JP4325401B2 - Manufacturing method of low silicon hot metal - Google Patents

Manufacturing method of low silicon hot metal Download PDF

Info

Publication number
JP4325401B2
JP4325401B2 JP2003562340A JP2003562340A JP4325401B2 JP 4325401 B2 JP4325401 B2 JP 4325401B2 JP 2003562340 A JP2003562340 A JP 2003562340A JP 2003562340 A JP2003562340 A JP 2003562340A JP 4325401 B2 JP4325401 B2 JP 4325401B2
Authority
JP
Japan
Prior art keywords
hot metal
slag
blast furnace
mass
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003562340A
Other languages
Japanese (ja)
Other versions
JPWO2003062473A1 (en
Inventor
真二 松原
祥和 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2003062473A1 publication Critical patent/JPWO2003062473A1/en
Application granted granted Critical
Publication of JP4325401B2 publication Critical patent/JP4325401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

技術分野
本発明は、微粉炭(PC)を高炉の羽口から多量に吹き込む高炉操業において、安定して低シリコン溶銑を製造する技術に関するものである。
背景技術
高炉における溶銑製造コストの削減と、更にはコークス炉の寿命延長を図ることに寄与することを目的として、高炉羽口から微粉炭を多量に吹き込み、コークス使用量を低減させる高炉操業方法、即ちコークス置換率を高めるための高炉操業方法が開発されてきた。高炉への微粉炭吹込み設備の一例を図1(a)と図1(b)に示す。同図に概略縦断面図を示すように、高炉1の下部に設けられた炉内への送風用ブローパイプ2の側壁を斜めに貫通挿入して微粉炭吹込み用ランス3を設け、この微粉炭吹込み用ランス3からブローパイプ2内を流れる熱風7中に微粉炭5を吹き出させて、羽口4から高炉1の炉内へ吹き込む。こうして吹き込まれた微粉炭5は、ブローパイプ2及び羽口4、並びに羽口4の前方に形成されるレースウェイ6内において燃焼するが、一部分は未燃分がチャーとなって、あるいは石炭中の揮発分が不完全燃焼して煤となり、これらは炉内に持ち込まれる。未燃チャー及び煤は炉内で燃焼されるが、高炉に吹き込まれる微粉炭の量が多くなると、これらは完全には燃焼消費されずに、炉内に蓄積されるか、又は炉頂部よりダストの一部となって排出される。従って、微粉炭の多量吹込みの効果を発揮させるためには、微粉炭の反応効率の向上を図って、コークス置換率を上昇させると共に、安定した高炉操業の確保が必要である。
ところが、多量の微粉炭を吹き込む高炉の操業は一般に、原燃料の性状や出銑滓の影響を受け易く、操業変動が増大する。微粉炭の吹込み量を増やしていくと、高炉内の鉱石/コークス比(O/C)の増加により熱流比(固体装入物の熱容量/ガスの熱容量)が低下し、炉頂排ガスの持ち出し顕熱が増加して熱効率が低下すると共に、炉内上・中部においては装入物の昇温速度が上昇し、炉下部において融着帯が上方に移動すると共にその厚さが増大し、また塊コークスの滞留時間増加による劣化が起こり、炉内圧損が増大して操業変動の要因となる。
そこで、このような操業変動の増大や熱効率の低下対策として、炉熱レベルを上げて操業の安定化を図る。しかしその結果、溶銑温度レベルが上昇して溶銑中Si濃度が上昇する。また、微粉炭の吹込み量を増やしていくと、鉱石/コークス比の増加、コークスの劣化あるいは微粉炭の未燃チャーの増加により、高炉下部炉芯部の通気・通液性が悪化して不活性化する。その結果、スラグがレースウェイ近傍を流下するようになり、スラグ中SiOがコークスや微粉炭のCで還元されてSiOガスが生成し、これが溶銑中Cで還元されてSiが溶銑に移行し、溶銑のSi濃度が上昇する。この間の状況は、下記化学式:
(SiO)+C(コークス又はPC)
=SiO(g)+CO(g) ………… (1)
SiO(g)+[C]=[Si]+CO(g) ………… (2)
で表わされる。
溶銑のSi濃度上昇は、高炉内でSiOを還元するために多量の熱量が消費されたことを意味する。また、出銑後の溶銑炉外脱珪処理では、脱珪剤使用量の増加をきたし、莫大なコストデメリットを招く。そこで、このデメリットを抑制するために、高炉炉内において溶銑のSi濃度を低下させておくことが重要となる。
高炉炉内で溶銑のSi濃度を低下させる技術は多数提案されている。
従来の一般的方法として、溶銑温度を低下させる方法が行なわれている(以下、「先行技術1」という)。しかし、この方法では、スラグ粘性の上昇(スラグの流動性悪化)や、高炉内付着物の脱落等による溶銑温度の急激な低下が引き起こされ、操業リスクが増加するという欠点がある。特に、微粉炭の多量吹込み時にはその影響が大きくなる。
溶銑Si濃度低下の他の方法として、特開昭57−237402号公報には、微粉炭と共に酸化鉄を吹込み、羽口先の高温帯において、脱珪反応:[Si]+2(FeO)=(SiO)+2Feにより溶銑中Siを酸化低減させる方法が提案され(以下、「先行技術2」という)、先行技術2を更に改善した特開昭59−153812号公報には、微粉炭に、酸化鉄と共にCaO源又はMgO源物質を混合して吹き込むことにより、上記高温帯におけるスラグの適切な高塩基度化を図り、SiO(g)+2(FeO)=(SiO)+2Fe反応及び上記脱珪反応を促進すると共に、上記2反応で生成する高活量のSiOを高塩基度スラグに速やかに吸収させて再加珪反応を阻止するという方法が提案されている(以下、「先行技術3」という)。
また、特開昭61−37902号公報には、微粉炭と共にMn鉱石粉を吹込み、羽口先の高温帯において、(MnO)及び(FeO)により脱珪反応を起こさせて、溶銑中Siを酸化低減させる方法が提案されている(以下、「先行技術4」という)。しかしながら、これらの方法では酸化物の吹込みのために鉱石の粉砕工程や粉砕されたものの羽口への搬送設備の増設が必要となり、溶銑製造コストが非常に高くなる。
また、特開平5−78718号公報には、吹き込まれる微粉炭中SiOの下記(3)〜(5)式:
SiO(コークス)+C(コークス)=SiO(g)+CO(g)
………… (3)
(SiO)+[C]=SiO(g)+CO(g) ………… (4)
SiO(g)+[C]=[Si]+CO(g) ………… (5)
による溶銑への加珪を抑制するために、SiO含有率の高い微粉炭と低い微粉炭とを別々のホッパーに入れ、目標溶銑Si濃度に応じて、使用する微粉炭を選択する方法が提案されている(以下、「先行技術5」という)。しかし、この方法では別個のホッパーを設置し、装入を調節しなければならないので、設備コストがかかり、石炭需給工程に制約が加えられる。
また、特開平7−70616号公報には、作り分けのベース溶銑Si濃度を低減させる方法として、コークスに使用する非微粘結炭よりもSiO含有率が低い微粉炭を使用することにより、溶銑Si濃度を低下させる方法が提案されている(以下、「先行技術6」という)。しかし、この方法によるとSiO含有率の低い石炭が必ずしも安価ではなかったり、使用原料の制約を受けて原料需給上の制約が多くなり、長期間の操業を継続するのは現実的ではない。
上述したように、先行技術1〜先行技術6にはいずれも一長一短があり、微粉炭の多量吹込みが安定して行なわれ、総合的コストメリットが得られるような高炉の低Si操業技術は見当たらない。高炉への微粉炭多量吹込み操業において、高炉装入原料の需給工程に制約されないことを前提条件とし、低Si溶銑製造の高炉操業に関連する基本事項を整理すると、下記の通りである。ここで、下記(1)及び(2)式は、加珪(加Si)に関連し、
(SiO)+C(コークス又はPC)
=SiO(g)+CO(g) ………… (1)
SiO(g)+[C]=[Si]+CO(g) ………… (2)
下記(3)式:
(SiO)+2[Fe]=[Si]+2FeO ………… (3)
は、炉床部湯溜部での復珪(復Si)に関連する反応式である。
基本事項1:羽口先での高温反応領域の温度を低下させて、(1)式及び(2)式の反応速度及び化学平衡恒数が小さくなる方向にコントロールして、溶銑中Si濃度を下げること、
基本事項2:溶融スラグ中SiOの活量を小さくして、(1)式の化学平衡恒数が小さくなる方向にコントロールし、これによって(2)式の化学平衡恒数が小さくなる方向にコントロールして、溶銑中Si濃度を下げること、
基本事項3:溶融スラグが羽口先の高温反応領域に近づくのを抑制することにより、スラグ中SiO成分が(1)式の反応に関らないようにすること、更に、SiOガスと溶銑との接触、特に羽口先の高温反応領域における両者の接触を抑制することにより、(2)式の反応量を低減させて、溶銑への加珪(加Si)を抑制すること、
基本事項4:炉熱レベルを下げて低温出銑操業を行ない、(3)式の反応速度を低下させることにより、復珪(復Si)を抑制すると共に、(1)式の反応速度を低下させることにより加珪を抑制すること。
従来、上記基本事項1〜4項の中でも、炉熱レベルを低下させ、特に羽口先での高温反応領域の温度を低下させることが、高炉から排出される溶銑のSi濃度低下に対して有効な手段であり、且つ炉床部湯溜部における溶銑温度の低下による溶融スラグからの復珪(復Si)を抑制するために有効であるとして、高炉の低温操業が広く採られてきた。
ところが、前述したように、溶銑温度を低下させた高炉操業には、スラグの粘性増加や炉内付着物の脱落等による溶銑温度の急激な低下を招くことがあり、操業不安定のリスクを増加させるという欠点を伴う。このような傾向は、特に微粉炭の吹込み量が多い場合には、炉内通気性の悪化傾向が加わり、一層顕著になる。
そこで、本発明者等は、微粉炭多量吹込みの高炉操業において、特別な設備の新設あるいは改造をすることなく、品位の高い高価な原料を特別に調達することもなく、変動する原料需給工程に従い予め与えられた所定の主原料と副原料等を用い、それら原料の配合構成の調整手段により、高炉の低温操業時に発生し易い炉内付着物の脱落事故等を引き起こすことなく、炉内圧損、特に炉下部における圧損を増大させることなく、更に、炉内滴下帯及びその下方部領域の炉芯部における溶銑滓の降下流路を、羽口先の高温領域に近づかせることなく、できるだけ炉内半径方向の中央部を降下させるようにすることが効果的であることに着眼した。
こうして、特に、上記基本事項3で述べた対策を講ずることにこの発明の課題解決の重点をおき、そのための方法として、高炉スラグの粘性を低下させてその流動性を高めることを本発明の最大の課題とした。
次に、上記課題の解決に際し、溶銑製造のコストミニマムを目指し、焼結鉱製造工程から高炉操業までの一貫コスト低減の観点から、焼結鉱として低シリカ焼結鉱を適切に使用する場合について、上記高炉スラグ粘性の適切な低下技術を開発することを課題とした。
発明の開示
本発明の目的は、高炉への微粉炭多量吹込み操業を実施するに当たり、高炉装入原料に制約されることなく、低コストで安定した操業を行なうことができ、更には、低シリカ焼結鉱を使用して焼結工程から高炉における溶銑製造工程までの一貫コストの低減を図ることができる、低シリコン溶銑の製造方法を提供することにある。
上記目的を達成するために、本発明は,以下からなる低シリコン溶銑の製造方法を提供する。
[1]微粉炭を150kg/t−溶銑以上吹き込む、高炉への微粉炭多量吹込み操業における低シリコン溶銑の製造方法において、高炉から排出されるスラグ中のMgO含有率を5.5〜8.5mass%の範囲内に調整し、そして、溶銑のSi濃度を0.3mass%以下に制御することを特徴とする低シリコン溶銑の製造方法。
[2][1]に記載の低シリコン溶銑の製造方法において、1470℃以上の出銑温度で高炉を操業することを特徴とする低シリコン溶銑の製造方法。
[3][1]又は[2]に記載の低シリコン溶銑の製造方法において、270kg/t−溶銑以上のスラグ比で高炉を操業することを特徴とする低シリコン溶銑の製造方法。
[4][1]から[3]のいずれかに記載の低シリコン溶銑の製造方法において、上記スラグ中のCaO(mass%)/SiO(mass%)を1.2〜1.3の範囲内で、且つ当該スラグ中Al濃度を13〜16mass%の範囲内で高炉を操業することを特徴とする低シリコン溶銑の製造方法。
[5]微粉炭を150kg/t−溶銑以上吹き込む、高炉への微粉炭多量吹込み操業における低シリコン溶銑の製造方法において、炉頂から装入されるコークスを除く装入物の70mass%以上に、SiO含有率が4.5mass%以下で、且つMgO含有率が1.3mass%以下の焼結鉱を装入し、そして、MgO源副原料の装入により高炉から排出されるスラグ中のMgO含有率を5.5〜8.5mass%の範囲内に調整することに特徴とする低シリコン溶銑の製造方法。
[6][5]記載の低シリコン溶銑の製造方法において、上記低シリコン溶銑のSi濃度を0.30mass%以下に制御することを特徴とする低シリコン溶銑の製造方法。
発明を実施するための形態
本発明者等は、高微粉炭吹込み比(高PCR)条件下における高炉操業(高PCR高炉操業)において、変動する原燃料の需給条件及び原燃料の低コスト維持、並びに設備費等の低コスト維持を前提条件として、先ず、高炉スラグの流動性をよくするために、高炉スラグの成分組成の調整について検討した。
高炉で生成するスラグの成分組成は、使用する主原料及び副原料の各銘柄別スラグ化成分の含有率及びその配合構成、並びにコークス及び微粉炭製造用石炭の銘柄別スラグ化成分の含有率及びその配合構成等に依存して変化する。高炉スラグの粘性は、上記スラグの成分組成に依存して変化し、更に、スラグの温度、従って溶銑温度に依存して変化する。
高炉スラグの主要構成成分は、SiO、CaO、MgO及びAlの4成分からなる。この内、SiO及びCaOの含有率は、スラグの塩基度(CaOmass%/SiOmass%)が溶銑成分中S濃度の重要な決定要因の一つであるから、この塩基度設定値の制約を受けるので、SiO及びCaOの含有率をそれぞれ独立的に設定することは困難である。従って、SiO及びCaOの含有率をスラグ粘性の調整因子とするのは必ずしも適切でない。スラグのAl含有率は、Alが主として、コークス中の灰分や鉱石中に含まれているので、原燃料需給バランスにより変動する。例えば、近年の高品位鉄鉱石の枯渇化傾向を反映して、Al含有率の高い所謂高アルミナ鉄鉱石が増加している。但し、高アルミナ鉄鉱石の価格は安価である利点を有する。従って、スラグ中Al含有率を従来水準以下に制限することは得策でないと同時に、鉄鉱石の原料需給工程上、困難を伴う。
これに対して高炉スラグ中MgO成分は、従来、その機能がスラグの粘性調整にある。ところが、スラグ中MgO含有率の設定は、従来、MgO源副原料であるMgO−SiO系の蛇紋岩やMgO−CaO系のドロマイトを、高炉スラグ比(溶銑1t当たりのスラグ量(kg))が、固有の高炉操業条件により定められた目標上限値以下となるようにした上で、スラグ中MgO含有率が必要最小限の値となるように、そのときの原料配合率に応じて高炉装入時に調整される。
そこで、本発明者等は、スラグ中MgO含有率の上昇による、スラグの粘性低下及び溶銑中Si濃度の低下に対する作用・効果について検討した。
以下、実用高炉における操業データを図2〜図4に図示する。
図2は、スラグのMgO含有率とスラグ比との関係を示し、MgO含有率の増加と共にスラグ比が減少していることがわかる。
図3は、スラグのMgO含有率と溶銑Si含有率との関係を示し、MgO含有率の増加につれて溶銑Si含有率は低減し、MgO含有率が7mass%程度になると、溶銑Si含有率に極小値が存在することが推定される。
図4は、スラグのMgO含有率に対する当該スラグの粘度の計算値との関係を示し、MgO含有率の増加につれてスラグの粘度が低下することを示す。同図におけるスラグ粘度のバラツキは、主に高炉間における主原料の構成差に起因するものである。
以上により下記知見を得た。
1.溶融スラグ中のMgO濃度を高めることにより、スラグの粘性を低下させる。その結果、高炉下部の滴下帯、及びその下方部位の炉芯部における溶融スラグの降下流路が、羽口前方に形成されているレースウェイ近傍の高温反応領域側に逸れるのを防いで、鉛直下方に真っ直ぐ下りるようになる。その結果、上記(1)及び(2)式の反応を抑制し、溶銑への加珪を抑制することができる。
2.溶融スラグ中のMgO濃度を高めることにより、レースウェイ近傍の高温反応領域におけるMgガス蒸気圧を高め、前記(2)式の反応におけるSiOガスの分圧を下げてSiOガスの活量を低下させることにより、(2)式の反応を抑制して、スラグ中SiOの還元による溶銑中へのSiの移行を抑制して溶銑中Si濃度の上昇を抑制することができる。
3.上記1及び2項に加えて更に、高炉の適切な低温操業を行なうことにより、安定した操業下において、一層の低Si溶銑の製造が可能となる。
4.従来、スラグ比の増加につれて炉下部圧損は増大すると考えられていたが、本発明者等は、今回、高炉炉内全体の通気性を表わす指数として、羽口上方1.5mの位置から炉頂までに至る間の炉内圧損に基づく通気性を指数(−)表示に変換して、スラグ比と当該炉内通気性を示す指数(−)との関係を調査した結果、スラグ中MgO含有率を5.5〜8.5mass%の範囲内まで高めれば、微粉炭を150kg/t−溶銑以上吹き込む高炉操業においても、出銑温度を1480℃以上に保持し、スラグ比が300kg/t−溶銑以下であれば、炉内通気性を悪化させることなく、安定した低シリコン操業ができることがわかった。
本発明は、上記知見に基づきなされたものである。
本発明に係る低シリコン溶銑の製造方法は、微粉炭を150kg/t−溶銑以上吹き込む、高炉への微粉炭多量吹込み操業における低シリコン溶銑の製造方法において、高炉から排出されるスラグ中のMgO含有率を5.5〜8.5mass%の範囲内に調整し、そして、溶銑のSi濃度を0.3mass%以下に制御することに特徴を有するものである。
図1に示した高炉における微粉炭の吹込み設備において、この発明の方法を下記の通り行なう。高炉1の羽口4部に取り付けられたブローパイプ2に斜めに貫通して装着された微粉炭吹込み用ランス3から、微粉炭を150kg/t−溶銑以上、熱風7と共に、高炉1内に吹き込み、溶銑を製造する。この高炉操業において、装入原料は、出銑滓口8から排出される高炉スラグの成分組成の内、MgO含有率が5.5〜8.5mass%の範囲内に入るように、装入主原料及び副原料中のスラグ化成分組成を考慮してその装入量の配合をきめる。また、炉熱レベルは、従来の微粉炭吹込み比が150kg/t−溶銑以上の高炉操業において採用されているような高熱レベル操業、あるいは低Si溶銑製造操業において従来採用されているような低温出銑操業は行なわない。その他の高炉操業条件については特別のアクションを採る必要はない。
装入原料及び装入コークスの配合率に関しては、高炉スラグの成分組成の内、MgO=5.5〜8.5mass%となるように調整され、炉熱レベルが低温操業にならない範囲、例えば出銑温度が1480℃程度以上となるようにすれば、特に制限しなくてもよいが、下記条件で行なえば、焼結鉱製造工程から高炉操業までの一貫工程における溶銑のコスト低減上一層有利であり、また、高炉における鉱石の還元性を良好保持できると共に、高炉スラグ比(kg−スラグ/t−溶銑)が低減して、高PCR高炉操業の安定化に寄与する。即ち、装入コークスを除く装入物の70mass%以上に、SiO≦4.5mass%で且つMgO≦1.3mass%の焼結鉱を用い、そして、高炉スラグのMgO含有率が、5.5〜8.5mass%の範囲内に入るよう調整するために、MgO源副原料を適宜装入する。ここで、MgO源副原料としては、蛇紋岩やドロマイト等を適宜用いる。
上述した高炉操業において、低シリコン溶銑が得られるように、例えば、溶銑Si濃度が0.30mass%以下となるように、炉熱レベルを適宜調整する。この場合、スラグのMgO=5.5〜8.5mass%に調節しておけば、高炉スラグ比は、270kg/t−溶銑以上であっても、300kg/t−溶銑以下であれば差し支えない。
なお、この発明のいずれの場合においても、高炉スラグ中のCaO(mass%)/SiO(mass%)(塩基度)が1.2〜1.3の範囲内で、且つAl濃度を13〜16mass%の範囲内に調整して高炉を操業することが望ましい。
スラグ塩基度を1.2〜1.3の範囲内に調整することにより、溶銑のS含有率を所定の目標値以下に安定してすることができる。また、前述した近年増加傾向にあるAl含有率の高い所謂高アルミナ鉄鉱石(例えば、Al≧3.0mass%)を多量に用いた焼結鉱を装入原料として使用することができ、鉄鉱石の原料需給工程上の制約解消に寄与すると共に、原料コスト低減に寄与する。
上記実施形態をとることにより、高炉操業状態及び炉内反応等において下記特徴的現象がみられる。即ち、スラグの成分組成中、特にMgO濃度を通常操業におけるよりも高くして5.5〜8.5mass%の範囲にしたので、スラグの粘性が低下すると共に、羽口先近傍の高温反応領域におけるMgの蒸気分圧が高くなる。スラグの粘性低下により炉芯部における通液性が改善され、溶融スラグが羽口先近傍の高温反応領域であるレースウェイ近傍を通らずにそのまま炉芯部を流下するようになるので、(1)式で示した(SiO)の微粉炭やコークスによる還元反応が抑制されて、SiOガスの生成が抑制される。更に、この領域におけるMgの蒸気分圧の上昇により、SiOガスの活量が低下するので、(2)式で示したSiOガスの溶銑中Cによる還元反応が抑制されて、溶銑中Si濃度の上昇が抑制される。かくして、溶銑のSi濃度を0.3mass%以下に制御することが可能となる。また、上記の通り、炉芯部における通液性が改善されるので、スラグ量の上限を300kg/t−溶銑まで許容しても、操業の安定性を確保することができる。
Al含有率を13〜16mass%の範囲内に調整することにより、前述の通り、鉄鉱石銘柄やコークス用原料炭銘柄を特定する必要がないことを意味し、使用する原燃料に自由度を与えることができる他に、スラグ粘性が上昇しない範囲内にあることを意味し、高炉操業を一層行ない易くすることができる。
このようにして、この発明の高炉操業方法により、微粉炭を羽口から多量に吹き込んでも、溶銑の低シリコン操業を安定して行なうことが可能となる。
図5は、高炉内への微粉炭吹込み方法の他の例を示す断面図、図6は、図5の側面図である。
図5および図6において、3は、羽口4に接続されたブローパイプ2内に挿入された2本の微粉炭吹込み用ランスである。ランス3は、その先端が羽口4側に向くように、各ランス3の中心軸線(l)がブローパイプ2の軸線(L)と交差しないように、そして、ブローパイプ2の中心軸線(O)に関して軸対称となるように配置されている。
微粉炭は、2本のランス3からキャリアガスと共に15m/sec程度の流速でブローパイプ2内に吹込まれるが、2本のランス3の先端は、同一直線上において対向せず、軸対称位置に配置されているので、微粉炭は互いに干渉されずにブローパイプ2内に吹込まれて,速やかにブローパイプ2内において拡散する。しかも、微粉炭は、ブローパイプ2内において旋回しながら羽口4側に移動するので、熱風中の酸素との接触効率が一段と良くなり、したがって、微粉炭の燃焼効率が向上する。キャリアガスは、窒素、空気、酸素、CO,COガスの内の少なくとも一つからなる。
この発明を実施例により更に説明する。
本発明に係る低シリコン溶銑の製造方法の範囲内にある実施例、及びその範囲外にある比較例について試験を行なった。実施例における高炉操業方法及び条件は、この発明の実施の形態において上述した方法及び条件に準じて行なった。表1〜2に試験結果を、表3、4に微粉炭及び焼結鉱の成分組成をそれぞれ示す。

Figure 0004325401
Figure 0004325401
Figure 0004325401
Figure 0004325401
試験における操業条件及び操業成績判定の指標として、炉熱レベルは出銑温度で、高炉の炉内全体の通気性は羽口上方1.5m位置から炉頂に至るガスの圧損で、スラグの粘性はスラグ樋におけるスラグオーバーフローの発生状況で、そして、高炉操業の安定性は出銑比で評価した。これらの結果より、下記事項が明らかである。
1.微粉炭吹込み比(PCR)が本発明の範囲外に低い120kg/t−溶銑の操業において、従来操業における通常の炉熱レベル条件で、本発明の範囲外に低い高炉スラグのMgO含有率(=5.0mass%)となるように装入物の配合調整をした場合には、溶銑Si濃度が所期目的を満たさない水準の高い値(Si含有率=0.30mass%)に留まっている(比較例1参照)。これに対して、比較例2の高炉操業においては、低Si溶銑を得るために、他の主要条件を比較例1と同一水準において、炉熱レベルを低下させると、溶銑Si濃度は低下するが、スラグ粘性の上昇や微粉炭の燃焼率の低下により、炉内の通気性が悪化する傾向を示し、操業の安定性が十分確保されない。
2.比較例1における操業条件を基準にして、PCRを本発明の範囲内となる150ないし200kg/t−溶銑に高めると(それぞれ比較例3、比較例4)、炉内全体の通気性が悪化し、特に高炉下部における通気・通液性が悪化する。その結果、高炉操業の安定性が悪くなる。
3.そこで、炉熱レベルを比較例2の低水準に対して通常水準まで高めて復旧させると同時に、PCRを本発明の範囲内に入る150ないし200kg/t−溶銑に高めた高炉操業において(それぞれ実施例1、実施例2)、スラグのMgO濃度を本発明の範囲内まで高めると、スラグの粘性が低下してスラグの流動性がよくなり、高炉下部における通気・通液性が改善・向上して炉下部の圧損が低減すると共に、溶銑Si濃度が低下して満足すべき低シリコン溶銑の製造が行なわれた。しかも、高炉操業の安定性も得られた。
4.次に、炉熱レベルを通常水準のままにおいて、焼結鉱のSiO含有率が一層低い焼結鉱を装入して、高炉スラグ比を低め、且つスラグのMgO濃度を本発明の範囲内まで高めた装入原料配合条件で操業した。その結果、炉内通気性は良好に保持されて高炉操業の安定性が確保され、更にスラグの粘性が低下し、またレースウェイ近傍における高温反応域におけるMgガス分圧の上昇が加わり、低シリコン溶銑を安定して製造することができたと、上記Mgガス分圧の上(実施例3、実施例4参照)。また、SiO含有率の低い焼結鉱の高炉装入比率を上げることにより、炉内還元性が向上し、生産性が一層向上した(実施例5、6参照)。
5.なお、実施例7の高炉操業では、実施例6の操業条件の内、炉熱レベルを通常水準よりも下げたが、スラグの流動性改善効果昇作用により、炉内通気性が確保されて安定操業が行なわれると共に、Si濃度の一層低い溶銑が製造された。
6.実施例8は実施例2とほぼ同条件で微粉炭吹込みのランスとして、偏芯ダブルランスを使用したものである。(実施例1から7はシングルランス使用)この結果、微粉炭の燃焼性が向上し、高炉の通気性を一定に確保したうえで実施例2では微粉炭200kg/tであったものが実施例8では216kg/tまで上昇し、尚且つスラグ粘性、Si濃度ともに上昇することはなかった。
7.実施例9は実施例6とほぼ同条件で偏芯ダブルランスを使用したものである。この場合は微粉炭を200kg/tと一定にした結果、スラグ比が低下しSi濃度の低下が得られた。
上述した通り、この発明によれば、特別に炉熱レベルを下げなくても、また高炉スラグ比を特に低下させなくても、150kg/t−溶銑以上の高PCR操業において、低シリコン溶銑を安定操業下において製造することができることがわかる。また、SiO含有率を適切に下げた焼結鉱の使用、適度の高炉スラグ比の低減、あるいは適度の炉熱レベル低下の採用を適宜組み合わせることにより、150kg/t−溶銑以上の高PCR操業において、一層の低Si濃度の溶銑を安定操業下において製造することができることが明らかとなった。
上述した通り、この発明の方法によれば、原料需給工程の制約を受けることなく、微粉炭を150kg/t−溶銑以上という高水準の多量吹込み高炉操業において、溶銑のSi濃度を低く抑えることができる操業を、安定して行なうことが可能となる。その場合、必ずしも、炉熱レベルを低く抑える必要はなく、また高炉スラグ比上限を厳しく制限する必要もない。このような高炉への微粉炭吹込み操業方法を提供することができ、工業上有用な効果がもたらされる。
【図面の簡単な説明】
図1(a)と(b)は、高炉への微粉炭吹込み方法の例を示す概略縦断面図である。
図2は、高炉スラグのMgO含有率とスラグ比との関係を例示するグラフである。
図3は、高炉スラグのMgO含有率と溶銑Si含有率との関係を例示するグラフである。
図4は、高炉スラグのMgO含有率に対する当該スラグの粘度の計算値との関係を例示するグラフである。
図5は、高炉内への微粉炭吹込み方法の他の例を示す断面図である。
図6は、図5の側面図である。Technical field
The present invention relates to a technique for stably producing low silicon hot metal in a blast furnace operation in which a large amount of pulverized coal (PC) is blown from the tuyeres of a blast furnace.
Background art
A blast furnace operation method that reduces the consumption of coke by blowing a large amount of pulverized coal from the blast furnace tuyere for the purpose of reducing hot metal production costs in the blast furnace and extending the life of the coke oven. Blast furnace operating methods have been developed to increase the replacement rate. An example of equipment for injecting pulverized coal into the blast furnace is shown in FIGS. 1 (a) and 1 (b). As shown in the schematic longitudinal sectional view in FIG. 1, a pulverized coal blowing lance 3 is provided by obliquely inserting the side wall of a blow pipe 2 for blowing into a furnace provided at the lower part of the blast furnace 1. The pulverized coal 5 is blown out into the hot air 7 flowing in the blow pipe 2 from the lance 3 for blowing coal and blown into the furnace of the blast furnace 1 from the tuyere 4. The pulverized coal 5 blown in this way burns in the blow pipe 2, the tuyere 4, and the raceway 6 formed in front of the tuyere 4, but part of the unburned char becomes char or in the coal. These volatiles burn incompletely and become soot, and these are brought into the furnace. Unburned char and soot are burned in the furnace, but if the amount of pulverized coal blown into the blast furnace increases, they are not completely burned and consumed but accumulate in the furnace or dust from the top of the furnace. It is discharged as a part of. Therefore, in order to exhibit the effect of a large amount of pulverized coal injection, it is necessary to improve the reaction efficiency of the pulverized coal, increase the coke replacement rate, and ensure stable blast furnace operation.
However, the operation of a blast furnace in which a large amount of pulverized coal is blown is generally easily affected by the properties and output of raw fuel, and operation fluctuations increase. As the amount of pulverized coal is increased, the heat flow ratio (heat capacity of the solid charge / gas heat capacity) decreases due to the increase of the ore / coke ratio (O / C) in the blast furnace, and the exhaust gas from the top of the furnace is brought out. As the sensible heat increases and the thermal efficiency decreases, the rate of temperature rise of the charge increases in the upper and middle parts of the furnace, the fusion zone moves upward in the lower part of the furnace, and the thickness increases. Deterioration due to increase in the residence time of the lump coke occurs, and the pressure loss in the furnace increases, causing fluctuations in operation.
Therefore, as countermeasures against such an increase in operational fluctuation and a decrease in thermal efficiency, the furnace heat level is raised to stabilize the operation. However, as a result, the hot metal temperature level increases and the Si concentration in the hot metal increases. Also, as the amount of pulverized coal increased, the ventilation / liquid permeability of the blast furnace lower core deteriorated due to an increase in the ore / coke ratio, deterioration of coke, or an increase in unburned char of pulverized coal. Inactivate. As a result, the slag begins to flow down the vicinity of the raceway, and the slag contains SiO 2 Is reduced by C of coke or pulverized coal to generate SiO gas, which is reduced by C in the hot metal, Si moves to hot metal, and the Si concentration in the hot metal increases. The situation during this time has the following chemical formula:
(SiO 2 ) + C (coke or PC)
= SiO (g) + CO (g) (1)
SiO (g) + [C] = [Si] + CO (g) (2)
It is represented by
The rise in the Si concentration in the hot metal is caused by SiO in the blast furnace. 2 It means that a large amount of heat was consumed to reduce the amount of heat. In addition, the desiliconization treatment outside the hot metal furnace after brewing increases the amount of desiliconizing agent used, resulting in enormous cost demerits. Therefore, in order to suppress this disadvantage, it is important to reduce the Si concentration of the hot metal in the blast furnace furnace.
Many techniques for reducing the Si concentration in the hot metal in a blast furnace have been proposed.
As a conventional general method, a method of lowering the hot metal temperature is performed (hereinafter referred to as “prior art 1”). However, this method has a drawback that the operating risk increases due to an increase in slag viscosity (slag fluidity deterioration) and a rapid decrease in hot metal temperature due to detachment of deposits in the blast furnace. In particular, the influence becomes large when a large amount of pulverized coal is injected.
As another method for lowering the hot metal Si concentration, JP-A-57-237402 discloses that iron oxide is blown together with pulverized coal and desiliconization reaction: [Si] +2 (FeO) = ( SiO 2 ) A method of reducing oxidation of Si in hot metal with + 2Fe was proposed (hereinafter referred to as “Prior Art 2”), and Japanese Patent Application Laid-Open No. 59-153812, which further improved Prior Art 2, disclosed pulverized coal together with iron oxide. By mixing and blowing CaO source or MgO source material, the slag is appropriately increased in basicity in the high temperature zone, and SiO (g) +2 (FeO) = (SiO 2 ) + 2Fe reaction and the above desiliconization reaction are promoted and high activity SiO produced by the above two reactions 2 Has been proposed in which slag is rapidly absorbed in high basicity slag to prevent re-siliconization reaction (hereinafter referred to as “prior art 3”).
Further, JP-A-61-37902 discloses blowing Mn ore powder together with pulverized coal, causing desiliconization reaction with (MnO) and (FeO) in a high temperature zone at the tuyere, A method for reducing oxidation has been proposed (hereinafter referred to as “prior art 4”). However, in these methods, it is necessary to add ore pulverization process or supply equipment to the tuyere of the crushed material for blowing oxide, and the hot metal production cost becomes very high.
JP-A-5-78718 discloses SiO in pulverized coal to be blown. 2 The following formulas (3) to (5):
SiO 2 (Coke) + C (Coke) = SiO (g) + CO (g)
………… (3)
(SiO 2 ) + [C] = SiO (g) + CO (g) (4)
SiO (g) + [C] = [Si] + CO (g) (5)
In order to suppress silicidation of molten iron by 2 A method has been proposed in which pulverized coal with a high content and low pulverized coal are placed in separate hoppers and the pulverized coal to be used is selected according to the target hot metal Si concentration (hereinafter referred to as “prior art 5”). However, in this method, since a separate hopper has to be installed and the charging has to be adjusted, the equipment cost is increased and the coal supply and demand process is restricted.
Japanese Patent Application Laid-Open No. 7-70616 discloses a method for reducing the concentration of base hot metal Si that has been made separately, as compared with non-slightly caking coal used for coke. 2 A method of reducing the hot metal Si concentration by using pulverized coal having a low content has been proposed (hereinafter referred to as “prior art 6”). However, according to this method, SiO 2 It is not realistic to continue long-term operation because coal with a low content rate is not necessarily cheap, or there are many restrictions on the supply and demand of raw materials due to restrictions on raw materials used.
As described above, the prior art 1 to the prior art 6 both have advantages and disadvantages, and there is no low blast furnace low Si operation technology in which a large amount of pulverized coal can be stably injected and an overall cost merit can be obtained. Absent. The basic items related to blast furnace operation of low Si hot metal production are summarized as follows, assuming that the supply and demand process of raw materials for blast furnace charge is not restricted in the operation of injecting large quantities of pulverized coal into the blast furnace. Here, the following formulas (1) and (2) are related to silica (silica),
(SiO 2 ) + C (coke or PC)
= SiO (g) + CO (g) (1)
SiO (g) + [C] = [Si] + CO (g) (2)
Formula (3) below:
(SiO 2 ) +2 [Fe] = [Si] + 2FeO (3)
These are the reaction formulas related to recovered silica (recovered Si) at the hearth pool.
Basic item 1: Lowering the Si concentration in the hot metal by lowering the temperature of the high-temperature reaction region at the tuyere and controlling the reaction rate and chemical equilibrium constant in formulas (1) and (2) to decrease. thing,
Basic matter 2: SiO in molten slag 2 The chemical concentration constant of the formula (1) is controlled to decrease, and the chemical equilibrium constant of the formula (2) is controlled to decrease, thereby reducing the Si concentration in the hot metal. Lowering,
Basic matter 3: By suppressing the molten slag from approaching the high temperature reaction area of the tuyere, SiO in the slag 2 By preventing the components from being involved in the reaction of the formula (1), and further suppressing the contact between the SiO gas and the hot metal, particularly in the high temperature reaction region of the tuyere, the reaction of the formula (2) Reducing the amount and suppressing the addition of silicon to the hot metal
Basic matter 4: Lowering the furnace heat level and operating at low temperature, lowering the reaction rate of equation (3) suppresses recovery (recovery Si) and decreases the reaction rate of equation (1) Suppressing the silicidation.
Conventionally, among the basic items 1 to 4 described above, reducing the furnace heat level, particularly reducing the temperature of the high-temperature reaction region at the tuyere is effective for reducing the Si concentration of the hot metal discharged from the blast furnace. A low temperature operation of a blast furnace has been widely adopted as a means and effective for suppressing recovery from molten slag (recovered Si) due to a decrease in hot metal temperature in the hearth pool.
However, as mentioned above, blast furnace operation with reduced hot metal temperature may lead to a rapid decrease in hot metal temperature due to an increase in slag viscosity or dropping of deposits in the furnace, increasing the risk of operational instability. With the disadvantage of letting. Such a tendency becomes more prominent, especially when the amount of pulverized coal blown is large, with the addition of a tendency to deteriorate the furnace air permeability.
Therefore, the present inventors, in a blast furnace operation with a large amount of pulverized coal injection, without changing the supply of special raw materials and without special procurement of high-quality raw materials, without changing the supply and supply process In accordance with the specified main raw materials and auxiliary raw materials given in advance, the internal pressure loss without causing an accidental dropout of deposits in the furnace that is likely to occur during low-temperature operation of the blast furnace by adjusting the composition of the raw materials. In particular, without increasing the pressure loss especially in the lower part of the furnace, and further, the hot metal descending path in the furnace dripping zone and the furnace core part in the lower part of the furnace is kept in the furnace as close as possible without approaching the high temperature area of the tuyere. It was noticed that it is effective to lower the central portion in the radial direction.
In this way, in particular, the emphasis of solving the problems of the present invention is placed on taking the measures described in the basic item 3 above, and as a method therefor, the maximum of the present invention is to reduce the viscosity of the blast furnace slag and increase its fluidity. It was an issue.
Next, in solving the above problems, aiming for a minimum cost of hot metal production, from the viewpoint of consistent cost reduction from the sinter production process to blast furnace operation, when using low-silica sintered ore appropriately as sintered ore Therefore, an object of the present invention is to develop an appropriate technology for reducing the viscosity of the blast furnace slag.
Disclosure of the invention
The object of the present invention is to perform a stable operation at a low cost without being restricted by the raw materials charged in the blast furnace when carrying out a large quantity of pulverized coal injection into the blast furnace. An object of the present invention is to provide a low silicon hot metal production method capable of reducing the consistent cost from a sintering process to a hot metal production process in a blast furnace using ore.
In order to achieve the above object, the present invention provides a method for producing a low silicon hot metal comprising:
[1] In the method for producing low silicon hot metal in the operation of injecting pulverized coal in a quantity of pulverized coal into the blast furnace in which 150 kg / t-molten or more hot metal is injected, the MgO content in the slag discharged from the blast furnace is 5.5 to 8. A method for producing a low silicon hot metal, characterized in that it is adjusted within a range of 5 mass%, and the Si concentration of the hot metal is controlled to 0.3 mass% or less.
[2] The method for producing low silicon hot metal as set forth in [1], wherein the blast furnace is operated at a temperature of 1470 ° C. or higher.
[3] A method for producing low silicon hot metal according to [1] or [2], wherein the blast furnace is operated at a slag ratio of 270 kg / t-hot metal or more.
[4] In the method for producing a low silicon hot metal as described in any one of [1] to [3], CaO (mass%) / SiO in the slag 2 (Mass%) within the range of 1.2 to 1.3, and Al in the slag 2 O 3 A method for producing a low silicon hot metal, characterized in that the blast furnace is operated within a concentration range of 13 to 16 mass%.
[5] In the method for producing low silicon hot metal in the operation of injecting pulverized coal at 150 kg / t-molten hot metal or more into a blast furnace, the amount of charged material excluding coke charged from the top of the furnace is 70 mass% or higher. , SiO 2 MgO content in the slag discharged from the blast furnace by charging sintered ore with a content of 4.5 mass% or less and an MgO content of 1.3 mass% or less. Is adjusted in the range of 5.5 to 8.5 mass%.
[6] The method for producing low silicon hot metal as described in [5], wherein the Si concentration of the low silicon hot metal is controlled to 0.30 mass% or less.
BEST MODE FOR CARRYING OUT THE INVENTION
The inventors of the present invention have made it possible to reduce the supply and demand conditions of raw fuel, the low cost of raw fuel, and the equipment cost, etc. in blast furnace operation (high PCR blast furnace operation) under high pulverized coal injection ratio (high PCR) conditions. As a precondition for maintaining the cost, first, in order to improve the fluidity of the blast furnace slag, the adjustment of the component composition of the blast furnace slag was examined.
The composition of the slag produced in the blast furnace consists of the content of slag components by main brand and subsidiary materials used and the composition of those components, and the content of slag components by brand of coal for producing coke and pulverized coal, and It varies depending on the composition and the like. The viscosity of the blast furnace slag varies depending on the composition of the slag, and further varies depending on the temperature of the slag and hence the hot metal temperature.
The main component of blast furnace slag is SiO 2 , CaO, MgO and Al 2 O 3 It consists of four components. Of these, SiO 2 And the content of CaO is the basicity of slag (CaOmass% / SiO 2 mass%) is one of the important determinants of the S concentration in the hot metal component. 2 And it is difficult to set each content rate of CaO independently. Therefore, SiO 2 It is not always appropriate to use the CaO content and the CaO content as adjustment factors for the slag viscosity. Slag Al 2 O 3 Content is Al 2 O 3 Is mainly contained in ash and ore in coke, so it fluctuates depending on the raw fuel supply-demand balance. For example, reflecting the depletion trend of high-grade iron ore in recent years, Al 2 O 3 The so-called high alumina iron ore with a high content is increasing. However, the price of high alumina iron ore has the advantage of being inexpensive. Therefore, Al in the slag 2 O 3 It is not a good idea to limit the content to below the conventional level, but it also involves difficulties in the iron ore raw material supply and demand process.
On the other hand, the MgO component in the blast furnace slag conventionally has its function in adjusting the viscosity of the slag. However, the setting of the MgO content in the slag is conventionally MgO—SiO, which is an MgO source auxiliary material. 2 Serpentine and MgO-CaO-based dolomite with a blast furnace slag ratio (slag amount per 1 ton of hot metal (kg)) below the target upper limit determined by specific blast furnace operating conditions, The slag is adjusted at the time of charging the blast furnace so that the MgO content in the slag becomes a necessary minimum value according to the raw material mixture ratio at that time.
Therefore, the present inventors examined the action and effect on the decrease in the viscosity of slag and the decrease in the Si concentration in the hot metal due to the increase in the MgO content in the slag.
Hereinafter, the operation data in the practical blast furnace are illustrated in FIGS.
FIG. 2 shows the relationship between the MgO content of slag and the slag ratio, and it can be seen that the slag ratio decreases as the MgO content increases.
FIG. 3 shows the relationship between the MgO content of the slag and the hot metal Si content. As the MgO content increases, the hot metal Si content decreases, and when the MgO content reaches about 7 mass%, the hot metal Si content is minimal. It is estimated that a value exists.
FIG. 4 shows the relationship between the calculated value of the slag viscosity with respect to the MgO content of the slag, and shows that the slag viscosity decreases as the MgO content increases. The variation in slag viscosity in the figure is mainly due to the difference in the composition of the main raw material between blast furnaces.
The following knowledge was acquired by the above.
1. By increasing the MgO concentration in the molten slag, the viscosity of the slag is lowered. As a result, the dripping zone at the bottom of the blast furnace and the flow path of the molten slag at the core part below the blast furnace are prevented from deviating toward the high temperature reaction region near the raceway formed in front of the tuyere, It will come down straight down. As a result, the reaction of the above formulas (1) and (2) can be suppressed, and the siliconization to the hot metal can be suppressed.
2. By increasing the MgO concentration in the molten slag, the Mg gas vapor pressure in the high-temperature reaction region near the raceway is increased, and the SiO gas partial pressure in the reaction of the formula (2) is decreased to reduce the SiO gas activity. By suppressing the reaction of the formula (2), SiO in the slag 2 It is possible to suppress an increase in the Si concentration in the hot metal by suppressing the transfer of Si into the hot metal due to the reduction of the hot metal.
3. In addition to the above items 1 and 2, further low-temperature operation of the blast furnace makes it possible to produce even lower Si hot metal under stable operation.
4). Conventionally, it was thought that the pressure loss at the bottom of the furnace increased as the slag ratio increased. However, the present inventors, as an index representing the air permeability of the entire blast furnace, have now increased from the position 1.5 m above the tuyere. As a result of examining the relationship between the slag ratio and the index (-) indicating the in-furnace air permeability, by converting the air permeability based on the pressure loss in the furnace up to the time to the index (-) display, the MgO content in the slag Is increased to the range of 5.5 to 8.5 mass%, even in blast furnace operation where pulverized coal is blown at 150 kg / t-molten iron or more, the temperature of the brewing is kept at 1480 ° C. or more, and the slag ratio is 300 kg / t-molten metal. It was found that a stable low silicon operation can be achieved without deteriorating the furnace air permeability as long as it is below.
The present invention has been made based on the above findings.
The method for producing low silicon hot metal according to the present invention is the method for producing low silicon hot metal in the operation of injecting pulverized coal in a large quantity of pulverized coal into a blast furnace, in which pulverized coal is injected at 150 kg / t-molten or more. MgO in slag discharged from the blast furnace It is characterized in that the content rate is adjusted within the range of 5.5 to 8.5 mass%, and the Si concentration of the hot metal is controlled to 0.3 mass% or less.
In the pulverized coal injection facility in the blast furnace shown in FIG. 1, the method of the present invention is performed as follows. From the lance 3 for injecting pulverized coal into the blow pipe 2 attached to the tuyere 4 part of the blast furnace 1 obliquely, the pulverized coal is introduced into the blast furnace 1 together with hot air 7 at 150 kg / t-hot metal or more. Blow and produce hot metal. In this blast furnace operation, the charging material is charged so that the MgO content is within the range of 5.5 to 8.5 mass% in the composition of the blast furnace slag discharged from the tap 8. Consider the slagging component composition in the raw material and the auxiliary raw material, and determine the charging amount. In addition, the furnace heat level is a low temperature that is conventionally employed in a high heat level operation such as that employed in a conventional blast furnace operation with a pulverized coal injection ratio of 150 kg / t-molten or higher, or a low Si molten iron production operation. There is no going out operation. No other special action is required for other blast furnace operating conditions.
Regarding the blending ratio of the charging raw material and the charging coke, the composition of the blast furnace slag is adjusted so that MgO is 5.5 to 8.5 mass%, and the furnace heat level does not become a low temperature operation, for example, If the temperature of the iron is about 1480 ° C. or higher, there is no particular limitation, but if it is performed under the following conditions, it is more advantageous in reducing the cost of the hot metal in the integrated process from the sintered ore production process to the blast furnace operation. In addition, the reductivity of the ore in the blast furnace can be maintained well, and the blast furnace slag ratio (kg-slag / t-molten metal) is reduced, contributing to stabilization of the high PCR blast furnace operation. That is, at least 70 mass% of the charge excluding charge coke, 2 In order to adjust the MgO content of the blast furnace slag to fall within the range of 5.5 to 8.5 mass% using a sintered ore with ≦ 4.5 mass% and MgO ≦ 1.3 mass% Source and auxiliary materials are appropriately charged. Here, as the MgO source auxiliary material, serpentine, dolomite, or the like is appropriately used.
In the blast furnace operation described above, the furnace heat level is appropriately adjusted so that, for example, the hot metal Si concentration is 0.30 mass% or less so that low silicon hot metal is obtained. In this case, if the MgO of the slag is adjusted to 5.5 to 8.5 mass%, the blast furnace slag ratio may be 270 kg / t-hot metal or more, but 300 kg / t-hot metal or less.
In any case of the present invention, CaO (mass%) / SiO in blast furnace slag 2 (Mass%) (basicity) is in the range of 1.2 to 1.3, and Al 2 O 3 It is desirable to operate the blast furnace by adjusting the concentration within a range of 13 to 16 mass%.
By adjusting the slag basicity within the range of 1.2 to 1.3, the S content of the hot metal can be stabilized to a predetermined target value or less. In addition, Al has been increasing in recent years. 2 O 3 A so-called high alumina iron ore with a high content (for example, Al 2 O 3 Sintered ore using a large amount of ≧ 3.0 mass%) can be used as a charging raw material, which contributes to eliminating constraints on the iron ore raw material supply and demand process and contributes to reducing raw material costs.
By taking the above embodiment, the following characteristic phenomenon is observed in the operating condition of the blast furnace and the reaction in the furnace. That is, in the component composition of slag, the MgO concentration is set higher than that in normal operation to be in the range of 5.5 to 8.5 mass%, so that the viscosity of the slag is reduced, and in the high temperature reaction region near the tuyere. The vapor partial pressure of Mg increases. As the viscosity of the slag decreases, the liquid permeability in the furnace core is improved, and the molten slag flows down the furnace core as it is without passing through the vicinity of the raceway, which is the high-temperature reaction area near the tuyere tip. (1) (SiO 2 ) Of pulverized coal and coke is suppressed, and generation of SiO gas is suppressed. Furthermore, since the activity of the SiO gas decreases due to an increase in the Mg vapor partial pressure in this region, the reduction reaction due to C in the hot metal of the SiO gas represented by the formula (2) is suppressed, and the Si concentration in the hot metal is reduced. The rise is suppressed. Thus, the Si concentration of the hot metal can be controlled to 0.3 mass% or less. Moreover, since the liquid permeability in a furnace core part is improved as above-mentioned, even if it accept | permits the upper limit of slag amount to 300 kg / t-molten metal, stability of operation is securable.
Al 2 O 3 By adjusting the content rate within the range of 13 to 16 mass%, as described above, it means that it is not necessary to specify the iron ore brand and coking coal brand, and give the raw fuel to be used a degree of freedom. In addition, it means that the slag viscosity is not increased, and the blast furnace operation can be further facilitated.
In this way, the blast furnace operating method of the present invention makes it possible to stably perform hot silicon low silicon operation even when a large amount of pulverized coal is blown from the tuyere.
FIG. 5 is a sectional view showing another example of the method for injecting pulverized coal into the blast furnace, and FIG. 6 is a side view of FIG.
5 and 6, reference numeral 3 denotes two pulverized coal blowing lances inserted into the blow pipe 2 connected to the tuyere 4. The lances 3 are arranged such that the center axis (l) of each lance 3 does not intersect the axis (L) of the blow pipe 2 so that the tip thereof faces the tuyere 4 side, and the center axis (O ) With respect to the axis.
The pulverized coal is blown into the blow pipe 2 from the two lances 3 together with the carrier gas at a flow velocity of about 15 m / sec. However, the tips of the two lances 3 do not face each other on the same straight line, and are axially symmetric positions. Therefore, the pulverized coal is blown into the blow pipe 2 without interfering with each other and quickly diffuses in the blow pipe 2. Moreover, since the pulverized coal moves to the tuyere 4 side while turning in the blow pipe 2, the contact efficiency with oxygen in the hot air is further improved, and therefore the combustion efficiency of the pulverized coal is improved. Carrier gas is nitrogen, air, oxygen, CO, CO 2 It consists of at least one of the gases.
The invention is further illustrated by the examples.
Tests were carried out on examples within the scope of the method for producing low silicon hot metal according to the present invention and comparative examples outside the scope. The blast furnace operating methods and conditions in the examples were performed in accordance with the methods and conditions described above in the embodiment of the present invention. Test results are shown in Tables 1 and 2, and component compositions of pulverized coal and sintered ore are shown in Tables 3 and 4, respectively.
Figure 0004325401
Figure 0004325401
Figure 0004325401
Figure 0004325401
As an index for determining the operating conditions and operating results in the test, the furnace heat level is the tapping temperature, and the air permeability of the entire blast furnace is the pressure loss of the gas from the position 1.5 m above the tuyere to the top of the furnace, and the slag viscosity Was the occurrence of slag overflow in the slag tank, and the stability of blast furnace operation was evaluated by the output ratio. From these results, the following matters are clear.
1. The blast furnace slag MgO content (out of the range of the present invention) under the normal furnace heat level conditions in the conventional operation in the operation of 120 kg / t-molten steel with a low pulverized coal injection ratio (PCR) outside the range of the present invention ( = 5.0 mass%) When the charging composition is adjusted so that the molten iron Si concentration does not meet the intended purpose, the hot metal Si concentration remains at a high value (Si content = 0.30 mass%). (See Comparative Example 1). On the other hand, in the blast furnace operation of Comparative Example 2, when the furnace heat level is lowered at the same level as Comparative Example 1 in order to obtain low Si hot metal, the hot metal Si concentration is reduced. The increase in slag viscosity and the decrease in the combustion rate of pulverized coal tend to deteriorate the air permeability in the furnace, and the operation stability is not sufficiently ensured.
2. When the PCR is increased to 150 to 200 kg / t-molten iron within the scope of the present invention based on the operating conditions in Comparative Example 1 (Comparative Example 3 and Comparative Example 4 respectively), the air permeability of the entire furnace deteriorates. Especially, the air permeability and liquid permeability at the lower part of the blast furnace deteriorate. As a result, the stability of blast furnace operation deteriorates.
3. Therefore, in the blast furnace operation in which the furnace heat level was raised to the normal level with respect to the low level of Comparative Example 2 and was restored, and at the same time, the PCR was increased to 150 to 200 kg / t-molten iron, which falls within the scope of the present invention. Example 1 and Example 2) When the MgO concentration in the slag is increased within the range of the present invention, the viscosity of the slag is lowered and the fluidity of the slag is improved, and the ventilation and liquid permeability in the lower part of the blast furnace are improved and improved. As a result, the pressure loss at the bottom of the furnace was reduced, and the hot metal Si concentration was lowered to produce a satisfactory low silicon hot metal. Moreover, the stability of blast furnace operation was also obtained.
4). Next, with the furnace heat level kept at the normal level, the sintered ore SiO2 2 The sintered ore having a lower content rate was charged, and the blast furnace slag ratio was lowered and the MgO concentration of the slag was increased to the range of the present invention, and the operation was performed under the charging raw material blending conditions. As a result, the air permeability in the furnace is well maintained, the stability of blast furnace operation is ensured, the viscosity of the slag is further reduced, and the Mg gas partial pressure in the high temperature reaction zone near the raceway is increased, resulting in low silicon When the hot metal could be manufactured stably, the Mg gas partial pressure was increased (see Examples 3 and 4). In addition, SiO 2 By increasing the blast furnace charging ratio of sintered ore with a low content, furnace reducibility was improved and productivity was further improved (see Examples 5 and 6).
5. In the blast furnace operation of Example 7, the furnace heat level was lowered from the normal level among the operation conditions of Example 6. However, the slag fluidity improvement effect was increased and the air permeability in the furnace was secured and stabilized. As the operation was performed, hot metal with a lower Si concentration was produced.
6). Example 8 uses an eccentric double lance as a lance for blowing pulverized coal under substantially the same conditions as in Example 2. (Examples 1 to 7 use a single lance) As a result, the combustibility of the pulverized coal was improved and the air permeability of the blast furnace was ensured to be constant, and in Example 2, the pulverized coal was 200 kg / t. No. 8 increased to 216 kg / t, and neither slag viscosity nor Si concentration increased.
7). Example 9 uses an eccentric double lance under substantially the same conditions as in Example 6. In this case, as a result of making pulverized coal constant at 200 kg / t, the slag ratio was lowered and the Si concentration was lowered.
As described above, according to the present invention, low silicon hot metal can be stabilized in a high PCR operation of 150 kg / t-hot metal or higher without specially reducing the furnace heat level and without particularly reducing the blast furnace slag ratio. It can be seen that it can be produced in operation. In addition, SiO 2 By appropriately combining the use of sintered ore with an appropriately reduced content, the appropriate reduction of the blast furnace slag ratio, or the adoption of an appropriate decrease in the furnace heat level, in a high PCR operation of 150 kg / t-hot metal or more, It became clear that hot metal having a low Si concentration can be produced under stable operation.
As described above, according to the method of the present invention, the Si concentration in the hot metal is kept low in the operation of a large amount of blast coal at a high level of 150 kg / t-molten or higher, without being restricted by the raw material supply and demand process. Can be performed stably. In that case, it is not always necessary to keep the furnace heat level low, and it is not necessary to strictly limit the upper limit of the blast furnace slag ratio. Such a method for injecting pulverized coal into the blast furnace can be provided, and industrially useful effects are brought about.
[Brief description of the drawings]
FIGS. 1A and 1B are schematic longitudinal sectional views showing an example of a method for injecting pulverized coal into a blast furnace.
FIG. 2 is a graph illustrating the relationship between the MgO content of blast furnace slag and the slag ratio.
FIG. 3 is a graph illustrating the relationship between the MgO content of the blast furnace slag and the hot metal Si content.
FIG. 4 is a graph illustrating the relationship between the calculated value of the viscosity of the slag and the MgO content of the blast furnace slag.
FIG. 5 is a cross-sectional view showing another example of a method for injecting pulverized coal into a blast furnace.
FIG. 6 is a side view of FIG.

Claims (4)

高炉の羽口から微粉炭を溶銑トン当たり少なくとも150kg以上吹き込む工程;
高炉の炉頂から焼結鉱、コークスとMgO源副原料を装入する工程;
前記高炉から溶銑と溶融スラグを排出する工程;
前記MgO源副原料を装入する工程により前記高炉から排出されるスラグのMgO含有率を5.5〜8.5mass%に調整する工程;
前記スラグのMgO含有率を5.5〜8.5mass%に調整する工程により溶融スラグが炉芯部を流下するようにして、羽口先近傍の高温反応領域におけるMgの蒸気分圧の上昇により溶銑中Si濃度上昇を抑制する工程;
前記溶銑のSi濃度を0.3mass%以下に制御する工程
さらに、スラグ比を溶銑トン当たり少なくとも270kg以上、300kg以下に制御する工程、
を有する低シリコン溶銑の製造方法。
Blowing at least 150 kg of pulverized coal from the blast furnace tuyeres per ton of hot metal;
Charging sinter, coke and MgO source auxiliary materials from the top of the blast furnace;
Discharging hot metal and molten slag from the blast furnace;
Adjusting the MgO content of the slag discharged from the blast furnace to 5.5 to 8.5 mass% by the step of charging the MgO source auxiliary material ;
The molten slag flows down the furnace core by adjusting the MgO content of the slag to 5.5 to 8.5 mass%, and the molten iron is increased by the increase in the partial pressure of Mg vapor in the high temperature reaction region near the tuyere. Suppressing the increase in the concentration of medium Si;
Controlling the Si concentration of the hot metal to 0.3 mass% or less ;
Furthermore, the step of controlling the slag ratio to at least 270 kg or more and 300 kg or less per ton of hot metal,
The manufacturing method of the low silicon hot metal which has this.
さらに、高炉から排出される溶銑の温度を少なくとも1480℃以上に制御する工程を有する請求1に記載の低シリコン溶銑の製造方法。Furthermore, the manufacturing method of the low silicon hot metal of Claim 1 which has the process of controlling the temperature of the hot metal discharged | emitted from a blast furnace to at least 1480 degreeC or more. さらに、前記スラグ中のCaO(mass%)/SiO(mass%)を1.2〜1.3の範囲に、且つ当該スラグ中Al濃度を13〜16mass%の範囲に制御する工程を有する請求1に記載の低シリコン溶銑の製造方法。Further, CaO (mass%) of the slag / SiO 2 of (mass%) in the range of 1.2 to 1.3, and the step of controlling the slag in the concentration of Al 2 O 3 in the range of 13~16Mass% The manufacturing method of the low silicon hot metal of Claim 1 which has these. 高炉の羽口から微粉炭を溶銑トン当たり少なくとも150kg以上吹き込む工程;
高炉の炉頂から焼結鉱、コークスとMgO源副原料を装入する工程;
前記焼結鉱の割合を、装入されるコークスを除く装入物の70mass%以上に制御する工程;
前記焼結鉱のSiO含有率を4.5mass%以下に、且つMgO含有率を1.3mass%以下に制御する工程;
前記高炉から溶銑と溶融スラグを排出する工程;
MgO源副原料の装入量を制御することにより高炉から排出されるスラグ中のMgO含有率を5.5〜8.5mass%の範囲内に調整する工程
前記スラグのMgO含有率を5.5〜8.5mass%に調整する工程により溶融スラグが炉芯部を流下するようにして、羽口先近傍の高温反応領域におけるMgの蒸気分圧の上昇により溶銑中Si濃度上昇を抑制する工程;
前記溶銑のSi濃度を0.30mass%以下に制御する工程;
さらに、スラグ比を溶銑トン当たり少なくとも270kg以上、300kg以下に制御する工程、
を有する低シリコン溶銑の製造方法。
Blowing at least 150 kg of pulverized coal from the blast furnace tuyeres per ton of hot metal;
Charging sinter, coke and MgO source auxiliary materials from the top of the blast furnace;
Controlling the ratio of the sintered ore to 70 mass% or more of the charged material excluding the charged coke;
Controlling the SiO 2 content of the sintered ore to 4.5 mass% or less and the MgO content to 1.3 mass% or less;
Discharging hot metal and molten slag from the blast furnace;
Adjusting the MgO content in the slag discharged from the blast furnace within the range of 5.5 to 8.5 mass% by controlling the amount of the MgO source auxiliary material charged ;
The molten slag flows down the furnace core by adjusting the MgO content of the slag to 5.5 to 8.5 mass%, and the molten iron is increased by the increase in the partial pressure of Mg vapor in the high temperature reaction region near the tuyere. Suppressing the increase in the concentration of medium Si;
Controlling the Si concentration of the hot metal to 0.30 mass% or less;
Furthermore, the step of controlling the slag ratio to at least 270 kg or more and 300 kg or less per ton of hot metal,
The manufacturing method of the low silicon hot metal which has this.
JP2003562340A 2002-01-24 2003-01-23 Manufacturing method of low silicon hot metal Expired - Lifetime JP4325401B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002015702 2002-01-24
JP2002015702 2002-01-24
PCT/JP2003/000587 WO2003062473A1 (en) 2002-01-24 2003-01-23 Method for producing low silicon hot-metal

Publications (2)

Publication Number Publication Date
JPWO2003062473A1 JPWO2003062473A1 (en) 2005-05-26
JP4325401B2 true JP4325401B2 (en) 2009-09-02

Family

ID=27606118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003562340A Expired - Lifetime JP4325401B2 (en) 2002-01-24 2003-01-23 Manufacturing method of low silicon hot metal

Country Status (6)

Country Link
JP (1) JP4325401B2 (en)
KR (1) KR100611167B1 (en)
CN (1) CN1615370A (en)
BR (1) BR0307107A (en)
TW (1) TWI223006B (en)
WO (1) WO2003062473A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751180B2 (en) * 2005-10-31 2011-08-17 新日本製鐵株式会社 Blast furnace operation method
JP7130898B2 (en) 2019-03-28 2022-09-06 株式会社神戸製鋼所 Blast furnace operation method
CN111057807B (en) * 2020-01-07 2021-08-17 武钢集团昆明钢铁股份有限公司 Smelting method of ultralow-silicon low-sulfur qualified pig iron

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215620A (en) * 1990-01-19 1991-09-20 Nkk Corp Method for blowing flux into blast furnace
JP3238037B2 (en) * 1994-10-05 2001-12-10 新日本製鐵株式会社 Blast furnace operation
JP3874313B2 (en) * 1996-07-16 2007-01-31 新日本製鐵株式会社 Blast furnace operation method
JPH1129803A (en) * 1997-07-10 1999-02-02 Nippon Steel Corp Operation of blast furnace using high reducibility sintered ore
JP4598204B2 (en) * 1997-07-23 2010-12-15 新日本製鐵株式会社 Blast furnace operation method when a large amount of pulverized coal is injected
JP2001107114A (en) * 1999-10-06 2001-04-17 Nippon Steel Corp Operation of blast furnace using highly reducible sintered ore

Also Published As

Publication number Publication date
KR100611167B1 (en) 2006-08-09
TW200302284A (en) 2003-08-01
KR20040071287A (en) 2004-08-11
WO2003062473A1 (en) 2003-07-31
BR0307107A (en) 2004-12-28
TWI223006B (en) 2004-11-01
CN1615370A (en) 2005-05-11
JPWO2003062473A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
EP2210959B1 (en) Process for producing molten iron
JP4325401B2 (en) Manufacturing method of low silicon hot metal
JP4325128B2 (en) Low silicon operation method in blast furnace mass injection into blast furnace.
JP2004263258A (en) Method for operating blast furnace
JP3964963B2 (en) Pulverized coal injection method in blast furnace
JP2983087B2 (en) Operation method of smelting reduction
JP2933809B2 (en) Operating method of moving bed type scrap melting furnace
JPH0913107A (en) Operation of blast furnace
JP2004027265A (en) Method for operating blast furnace performing blow-in of pulverlized fine coal
JPH06108126A (en) Operation of blast furnace
JPH07278624A (en) Operation method to blow large amount of pulverized carbon to blast furnace
JP5400600B2 (en) Blast furnace operation method
KR100356156B1 (en) A method for promoting combustibility in balst furnace
JP4585075B2 (en) Blast furnace operation method using metallic iron-based raw materials
JPH04110405A (en) Method for operating blast furnace
JPH04268001A (en) Method for operating blast furnace
JP2837282B2 (en) Production method of chromium-containing hot metal
JPH07146072A (en) Cupola type scrap melting furnace
JPH09170008A (en) Operation method for blowing large amount of pulverized coat in blast furnace
JPH11310808A (en) Operation of blast furnace
JP2002020810A (en) Blast furnace operating method
JP2002060809A (en) Low furnace heat blast furnace operation method using sintered ore having controlled chemical composition
JPH05287338A (en) Method for operating blast furnace
JPH05255718A (en) Method for operating blast furnace
JPH0637646B2 (en) Method for producing low Si concentration hot metal in blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4325401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140619

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term