation for a long time, resulting in poor ventilation and reduction. Inefficiency occurs. When this phenomenon occurs, the heat load from the lower part of the shaft of the blast furnace to the upper part of the furnace decreases. Therefore, normally, the heat load from the lower part of the shaft of the blast furnace to the furnace belly is monitored, and when the heat load falls below a certain value, the charge distribution adjustment is performed to reduce the O / C around the furnace. Since this adjustment brings about an increase in the O / C in the central part of the furnace, there is a limit to the extent of the decrease, and as a result, the overall O / C must be reduced, and the fuel ratio rises.
Production was declining.

【0008】そこで、本発明にあっては、小塊高反応性
コークスを通常冶金用コークスの一部と置換し高炉に装
入するに際し、高炉のシャフト下部から炉腹部にかけて
の熱負荷が低下し、この領域の装入物降下停滞あるいは
付着物生成を引き起こし、通気不良、還元効率低下が起
こることを防止するために、炉周辺部O/Cを低下させ
る装入物分布調整を実施しないで、小塊高反応性コーク
スの装入量、JIS反応性を調整し、高い還元効率のも
とで、高生産性で安定的に高炉を操業することを目的と
する。
Therefore, in the present invention, when the small lump highly reactive coke is replaced with a part of the metallurgical coke and charged into the blast furnace, the heat load from the lower part of the shaft to the belly part of the blast furnace is reduced. , In order to prevent stagnation of deposits in this region or generation of deposits, and to prevent ventilation failure and reduction of reduction efficiency, do not carry out the distribution adjustment of the deposits to reduce the O / C around the furnace, The purpose is to adjust the charging amount of small lump highly reactive coke and the JIS reactivity to operate the blast furnace stably with high productivity under high reduction efficiency.

【0009】[0009]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、通常冶金用コークスの一部をJIS
反応性が30%以上で平均粒度が25mm以下の小塊高
反応性コークスに置き換え、該小塊高反応性コークスを
鉱石または通常冶金用コークスの少なくとも一方と混合
したのち高炉に装入する高炉操業を行なうに際し、高炉
のシャフト下部から炉腹部にかけての熱負荷を測定し、
該熱負荷が予め設定した下限値を越えるように、小塊高
反応性コークスの装入量またはJIS反応性の少なくと
も一方を調整することを特徴とする。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, in which a part of coke for metallurgy is usually JIS.
Blast furnace operation in which a small lump highly reactive coke having a reactivity of 30% or more and an average particle size of 25 mm or less is replaced, and the small lump highly reactive coke is mixed with at least one of ore and ordinary metallurgical coke and then charged into a blast furnace. When performing, measure the heat load from the bottom of the shaft of the blast furnace to the furnace belly,
It is characterized in that at least one of the charging amount of the small lump highly reactive coke and the JIS reactivity is adjusted so that the heat load exceeds a preset lower limit value.

【0010】[0010]

【作用】本発明で使用する高反応性コークスはJIS
K2151−1977の反応性試験方法で測定したとき
のJIS反応性が30%以上であることが必要である。
30%以上という数値限定は特開平1−36710号に
示すように、実炉試験結果より30%未満ではほとんど
その結果が見られないことによる。また本発明で使用す
る高反応性コークスは、平均粒度が25mm以下の小塊
であることが必要である。25mm以下という数値限定
は、本発明の操業試験結果より25mmを越える平均粒
度ではほとんどその効果が見られないことによる。特開
平1−36710号では高反応性コークスの調整法とし
て、冶金用コークス製造に適さない反応性の高い微非粘
結炭、一般炭を原料炭に一部配合するか、反応を促進す
る触媒としての役割をもつ石灰石、アルカリ類を少量、
原料炭に配合する方法を開示した。成型コークスもこれ
に属する。
[Function] The highly reactive coke used in the present invention is JIS
It is necessary that the JIS reactivity as measured by the reactivity test method of K2151-1977 is 30% or more.
The numerical limitation of 30% or more is due to the fact that as shown in Japanese Patent Laid-Open No. 1-36710, the results are hardly seen when the actual furnace test results are less than 30%. Further, the highly reactive coke used in the present invention needs to be a small block having an average particle size of 25 mm or less. The numerical limitation of 25 mm or less is due to the fact that the effect is hardly seen with the average particle size exceeding 25 mm according to the operation test result of the present invention. Japanese Patent Application Laid-Open No. 1-36710 discloses, as a method for adjusting highly reactive coke, a catalyst that accelerates the reaction by partially blending a raw coal with a highly reactive slightly non-caking coal or steam coal that is not suitable for the production of coke for metallurgy. Small amount of limestone and alkalis, which have the role of
A method of blending with raw coal has been disclosed. Molded coke also belongs to this category.

【0011】小塊高反応性コークスを通常冶金用コーク
スの一部と置き換えて高炉に装入すると、熱保存帯温度
が低下し還元平衡到達点に余裕ができるため、還元がよ
り進行し還元効率が向上するから、結果としてC+CO
2 =2COのソルーションロス反応(吸熱反応)が抑制
される。このため高炉の炉熱に余裕ができ、高炉のシャ
フト下部から炉腹部にかけての還元効率低下を防止する
ことができる。しかも炉周辺部O/Cを低下させる装入
物分布調整を実施する必要がないため、炉中心部O/C
上昇をもたらすことがなく、通気不良に陥ることがな
い。よって高い還元効率のもとで、高生産性で安定的に
高炉を操業することができる。
When the small lump highly reactive coke is replaced with a part of the coke for ordinary metallurgy and charged into the blast furnace, the temperature of the heat preservation zone is lowered and the reduction equilibrium point can be afforded. Results in C + CO
2 = 2CO solution loss reaction (endothermic reaction) is suppressed. Therefore, the furnace heat of the blast furnace has a margin, and it is possible to prevent reduction of the reduction efficiency from the lower part of the shaft of the blast furnace to the furnace belly. Moreover, since it is not necessary to adjust the distribution of the charge to reduce the O / C in the peripheral area of the furnace, the O / C in the central area of the furnace
It does not cause rise and does not fall into poor ventilation. Therefore, the blast furnace can be stably operated with high productivity under high reduction efficiency.

【0012】本発明における高炉操業においては、シャ
フト下部から炉腹部にかけての熱負荷の低下を監視し、
この熱負荷が予め設定した下限値を下回ったときは、こ
の領域において装入物降下停滞が起っており、この現象
が付着物生成、通気不良、還元効率低下に継がっていく
ため、その継がりを断ち切るべく、付着物生成、通気不
良、還元効率低下に至る前に、この領域の還元効率向上
をはかるために、通常冶金用コークスの一部と置き換え
た小塊高反応性コークスの装入量とJIS反応性を調整
する。小塊高反応性コークスの装入量とJIS反応性の
調整により、この領域の還元効率の向上度合を調整でき
る。小塊高反応性コークスは、鉄鉱石と混合して、ある
いは通常冶金用コークスと混合して、さらに鉄鉱石と通
常冶金用コークスの両方に混合して使用できる。
In the operation of the blast furnace in the present invention, the decrease of the heat load from the lower part of the shaft to the belly part of the furnace is monitored,
When this heat load falls below the preset lower limit value, there is a stagnant drop in the charge in this region, and this phenomenon continues to deposit formation, poor ventilation, and reduction in reduction efficiency. In order to improve the reduction efficiency in this area before deposit formation, poor ventilation, and reduction of reduction efficiency in order to cut off the continuation, a small lump highly reactive coke equipment that is usually replaced with a part of metallurgical coke is used. Adjust the dosage and JIS reactivity. The degree of improvement of the reduction efficiency in this region can be adjusted by adjusting the charging amount of the small lump highly reactive coke and the JIS reactivity. The nodule highly reactive coke can be used in admixture with iron ore, or in admixture with conventional metallurgical coke, and in admixture with both iron ore and conventional metallurgical coke.

【0013】高炉のシャフト下部から炉腹部にかけての
熱負荷の監視方法としては、この領域のレンガ埋め込み
温度測定、ステーブクーラーの温度測定、ステーブクー
ラーあるいは冷却盤の冷却水流量と給排水温度差より求
められる抜熱量測定等を用いることができる。これらの
監視方法における下限値の設定は、予め操業試験によっ
て降下停滞状況に基づいて求め、またこの下限値を下回
った度合に応じて必要とされる小塊高反応性コークスの
装入量あるいはJIS反応性の変化幅の関係も、予め操
業試験によって求めておく。
As a method for monitoring the heat load from the lower part of the shaft of the blast furnace to the belly part, the brick embedding temperature in this region is measured, the temperature of the stave cooler is measured, and the difference between the cooling water flow rate of the stave cooler or the cooling plate and the water supply / drainage temperature difference is obtained. A heat removal amount measurement or the like can be used. The lower limit of these monitoring methods is set in advance based on the drop stagnation condition by an operation test, and the charging amount of the small lump highly reactive coke or JIS required depending on the degree of falling below this lower limit. The relationship of the range of change in reactivity is also obtained in advance by an operation test.

【0014】図1はこうして操業試験によって求めた下
限値よりの低下幅とそれに対して必要とされる小塊高反
応性コークスのJIS反応性の変化幅の関係を示す。な
お、図1、図2はシャフト下部から炉腹部にかけての熱
負荷の監視方法として、この領域のレンガ埋め込み温度
測定を用いた場合である。
FIG. 1 shows the relationship between the range of decrease from the lower limit value thus obtained by the operation test and the range of change in the JIS reactivity of the small-lump highly-reactive coke required for it. 1 and 2 show a case where the brick embedding temperature measurement in this region is used as a method for monitoring the heat load from the lower part of the shaft to the furnace belly.

【0015】図3、図4にシャフト下部から炉腹部にか
けての熱負荷の監視方法として、この領域のステーブク
ーラーの温度測定を用いた場合の、下限値よりの低下幅
とそれに対して必要とされる小塊高反応性コークスの装
入量、JIS反応性の変化幅の関係を示す。
In FIGS. 3 and 4, as a method of monitoring the heat load from the lower part of the shaft to the furnace abdomen, when the temperature measurement of the stave cooler in this region is used, it is necessary to reduce the lower limit value and the lower limit value. Fig. 2 shows the relationship between the charging amount of highly reactive coke and the change range of JIS reactivity.

【0016】図5、図6にシャフト下部から炉腹部にか
けての熱負荷の監視方法として、この領域のステーブク
ーラーの抜熱量測定を用いた場合の、下限値よりの低下
幅とそれに対して必要とされる小塊高反応性コークスの
装入量、JIS反応性の変化幅の関係を示す。
In FIGS. 5 and 6, as a method of monitoring the heat load from the lower part of the shaft to the furnace belly, the amount of decrease from the lower limit value and the necessary amount of decrease in the amount of heat removal of the stave cooler in this region are used. The relationship between the charging amount of the small lump highly reactive coke and the change width of JIS reactivity is shown.

【0017】図7、図8にシャフト下部から炉腹部にか
けての熱負荷の監視方法として、この領域の冷却盤の抜
熱量測定を用いた場合の、下限値よりの低下幅とそれに
対して必要とされる小塊高反応性コークスの装入量、J
IS反応性の変化幅の関係を示す。
As shown in FIGS. 7 and 8, as a method of monitoring the heat load from the lower part of the shaft to the furnace belly, the range of decrease from the lower limit value and the necessary amount when the heat removal amount measurement of the cooling board in this region is used are necessary. Charge of small lump highly reactive coke, J
The relationship of the change width of IS reactivity is shown.

【0018】[0018]

【実施例】以下、実施例により本発明の特徴を具体的に
説明する。表1に小塊高反応性コークスを使用した本発
明による高炉操業結果を従来法と比較して示す。対象高
炉は内容積3000m3 の中型高炉であり、炉頂からO
/C=4.2の割合で鉄鉱石と通常冶金用コークス(J
IS反応性20%)を層状に装入し、通常冶金用コーク
スの小塊(JIS反応性20%、平均粒度20mm、鉄
鉱石と混合)を20kg/t−pig装入していた。羽
口前フレーム温度を2180℃(送風温度1200℃、
送風湿度25g/Nm3 −air、酸素富化量0.01
3Nm3 /Nm3 −air、微粉炭吹込み量100g/
Nm3 −air)に維持しながら溶銑を6000t/日
製造していた。
EXAMPLES The features of the present invention will be specifically described below with reference to examples. Table 1 shows the operation results of the blast furnace according to the present invention using the small lump highly reactive coke in comparison with the conventional method. The target blast furnace is a medium-sized blast furnace with an internal volume of 3000 m 3 ,
/C=4.2 at a ratio of iron ore and ordinary metallurgical coke (J
IS reactivity 20%) was charged in layers, and usually 20 kg / t-pig of a small lump of metallurgical coke (JIS reactivity 20%, average particle size 20 mm, mixed with iron ore) was charged. The tuyere front frame temperature is 2180 ° C (blast temperature 1200 ° C,
Blast humidity 25g / Nm 3 -air, oxygen enrichment 0.01
3Nm 3 / Nm 3 -air, pulverized coal injection amount 100g /
The hot metal was produced at 6000 t / day while maintaining Nm 3 -air).

【0019】[0019]

【表1】 [Table 1]

【0020】実施例1 シャフト下部から炉腹部にかけての熱負荷の監視方法と
して、この領域のレンガ埋め込み温度測定を用いた場合
で、予め操業試験によって求めた下限値は60℃であっ
た。この監視温度が50℃に低下した(−10℃)た
め、−5℃ぶんを図1にしたがって小塊高反応性コーク
スの装入量で+16kg/t−pig(36kg/t−
pig)(16kg/t−pig増加して36kg/t
−pigとした、以下の記載も同様)、−5℃ぶんを図
2にしたがって小塊高反応性コークスのJIS反応性で
+18%(38%)とし、この小塊高反応性コークス
(平均粒度24mm)を通常冶金用小塊コークスと置換
し、鉄鉱石と混合して装入したときに、監視温度が65
℃に回復した操業例である。後述する比較例1に対して
燃料比が低く、出銑量が多い。
Example 1 When a brick embedding temperature was measured in this region as a method of monitoring the heat load from the lower part of the shaft to the furnace belly, the lower limit value obtained in advance by an operation test was 60 ° C. Since this monitored temperature dropped to 50 ° C (-10 ° C), -5 ° C was added in accordance with Fig. 1 in the amount of the small amount of highly reactive coke charged to +16 kg / t-pig (36 kg / t-).
Pig) (16 kg / t-pig increase to 36 kg / t
-Pig, the same applies to the following description), and -5 ° C is set to + 18% (38%) in JIS reactivity of the small-lump highly-reactive coke according to Fig. 2. 24 mm) was replaced with small coke for ordinary metallurgy, and when mixed with iron ore and charged, the monitoring temperature was 65
This is an example of operation that has recovered to ℃. Compared to Comparative Example 1 described later, the fuel ratio is low and the amount of tapped iron is large.

【0021】実施例2 シャフト下部から炉腹部にかけての熱負荷の監視方法と
して、この領域のステーブクーラーの温度測定を用いた
場合で、予め操業試験によって求めた下限値は50℃で
あった。この監視温度が35℃に低下した(−15℃)
ため、−15℃全部を図4にしたがって小塊高反応性コ
ークスのJIS反応性で+33%(53%)とし(装入
量は20kg/t−pigのまま)、この小塊高反応性
コークス(平均粒度20mm)を通常冶金用小塊コーク
スと置換し、通常冶金用コークスと混合して装入したと
きに、監視温度が60℃に回復した操業例である。後述
する比較例2に対して燃料比が低く、出銑量が多い。
Example 2 When the temperature measurement of the stave cooler in this region was used as a method for monitoring the heat load from the lower part of the shaft to the furnace belly, the lower limit value obtained in advance by the operation test was 50 ° C. This monitored temperature dropped to 35 ° C (-15 ° C)
Therefore, according to Fig. 4, the JIS reactivity of the small-lump highly-reactive coke was set to + 33% (53%) according to Fig. 4 (the charging amount remains 20 kg / t-pig). This is an example of operation in which the monitoring temperature was recovered to 60 ° C. when (average particle size 20 mm) was replaced with small coke for ordinary metallurgy, and the mixture was charged with mixed coke for ordinary metallurgy. Compared to Comparative Example 2 described later, the fuel ratio is low and the amount of tapped iron is large.

【0022】実施例3 シャフト下部から炉腹部にかけての熱負荷の監視方法と
して、この領域のステーブクーラーの抜熱量測定を用い
た場合で、予め操業試験によって求めた下限値は150
0万kcal/hであった。この監視抜熱量が1000
万kcal/hに低下した(−500万kcal/h)
ため、−300万kcal/hぶんを図5にしたがって
小塊高反応性コークスの装入量で+18kg/t−pi
g(38kg/t−pig)、−200万kcal/h
ぶんを図6にしたがって小塊高反応性コークスのJIS
反応性で+16%(36%)とし、この小塊高反応性コ
ークス(平均粒度18mm)を通常冶金用小塊コークス
と置換し、鉄鉱石と混合して装入したときに、監視抜熱
量が1700万kcal/hに回復した操業例である。
Example 3 As a method of monitoring the heat load from the lower part of the shaft to the furnace abdomen, when the heat removal amount measurement of the stave cooler in this region was used, the lower limit value previously obtained by the operation test was 150.
It was 0,000 kcal / h. This monitoring heat removal amount is 1000
Decreased to 10,000 kcal / h (-5 million kcal / h)
Therefore, the amount of −3 million kcal / h is +18 kg / t-pi as the charging amount of the highly reactive coke of small particles according to FIG.
g (38 kg / t-pig), -2 million kcal / h
According to Fig. 6, JIS of small reactive coke
The reactivity was + 16% (36%), and when this small lump highly reactive coke (average particle size 18 mm) was replaced with normal metallurgical small lump coke and mixed with iron ore and charged, the heat removal amount monitored This is an example of operation that recovered to 17 million kcal / h.

【0023】実施例4 シャフト下部から炉腹部にかけての熱負荷の監視方法と
して、この領域の冷却盤の抜熱量測定を用いた場合で、
予め操業試験によって求めた下限値は1200万kca
l/hであった。この監視抜熱量が800万kcal/
hに低下した(−400万kcal/h)ため、−40
0万kcal/h全部を図8にしたがって小塊高反応性
コークスのJIS反応性で+22%(42%)とし(装
入量は20kg/t−pigのまま)、この小塊高反応
性コークス(平均粒度22mm)を通常冶金用小塊コー
クスと置換して装入し、鉄鉱石および通常冶金用コーク
スと半分ずつ混合して装入したときに、監視抜熱量が1
000万kcal/hに回復した操業例である。
Example 4 As a method of monitoring the heat load from the lower part of the shaft to the furnace abdomen, in the case of using the heat removal amount measurement of the cooling board in this region,
The lower limit value obtained by the operation test in advance is 12 million kca
It was 1 / h. This monitored heat removal is 8 million kcal /
-40 because it fell to h (-4 million kcal / h)
According to FIG. 8, the JIS reactivity of high-reactivity coke of small knots of all 0,000 kcal / h was set to + 22% (42%) (charge was 20 kg / t-pig). (Average particle size 22 mm) was replaced with small coke for ordinary metallurgy and charged, and when mixed with iron ore and coke for ordinary metallurgy by half each, the monitored heat removal amount was 1
This is an example of an operation that recovered to 10 million kcal / h.

【0024】比較例1はシャフト下部から炉腹部にかけ
ての熱負荷の監視方法として、この領域のレンガ埋め込
み温度測定を用いた場合で、この監視温度が下限値60
℃を下回り、50℃に低下したため、炉周辺部O/Cを
低下させる装入物分布調整を実施したが、監視温度が回
復せず、全体のO/Cを低下させた従来法の操業例であ
る。通気性が変動し悪化したため、さらに燃料比を上昇
させるアクションを実施した。実施例1に対して燃料比
が高く、出銑量が少ない。
In Comparative Example 1, as a method of monitoring the heat load from the lower part of the shaft to the furnace belly, the brick embedding temperature measurement in this region was used, and this monitoring temperature was the lower limit value 60.
Since the temperature fell below 50 ° C and dropped to 50 ° C, the distribution of charges was adjusted to lower the O / C around the furnace, but the monitored temperature did not recover and the overall O / C was reduced. Is. Since the air permeability fluctuated and deteriorated, action was taken to further increase the fuel ratio. Compared with Example 1, the fuel ratio is high and the amount of tapped metal is small.

【0025】比較例2はシャフト下部から炉腹部にかけ
ての熱負荷の監視方法として、この領域のステーブクー
ラーの温度測定を用いた場合で、この監視温度が下限値
50℃を下回り、35℃に低下したため、炉周辺部O/
Cを低下させる装入物分布調整を実施したが、監視温度
が回復せず、全体のO/Cを低下させた従来法の操業例
である。実施例2に対して燃料比が高く、出銑量が少な
い。
Comparative Example 2 uses a temperature measurement of a stave cooler in this region as a method for monitoring the heat load from the lower part of the shaft to the furnace belly, and the monitored temperature falls below the lower limit value of 50 ° C. to 35 ° C. Because of this, O / around the furnace
This is an example of the operation of the conventional method in which the charged temperature distribution was adjusted to reduce C, but the monitored temperature did not recover, and the overall O / C was reduced. The fuel ratio is higher and the amount of tapped iron is smaller than that in the second embodiment.

【0026】[0026]

【発明の効果】以上に説明したように、本発明において
は、シャフト下部から炉腹部にかけての熱負荷の低下を
監視し、この熱負荷が予め設定した下限値を下回ったと
きに、付着物生成、通気不良、還元効率低下に至る前
に、この領域の還元効率向上をはかる目的で、通常冶金
用コークスの一部と置き換えた小塊高反応性コークスの
装入量とJIS反応性を調整する。この操業法は炉周辺
部O/Cを低下させる装入物分布調整を実施する必要が
ないため、炉中心部O/C上昇をもたらすことがなく、
通気不良に陥ることがない。これにより、高い還元効率
のもとで燃料比が低下でき、高生産性で安定的に高炉を
操業できる。
As described above, in the present invention, the decrease in the heat load from the lower part of the shaft to the furnace belly is monitored, and when this heat load falls below the preset lower limit value, the deposit formation In order to improve the reduction efficiency in this area before it causes poor ventilation and reduction in reduction efficiency, the charging amount and JIS reactivity of small lump highly reactive coke, which is a part of the metallurgical coke, is adjusted. .. Since this operation method does not need to adjust the distribution of the charge for lowering the O / C in the peripheral portion of the furnace, it does not cause an increase in O / C in the central portion of the furnace.
It does not cause poor ventilation. As a result, the fuel ratio can be reduced under high reduction efficiency, and the blast furnace can be operated stably with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】シャフト下部から炉腹部にかけての熱負荷の監
視下限値よりの低下幅と小塊高反応性コークスの装入量
の変化幅の関係を示すグラフ
FIG. 1 is a graph showing the relationship between the range of decrease in the heat load from the lower part of the shaft to the furnace belly below the lower limit of monitoring and the range of change in the charging amount of small lump highly reactive coke.

【図2】シャフト下部から炉腹部にかけての熱負荷の監
視下限値よりの低下幅と小塊高反応性コークスのJIS
反応性の変化幅の関係を示すグラフ
[Fig. 2] JIS of high-reactivity coke of small lumps and reduction width from the lower limit of monitoring of heat load from the lower part of the shaft to the furnace belly
Graph showing the relationship of the change range of reactivity

【図3】シャフト下部から炉腹部にかけての熱負荷の監
視下限値よりの低下幅と小塊高反応性コークスの装入量
の変化幅の関係を示すグラフ
FIG. 3 is a graph showing the relationship between the range of decrease in the thermal load from the lower part of the shaft to the furnace belly below the lower limit of monitoring and the range of change in the charging amount of small-lump highly reactive coke.

【図4】シャフト下部から炉腹部にかけての熱負荷の監
視下限値よりの低下幅と小塊高反応性コークスのJIS
反応性の変化幅の関係を示すグラフ
[Fig. 4] JIS level of a small-lump highly-reactive coke and a reduction range from the lower limit of monitoring of heat load from the lower part of the shaft to the furnace belly.
Graph showing the relationship of the change range of reactivity

【図5】シャフト下部から炉腹部にかけての熱負荷の監
視下限値よりの低下幅と小塊高反応性コークスの装入量
の変化幅の関係を示すグラフ
FIG. 5 is a graph showing the relationship between the lower limit of the thermal load from the lower part of the shaft to the furnace belly, which is lower than the monitoring lower limit, and the range of change in the charging amount of the small lump highly reactive coke.

【図6】シャフト下部から炉腹部にかけての熱負荷の監
視下限値よりの低下幅と小塊高反応性コークスのJIS
反応性の変化幅の関係を示すグラフ
[Fig. 6] JIS width of a high-reactivity coke of small lumps and the width of decrease from the lower limit of monitoring of the heat load from the lower part of the shaft to the furnace belly
Graph showing the relationship of the change range of reactivity

【図7】シャフト下部から炉腹部にかけての熱負荷の監
視下限値よりの低下幅と小塊高反応性コークスの装入量
の変化幅の関係を示すグラフ
FIG. 7 is a graph showing the relationship between the range of decrease in the heat load from the lower part of the shaft to the furnace belly below the lower limit of monitoring and the range of change in the charging amount of small lump highly reactive coke.

【図8】シャフト下部から炉腹部にかけての熱負荷の監
視下限値よりの低下幅と小塊高反応性コークスのJIS
反応性の変化幅の関係を示すグラフ
[Fig. 8] JIS of high-reactivity coke of small lumps and reduction width from the lower limit of monitoring of heat load from the lower part of the shaft to the furnace belly
Graph showing the relationship of the change range of reactivity

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 誠一 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Seiichi Morimoto 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corp. Technology Development Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 通常冶金用コークスの一部をJIS反応
性が30%以上で平均粒度が25mm以下の小塊高反応
性コークスに置き換え、該小塊高反応性コークスを鉱石
または通常冶金用コークスの少なくとも一方と混合した
のち高炉に装入する高炉操業を行なうに際し、高炉のシ
ャフト下部から炉腹部にかけての熱負荷を測定し、該熱
負荷が予め設定した下限値を越えるように、小塊高反応
性コークスの装入量またはJIS反応性の少なくとも一
方を調整することを特徴とする高炉操業法。
1. A part of the ordinary metallurgical coke is replaced with a small lump highly reactive coke having a JIS reactivity of 30% or more and an average particle size of 25 mm or less, and the small lump highly reactive coke is an ore or ordinary metallurgical coke. At the time of performing the blast furnace operation in which the blast furnace is charged after being mixed with at least one of the above, the heat load from the lower part of the shaft of the blast furnace to the furnace belly is measured, and the nodule height is increased so that the heat load exceeds a preset lower limit value. A blast furnace operating method characterized by adjusting at least one of the charging amount of reactive coke and JIS reactivity.
JP12932792A 1992-04-23 1992-04-23 Method for operating blast furnace Withdrawn JPH05295412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12932792A JPH05295412A (en) 1992-04-23 1992-04-23 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12932792A JPH05295412A (en) 1992-04-23 1992-04-23 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH05295412A true JPH05295412A (en) 1993-11-09

Family

ID=15006854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12932792A Withdrawn JPH05295412A (en) 1992-04-23 1992-04-23 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH05295412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088476A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Method for operating blast furnace
JP2012012620A (en) * 2010-06-29 2012-01-19 Jfe Steel Corp Method for operating blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088476A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Method for operating blast furnace
JP2012012620A (en) * 2010-06-29 2012-01-19 Jfe Steel Corp Method for operating blast furnace

Similar Documents

Publication Publication Date Title
US9816151B2 (en) Method for operating blast furnace and method for producing molten pig iron
CN111733305B (en) Blast furnace high zinc load smelting method
EP2202324A1 (en) Vertical furnace and method of operating the same
JPH05295412A (en) Method for operating blast furnace
JP4085493B2 (en) Manufacturing method of high quality sintered ore
JP3829516B2 (en) Blast furnace operation method
JP3068967B2 (en) Blast furnace operation method
JP3014556B2 (en) Blast furnace operation method
Lyalyuk et al. Improvement in blast-furnace performance by using a new form of iron ore
JP3014549B2 (en) Blast furnace operation method
JP4598256B2 (en) Blast furnace operation method
JP3171066B2 (en) Blast furnace operation method
JP4585075B2 (en) Blast furnace operation method using metallic iron-based raw materials
US2735758A (en) strassburger
JP3651443B2 (en) Blast furnace operation method
JPH06100909A (en) Operation of blast furnace
JP3061965B2 (en) Blast furnace operation method
JPH0913109A (en) Operation of blowing large quantity of pulverized fine coal into blast furnace
JP2733566B2 (en) Blast furnace operation method
JPH05156329A (en) Method for operating powder injection from tuyere in blast furnace
JPH02236210A (en) Method for operating blast furnace
JPH01263208A (en) Method for operating blast furnace
JP2002020810A (en) Blast furnace operating method
JPH07207308A (en) Operation of blast furnace
JP3017009B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706