JPH09256021A - Device for calculating charging quantity of auxiliary raw material into converter - Google Patents

Device for calculating charging quantity of auxiliary raw material into converter

Info

Publication number
JPH09256021A
JPH09256021A JP8062509A JP6250996A JPH09256021A JP H09256021 A JPH09256021 A JP H09256021A JP 8062509 A JP8062509 A JP 8062509A JP 6250996 A JP6250996 A JP 6250996A JP H09256021 A JPH09256021 A JP H09256021A
Authority
JP
Japan
Prior art keywords
raw material
auxiliary raw
converter
physical model
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8062509A
Other languages
Japanese (ja)
Inventor
Miyako Nishino
都 西野
Akira Kitamura
章 北村
Tomomi Omori
知美 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8062509A priority Critical patent/JPH09256021A/en
Publication of JPH09256021A publication Critical patent/JPH09256021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a calculating device for calculating charging quantity of auxiliary saw materials into a converter which make the operation of the converter economical by suitably restraining the charging quantity of the auxiliary raw material in the min. limit. SOLUTION: At the time of deciding the quantity of the auxiliary raw material to be charged in order to approach the molten steel component concn. in the converter to a target valve, in this device, the optimization calculation is executed by using physical model under commiseration of a material balance and an equilibrium reaction. B this method, unevenness of the component concn. at the time of stopping the blowing can be reduced. As a result, the accuracy of the component to be adjusted can unlimitedly be approached to the upper limit value, and the economical operation of charging quantity of the auxiliary raw material can be attained by restraining the changing quantity of the anxiusiliar raw material suitably as min. as possible. Further, the ull of a physical model renewed in succession at each time of measuring the slag component becomes possible, and the accuracy is not lowered even by the change is operational condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,転炉の副原料投入
量計算装置に係り,詳しくは転炉において溶鋼中の所定
の成分濃度を調整するために投入される焼石灰,ロー
石,転ドロ,生ドロ,蛍石といった副原料の最適投入量
を計算する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an auxiliary raw material input amount calculation device for a converter, and more particularly, to burned lime, roe stone, and a transfer material which are input to adjust a predetermined component concentration in molten steel in the converter. It relates to a device that calculates the optimum amount of auxiliary materials such as muddy, raw muddy, and fluorite.

【0002】[0002]

【従来の技術】転炉で行われている溶鋼成分の調整にお
いては,品質保持のため,溶鋼中の硫黄(S),リン
(P),ケイ素(Si),それぞれの濃度について規格
目標値が設定され,これを超えないように成分調整を行
わなければならない。しかし,被調整成分の濃度を単に
低く設定すればよいと言うものではない。被調整成分の
濃度を低くしようとすればするほど副原料の投入量を増
加する必要があり,コスト面では不利となってしまうか
らである。従って,品質とコストの両立のために,上記
規格目標値を上限値として被調整成分の濃度が該上限値
を超えない範囲で,かつ,できる限り上限値に近い値に
設定することが望ましい。この点,従来の副原料投入量
計算装置においては,被調整成分の設定濃度に対する副
原料の投入量の決定は,経験により得たデータをまとめ
たテーブル値参照による単純な加減乗除のみの計算によ
って行われていた。しかしながら,上記被調整成分の調
整は,本来的に転炉への副原料投入前後の物質バランス
の上に成立すると共に,成分比率の平衡が保たれるとい
う平衡反応としての性格を備えており,これらの原則を
考慮した精度の高い計算は従来なされていなかった。
2. Description of the Related Art In the adjustment of molten steel components performed in a converter, in order to maintain quality, standard target values for sulfur (S), phosphorus (P), silicon (Si) It is set, and the components must be adjusted so that it does not exceed this. However, this does not mean that the concentration of the component to be adjusted may simply be set low. This is because the lower the concentration of the component to be adjusted, the larger the amount of auxiliary raw material to be input, which is disadvantageous in terms of cost. Therefore, in order to achieve both quality and cost, it is desirable to set the standard target value as an upper limit value within a range in which the concentration of the component to be adjusted does not exceed the upper limit value, and as close as possible to the upper limit value. In this respect, in the conventional auxiliary raw material input amount calculation device, the auxiliary raw material input amount with respect to the set concentration of the component to be adjusted is determined by a simple addition, subtraction, multiplication and division calculation based on a table value that summarizes the empirical data. It was done. However, the above-mentioned adjustment of the components to be adjusted is originally established on the basis of the material balance before and after the introduction of the auxiliary raw material into the converter, and has the characteristic of an equilibrium reaction in which the equilibrium of the component ratios is maintained. Highly accurate calculations that consider these principles have not been made in the past.

【0003】[0003]

【発明が解決しようとする課題】上記のように従来の副
原料投入量計算装置では,化学的な物質バランス,平衡
反応が考慮されておらず,従ってチャージ毎に吹止溶鋼
成分濃度に大きなばらつきが生じる欠点を有し,また,
転炉の耐火物の溶損や張り替え等による操業状態の変化
が考慮されていないため,これが吹止溶鋼成分濃度の精
度をさらに低下させる要因となっていた。そのため,被
調整成分の設定濃度を安全を見て必要以上に低めに設定
せざるをえず,より多くの副原料を必要とし,コスト高
となっていた。従って,本発明の目的は,吹止溶鋼成分
濃度のばらつきが小さく,かつ,操業状態が変化しても
精度が低下せず,しかも副原料の量を適正に調整できて
コスト高にならない転炉の副原料投入量計算装置を提供
することである。
As described above, the conventional auxiliary raw material input amount calculation device does not consider the chemical substance balance and the equilibrium reaction, so that the concentration of the blown molten steel component varies greatly from charge to charge. Has the drawback that
This did not take into consideration changes in the operating conditions due to melting damage or refilling of the refractory material in the converter, which was a factor that further reduced the accuracy of the blown molten steel component concentration. For this reason, the set concentration of the component to be adjusted has to be set lower than necessary in view of safety, and more auxiliary raw materials are required, resulting in high cost. Therefore, an object of the present invention is to provide a converter in which variations in blown-blown molten steel component concentration are small, accuracy is not deteriorated even when operating conditions change, and the amount of auxiliary raw materials can be appropriately adjusted to increase cost. It is to provide an auxiliary raw material input amount calculation device.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に第1の発明は,転炉中の溶鋼成分濃度を目標値に近づ
けるために投入する副原料の量を算定する副原料投入量
計算装置において,物質バランス及び平衡反応を考慮し
た物理モデルを用いた最適計算を行うことによって各副
原料の投入量を算定することを特徴とする転炉の副原料
投入量計算装置として構成されている。第2の発明は,
スラグ成分を測定する度に,上記物理モデルを逐次更新
することを特徴とする転炉の副原料投入量計算装置であ
る。更に,上記物理モデルの更新を,逐次型最小自乗法
を用いて行う転炉の副原料投入量計算装置である。更
に,上記物理モデルの更新を,ニューラルネットワーク
で学習させたニューロモデルを用いて行う転炉の副原料
投入量計算装置である。更に,上記物理モデル全体がニ
ューロモデルにより構成されてなる転炉の副原料投入量
計算装置である。更に,上記副原料投入によって調整さ
れる溶鋼中の対象成分を,S,Si,Pのうちのいずれ
か,又は複数とする転炉の副原料投入量計算装置であ
る。
[Means for Solving the Problems] To achieve the above object, the first invention is to calculate the amount of auxiliary raw material input for calculating the amount of auxiliary raw material to be input in order to bring the molten steel component concentration in the converter closer to the target value. It is configured as an auxiliary raw material input amount calculation device for a converter, which is characterized in that the input amount of each auxiliary raw material is calculated by performing an optimum calculation using a physical model considering the material balance and equilibrium reaction. . The second invention is
It is an auxiliary raw material input amount calculation device for a converter characterized by successively updating the physical model each time the slag component is measured. Furthermore, it is a device for calculating the amount of auxiliary raw material input to the converter, which updates the physical model by using the successive least squares method. Furthermore, it is a device for calculating the amount of auxiliary raw material input to the converter, which uses a neuro model trained by a neural network to update the physical model. Further, it is an auxiliary raw material input amount calculation device for a converter in which the entire physical model is constituted by a neuro model. Further, it is an auxiliary raw material input amount calculation device for a converter in which a target component in molten steel adjusted by the input of the auxiliary raw material is any one or a plurality of S, Si and P.

【0005】[0005]

【作用】上記第1の発明においては,転炉中の溶鋼成分
濃度を目標値に近づけるために投入する副原料の量を決
定する副原料投入量計算装置において,物質バランス及
び平衡反応を考慮した物理モデルを用いた最適計算を行
うことによって各副原料の投入量を決定する。従って吹
止溶鋼成分濃度のばらつきを小さくすることができる。
以上の結果,被調整成分の濃度をその上限値に限りなく
近づけることができ,副原料の投入量を最小限に抑え
た,経済的な運用が可能となる。更に,第2の発明にお
いては,スラグ成分を測定する度に,上記物理モデルを
逐次更新することが可能であるため,操業状態が変化し
ても精度が低下しない。
In the first aspect of the present invention, the balance and equilibrium reaction are taken into consideration in the auxiliary raw material input amount calculation device for determining the amount of the auxiliary raw material to be input in order to bring the molten steel component concentration in the converter closer to the target value. The input amount of each auxiliary material is determined by performing the optimum calculation using the physical model. Therefore, it is possible to reduce the variation in the blown molten steel component concentration.
As a result, the concentration of the component to be adjusted can be made as close as possible to its upper limit value, and economical operation can be achieved with the amount of auxiliary raw material input minimized. Furthermore, in the second aspect of the invention, the physical model can be sequentially updated each time the slag component is measured, so that the accuracy does not decrease even if the operating state changes.

【0006】[0006]

【発明の実施の形態】以下,図面を参照して本発明を具
体化した実施の形態について説明し,本発明の理解に供
する。なお,この実施の形態,及びそれに続く実施例は
本発明の実施の具体例であり,本発明の技術的範囲を限
定する性格のものではない。以下の実施形態では,被調
整成分として「リン」を採り上げているが,この発明は
後述するように「リン」の調整に限られるものではな
く,例えば,「ケイ素」,「硫黄」その他についても同
様に適用可能である。ここに,図1は本発明の実施例に
係る転炉の副原料投入量計算装置の概略構成を示す模式
図,図2は本発明の実施例に係る転炉の副原料投入量計
算装置の処理フローを示す図,図3は逐次型最小自乗法
による,スラグ成分測定ごとの各パラメータの変動を示
す図,図4はニューラルネットワークの構成を示す模式
図である。
Embodiments of the present invention will be described below with reference to the drawings to provide an understanding of the present invention. It should be noted that this embodiment and the examples that follow are specific examples of the implementation of the present invention and are not of the nature to limit the technical scope of the present invention. In the following embodiments, "phosphorus" is used as the component to be adjusted, but the present invention is not limited to adjustment of "phosphorus" as will be described later. For example, "silicon", "sulfur", etc. It is applicable as well. FIG. 1 is a schematic diagram showing a schematic configuration of an auxiliary raw material input amount calculation device for a converter according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a secondary raw material input amount calculation device for a converter according to an embodiment of the present invention. FIG. 4 is a diagram showing a processing flow, FIG. 3 is a diagram showing variation of each parameter for each slag component measurement by the recursive least squares method, and FIG. 4 is a schematic diagram showing a configuration of a neural network.

【0007】図1に示すように,本発明の実施形態に係
る転炉の副原料投入量計算装置A0は,第1の発明に係
るオンライン処理部A1と,第2の発明に係るオフライ
ン処理部A2によって構成されている。上記オンライン
処理部A1は,最適化計算部1と記憶装置2で構成され
ており,該記憶装置2には最適化計算で使用する物理モ
デル(詳細は後述する)が格納されている。上記オフラ
イン処理部A2は,物理モデル計算部3と記憶装置4で
構成されている。また,転炉の操業プロセスをコントロ
ールするプロセスコンピュータ5が,上記オンライン処
理部A1,及びオフライン処理部A2とそれぞれ接続さ
れている。上記プロセスコンピュータ5では,現在の操
業データや,サンプルから得られた成分データ等が記憶
されており,副原料投入のコントロールもここから行わ
れる。
As shown in FIG. 1, an auxiliary raw material input amount calculation apparatus A0 for a converter according to an embodiment of the present invention comprises an online processing unit A1 according to the first invention and an offline processing unit according to the second invention. It is composed of A2. The online processing unit A1 includes an optimization calculation unit 1 and a storage device 2, and the storage device 2 stores a physical model (details will be described later) used in the optimization calculation. The off-line processing unit A2 includes a physical model calculation unit 3 and a storage device 4. A process computer 5 for controlling the operation process of the converter is connected to the online processing unit A1 and the offline processing unit A2. The process computer 5 stores the current operation data, the component data obtained from the sample, and the like, and the control of the input of the auxiliary raw material is also performed from here.

【0008】上記最適化計算に用いられる物理モデルと
して,転炉内の物質バランス,及び平衡反応を考慮した
次のものを考える。なお,ここでは,被調整成分の一例
として「リン」を考えている。 「リン」バランスモデル Whm・Phm+Wsc・Psc+Wcm・Pcm +Wom・Pom+Wbf・Pbf+Wks・Pks =Wst・Pst+Wsl・Psl …(1) ただし,Whm:溶銑重量,Wsc:スクラップ重量,
Wcm:冷銑重量,Wom:故銑重量,Wbf:前チャ
ージスラグ量,Wks:高炉スラグ量,Wst:溶鋼
量,Wsl:スラグ量,Phm:溶銑中リン濃度,Ps
c:スクラップ中リン濃度,Pcm:冷銑中リン濃度,
Pom:故銑中リン濃度,Pbf:前チャージスラグ中
リン濃度,Pks:高炉スラグ中リン濃度,Pst:溶
鋼中リン濃度,Psl:スラグ中リン濃度 「リン」分配モデル
As the physical model used for the above optimization calculation, consider the following that considers the material balance in the converter and the equilibrium reaction. Here, "phosphorus" is considered as an example of the adjusted component. "Phosphorus" balance model Whm / Phm + Wsc / Psc + Wcm / Pcm + Wom / Pom + Wbf / Pbf + Wks / Pks = Wst / Pst + Wsl / Psl (1) However, Whm: hot metal weight, Wsc: scrap weight,
Wcm: weight of cold pig iron, Wom: weight of late pig iron, Wbf: amount of pre-charge slag, Wks: amount of blast furnace slag, Wst: amount of molten steel, Wsl: amount of slag, Phm: phosphorus concentration in hot metal, Ps
c: phosphorus concentration in scrap, Pcm: phosphorus concentration in cold pig iron,
Pom: Phosphorus concentration in late pig iron, Pbf: Phosphorus concentration in pre-charge slag, Pks: Phosphorus concentration in blast furnace slag, Pst: Phosphorus concentration in molten steel, Psl: Phosphorus concentration in slag "Phosphorus" distribution model

【数1】 ただし,Lp:リン分配,Ttd:吹止温度,CS:塩
基度,Tfe:スラグ中FeO濃度,Ctd:吹止炭素
濃度,MgO:スラグ中MgO濃度,P1〜P6:定数 スラグ総量モデル Wsl=Wcao+Wmgo+Wsio2+Wmno +Wal2o3+Wfeo+Wp2o5+Wbf+Wks …(3) ただし,Wcao:スラグ中CaO重量,Wmgo:ス
ラグ中MgO重量,Wsio2:スラグ中SiO2重
量,Wmno:スラグ中MnO重量,Wfeo:スラグ
中FeO重量,Wa12o3:スラグ中A12O3重
量,Wp2o5:スラグ中P2O5重量 スラグ中CaOモデル Wcao=0.96・Wssk+0.61・Wkdr …(4) ただし,Wssk:焼石灰,Wkdr:軽ドロ投入量 スラグ中MgOモデル Wmgo=0.31・Wkdr+const1 …(5) ただし,const1:補正項 スラグ中SiOモデル Wsio2=Whm・Sihm+0.7・Wro+1.07・Wfesi …(6) ただし,Sihm:溶銑中Si濃度,Wro:ロー石投
入量,Wfesi:FeSi投入量 スラグ中MnOモデル Wmno=MnO・Wsl …(7) ただし,MnO:スラグ中MnO濃度 スラグ中FeOモデル Wfeo=TFe・Wsl …(8) スラグ中A12O3モデル Wal2o3=Al2O3・Wsl …(9) ただし,A12O3:スラグ中A12O3濃度 スラグ中P2O5モデル Wp2o5=P2O5・Wsl …(10) ただし,P2O5:スラグ中P2O5濃度 塩基度モデル
[Equation 1] However, Lp: phosphorus distribution, Ttd: blowing stop temperature, CS: basicity, Tfe: FeO concentration in slag, Ctd: blowing stop carbon concentration, MgO: MgO concentration in slag, P1 to P6: constant slag total amount model Wsl = Wcao + Wmgo + Wsio2 + Wmno + Wal2o3 + Wfeo + Wp2o5 + Wbf + Wks (3) However, Wcao: CaO weight in slag, Wmgo: MgO weight in slag, Wsio2: SiO2 weight in slag, Wmno: MnO weight in slag, WFeo: FeO3 in slag, 5A2 in Wag, WaOo in 5: Wa12o. : P2O5 weight in slag CaO model in slag Wcao = 0.96 · Wssk + 0.61 · Wkdr (4) where Wssk: burnt lime, Wkdr: MgO model in slag Wmgo 0.31 · Wkdr + const1 (5) However, const1: correction term SiO model in slag Wsio2 = Whm · Sihm + 0.7 · Wro + 1.07 · Wfesi (6) However, Sihm: Si concentration in hot metal, Wro: throwing rock stone Amount, Wfesi: FeSi input amount MnO model in slag Wmno = MnO · Wsl (7) where MnO: MnO concentration in slag FeO model in slag Wfeo = TFe · Wsl (8) A12O3 model in slag Wal2o3 = Al2O3 · Wsl (9) However, A12O3: A12O3 concentration in slag P2O5 model in slag Wp2o5 = P2O5 · Wsl (10) However, P2O5: P2O5 concentration in slag basicity model

【数2】 炉体保護制約 Wmgo=const2・Wsl …(12) ただし,const2:定数[Equation 2] Furnace body protection constraint Wmgo = const2 · Wsl (12) where const2: constant

【0009】リンバランスモデルである(1)式は,吹
練開始時と終了時のリンバランス式である。ここでは,
物質バランスが考慮されている。式中の値で,定数とし
て与えられるものはPsc,Pcm,Pom,Wbf,
Wks,Pksであり,チャージ毎に得られるものがW
hm,Phm,Wsc,Wcm,Wom,Wst,Ps
tの各値である。また,Wsl,Pslはそれぞれ
(3),(2)式から得られる。Pbfについては,前
回の吹練時のPslの値を使用する。
Equation (1), which is a phosphorus balance model, is a phosphorus balance equation at the start and end of blowing. here,
Material balance is considered. The values in the formula that are given as constants are Psc, Pcm, Pom, Wbf,
Wks and Pks, and W is obtained for each charge.
hm, Phm, Wsc, Wcm, Wom, Wst, Ps
Each value of t. Further, Wsl and Psl are obtained from equations (3) and (2), respectively. For Pbf, the value of Psl at the time of the previous blowing is used.

【0010】(2)式は,吹止時の溶鋼とスラグの間の
リンの分配を表した一例である。この式で平衡反応が考
慮されている。P1〜P6は定数でこの値の求め方につ
いては後述する。Pslは(1)式との関係で,またC
Sは(11)式から得られる。右辺のTtd,CS,T
Fe,Ctd,MgOの各値はサンプル採取によって得
られる値であり,Pstは目標値として与える溶鋼中の
リン濃度である。式(3)はスラグの総量を,スラグ構
成成分それぞれの重量と,前チャージで残されたスラグ
量Wbf(定数),及び高炉から運ばれてくる溶銑に含
まれるスラグ量Wks(定数)の和で表している。
The equation (2) is an example showing the distribution of phosphorus between the molten steel and the slag at the time of blowing. Equilibrium reactions are considered in this equation. P1 to P6 are constants, and how to obtain this value will be described later. Psl is related to equation (1), and C
S is obtained from the equation (11). Ttd, CS, T on the right side
The values of Fe, Ctd, and MgO are values obtained by sampling, and Pst is the phosphorus concentration in the molten steel given as a target value. Formula (3) is the sum of the total amount of slag, the weight of each slag constituent, the amount of slag Wbf (constant) left by the precharge, and the amount of slag Wks (constant) contained in the hot metal carried from the blast furnace. It is represented by.

【0011】各スラグ構成成分モデルは(4)〜(1
0)式で表されている。(4)〜(10)式中,Wss
k,Wroは最終的に求めたい焼石灰,ロー石の投入量
であり,それ以外の値については別式との関係か,また
はチャージ毎に得られる値である。式(12)は(4)
式のWkdrを決めるために与えられた式であり,co
nst2は計算の簡単化のために定数とおいたスラグ中
のMgO濃度である。軽ドロ投入量Wkdr,及びFe
Si投入量Wfesiは,実際には他の制約で決まって
くる値であるが,本モデルでは既知量として取り扱う。
The respective slag constituent component models are (4) to (1
It is represented by the expression (0). In the expressions (4) to (10), Wss
k and Wro are the amounts of burned lime and roe stone to be finally obtained, and other values are the values obtained in relation to another formula or for each charge. Formula (12) is (4)
Is a formula given to determine Wkdr of the formula, and co
nst2 is the MgO concentration in the slag, which is set as a constant for simplifying the calculation. Light drop input Wkdr and Fe
Although the Si input amount Wfesi is a value actually determined by other constraints, it is treated as a known amount in this model.

【0012】まず,式(2)の係数P1〜P6を,サン
プル採取によるスラグ成分測定が行われるごとに,逐次
型最小自乗法を用いて計算する。図3に,スラグ成分測
定ごとの上記係数それぞれの変化を示す。操業条件の変
動にあわせてそれぞれの係数が逐次更新されているのが
わかる。次に,(1)式はWsl,Psl以外は定数な
ので,次式が得られる。 logWsl+logPsl=−C9 (4)〜(10),(12)式を(3)式に代入して変
形すると,次式が得られる。
First, the coefficients P1 to P6 of the equation (2) are calculated by using the recursive least squares method every time the slag component measurement by sampling is performed. Figure 3 shows the changes in each of the above coefficients for each slag component measurement. It can be seen that each coefficient is updated in sequence according to changes in operating conditions. Next, since the expression (1) is constant except for Wsl and Psl, the following expression is obtained. logWsl + logPsl = -C 9 (4) to (10) and (12) are substituted into the formula (3) and transformed, the following formula is obtained.

【数3】 また,(2),(11)式より,次式が得られる。(Equation 3) Further, the following equation is obtained from the equations (2) and (11).

【数4】 上記3式をまとめると次式が得られる。(Equation 4) The following equation is obtained by summarizing the above three equations.

【数5】 ただし,C1 〜C9 :定数 この中で,変数Wssk,Wroのみであり,それ以外
の定数は既知である。この式に媒介変数αを導入する。
すなわち,右辺第1項をα,第2,3項を−αとして,
Wssk,Wroについて解くと,次の2式が得られ
る。
(Equation 5) However, C 1 -C 9: constant In this, only the variable Wssk, Wro, other constants are known. The parameter α is introduced into this equation.
That is, the first term on the right side is α and the second and third terms are -α,
Solving for Wssk and Wro gives the following two equations.

【数6】 (Equation 6)

【数7】 ここで, F=A・Wssk+B・Wro …(16) を評価関数として,式(14),(15)を代入する
と,
(Equation 7) Here, substituting equations (14) and (15) with F = A · Wssk + B · Wro (16) as an evaluation function,

【数8】 ただし,D1 〜D6 :定数 が得られる。この式は,解析的に2回微分が可能なの
で,非線形最適化手法としてニュートン法を用いること
で,式(16)を最小とするα,さらに(17),(1
8)式より焼石灰とロー石の投入量が算定できる。ただ
し,目的関数の性質によっては,ニュートン法ではな
く,シンプレックス法やフレキシブルポリヘドロン法な
どを利用してもよい。
(Equation 8) However, D 1 to D 6 : constants are obtained. Since this expression can be analytically differentiated twice, by using the Newton method as a nonlinear optimization method, α that minimizes expression (16), and further (17), (1
The input amounts of calcined lime and roe stone can be calculated from equation 8). However, depending on the nature of the objective function, the Simplex method or the flexible polyhedron method may be used instead of the Newton method.

【0013】上記の例では,リン分配モデルを式(2)
として逐次型最小自乗法によって係数を決定するという
方法を採用したが,モデルの非線形性が強い場合には定
式化が困難である。そこで,このような場合に,リン分
配モデルにニューラルネットワークで学習されたニュー
ロモデル(図4)を利用することを考える。この場合,
式(2)の代りに次の式を用いる。
In the above example, the phosphorus partition model is represented by the equation (2).
As a method, the method of determining coefficients by the recursive least squares method was adopted, but it is difficult to formulate it when the model has a strong nonlinearity. Therefore, in such a case, consider using a neuro model (FIG. 4) learned by a neural network as the phosphorus distribution model. in this case,
The following equation is used instead of equation (2).

【数9】 (3)〜(10),(12)式より(18)式が,
(2′)式より(19)式が,(1)式より(20)式
がそれぞれ得られる。 Wsl=D1 Wssk+D2 Wro+D3 Wsl+D4 …(18) log(Psl)=f(Ttd,CS,TFe,Ctd,MgO)+D5 …(19) PslWsl−D6 =0 …(20) ただし,D1 〜D12:定数 上式にはニューロモデルが含まれており,微分が困難で
あるため,ここで評価関数を, F=(PslWsl−D6 2 +AWssk+BWro …(21) とおき,WsskとWroを変数としたフレキシブルポ
リヘドロン法等の非線形最適化手法によって,焼石灰と
ロー石の投入量を算定する。その際,初期値として,ま
ず適当なWsskとWroの値から始め,(21)式が
最小になるように値を変更してゆく。この際,(20)
式のリンバランスを満たすように,すなわち,(21)
式の右辺第1項が0に充分近づいているかどうかを1つ
の判断基準とする。
[Equation 9] From equations (3) to (10) and (12), equation (18) is
Equation (19) is obtained from equation (2 ') and equation (20) is obtained from equation (1). Wsl = D 1 Wssk + D 2 Wro + D 3 Wsl + D 4 (18) log (Psl) = f (Ttd, CS, TFe, Ctd, MgO) + D 5 (19) PslWsl-D 6 = 0 (20) However, D 1 to D 12 : constant Since a neuro model is included in the above equation and differentiation is difficult, the evaluation function is set here as F = (PslWsl−D 6 ) 2 + AWSsk + BWro (21), and Wssk Input amounts of calcined lime and loach are calculated by a nonlinear optimization method such as the flexible polyhedron method with Wro as a variable. At that time, as initial values, first, appropriate values of Wssk and Wro are started, and the values are changed so as to minimize the expression (21). At this time, (20)
To satisfy the phosphorus balance of the formula, that is, (21)
One criterion is whether or not the first term on the right side of the equation is sufficiently close to zero.

【0014】また,さらにモデル全体をニューロモデル
にすることもできる。ニューロモデルを, PslWsl=f(Ttd,CS,TFe,…,Wssk,Wro,…) …(22) として,PslWslを学習する。学習されたニューロ
モデルと,式(21)の評価関数を用いて,上記の方法
と同様,WsskとWroを変数としたフレキシブルポ
リヘドロン法等の非線形最適化手法によって,焼石灰と
ロー石の投入量が決定できる。上記式(2′),(2
2)のニューロモデルの入力層,中間層の数は,モデル
の性質,学習精度,学習速度に応じて決定する。図4に
おいては,入力層が6,中間層が7としているが,必要
であれば入力層を増やしてもよいし,冗長であれば減ら
してもよい。
Further, the entire model can be a neuro model. PslWsl is learned using the neuro model as PslWsl = f (Ttd, CS, TFe, ..., Wssk, Wro, ...) (22). Using the learned neuro model and the evaluation function of Equation (21), similar to the above method, the non-linear optimization method such as the flexible polyhedron method with Wssk and Wro as variables is used to inject the burnt lime and the roe stone. The amount can be determined. The above formulas (2 ′), (2
The number of input layers and intermediate layers of the neuro model in 2) is determined according to the model properties, learning accuracy, and learning speed. Although the number of input layers is 6 and the number of intermediate layers is 7 in FIG. 4, the number of input layers may be increased if necessary, or may be reduced if redundant.

【0015】ここで,上記のような特徴を備えた本装置
による,処理の流れを説明する。まず,本装置立ち上げ
時には,オフライン処理部A2の物理モデル計算部3に
おいて,過去に蓄積されたデータをもとに,既に説明し
た逐次型最小自乗法,あるいはニューラルネットワーク
の学習による方法によって,初期の物理モデルを作成
し,該物理モデルをオンライン処理部A1の記憶装置2
に格納する。その際,ニューラルネットワークの方法に
よる場合には,図2のようなニューロモデルが,オフラ
イン処理部A2の記憶装置4上に備えられている。吹錬
が開始されると,オンライン処理部A1は,プロセスコ
ンピュータ5より現在のチャージにおける操業データを
受け取り,記憶装置2に格納されている物理モデルを使
用して最適化計算を行い,副原料の投入量を決定する。
こうして決定された副原料投入量は,オンライン処理部
A1からプロセスコンピュータ5に指示され,副原料が
投入される。このオンライン処理は,サンプル採取がな
い間は,同じ物理モデルを用いて,チャージごとに繰り
返し行われる。サンプルが採取されると,オフライン処
理部A2はプロセスコンピュータ5より必要な成分デー
タを受け取り,既に説明した方法により物理モデルの更
新計算をする。物理モデルが更新された時点で,新しい
物理モデルがオンライン処理部A1の記憶装置2に送ら
れ,古い物理モデルと入れ替えられる。新しくサンプル
が採取され,物理モデルの更新がされない間は常に同じ
物理モデルでオンライン処理が続けられる。物理モデル
の更新の際は,物理モデル以外の最適計算部分の変更は
必要ないため,オンライン処理を止める事なく更新する
ことができる。
Here, the flow of processing by the present apparatus having the above characteristics will be described. First, when the apparatus is started up, the physical model calculation unit 3 of the offline processing unit A2 uses the data accumulated in the past to execute the initial method by the successive least squares method or the learning method of the neural network. A physical model of the storage device 2 of the online processing unit A1.
To be stored. At this time, in the case of the neural network method, a neuro model as shown in FIG. 2 is provided on the storage device 4 of the offline processing unit A2. When the blowing starts, the online processing unit A1 receives the operation data of the current charge from the process computer 5, performs optimization calculation using the physical model stored in the storage device 2, Determine the input amount.
The auxiliary raw material input amount thus determined is instructed from the online processing unit A1 to the process computer 5, and the auxiliary raw material is input. This online processing is repeated for each charge using the same physical model while there is no sampling. When the sample is taken, the offline processing unit A2 receives the necessary component data from the process computer 5 and updates the physical model by the method described above. When the physical model is updated, the new physical model is sent to the storage device 2 of the online processing unit A1 and replaced with the old physical model. While a new sample is taken and the physical model is not updated, online processing is always continued with the same physical model. When updating the physical model, it is not necessary to change the optimum calculation part other than the physical model, so it can be updated without stopping the online processing.

【0016】以上の例では,被調整成分をリンにしぼっ
ているが,これを硫黄,ケイ素のみ,あるいはそれらの
中の複数について考慮した物理モデルを作成することも
できる。
In the above example, the component to be adjusted is limited to phosphorus, but it is also possible to create a physical model that considers only sulfur, silicon, or a plurality of them.

【0017】[0017]

【発明の効果】以上説明したように,本発明に係る転炉
の副原料投入量計算装置は上記の如く構成したことによ
り,吹止溶鋼成分濃度のばらつきを小さくすることがで
きるので,被調整成分の濃度をその上限に限り無く近づ
けることができる。それによって副原料の投入量を最小
限に抑えた,経済的な転炉の運用が可能となる。
As described above, since the auxiliary raw material input amount calculation apparatus for a converter according to the present invention is configured as described above, it is possible to reduce the variation in the blown molten steel component concentration, so that the adjustment target is adjusted. It is possible to bring the concentration of a component close to its upper limit without limit. As a result, it is possible to economically operate the converter with the minimum amount of auxiliary materials input.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例に係る転炉の副原料投入量計
算装置の概略構成を示す模式図。
FIG. 1 is a schematic diagram showing a schematic configuration of an auxiliary raw material input amount calculation device for a converter according to an embodiment of the present invention.

【図2】 本発明の実施例に係る転炉の副原料投入量計
算装置の処理フローを示す図。
FIG. 2 is a diagram showing a processing flow of an auxiliary raw material input amount calculation device for a converter according to an embodiment of the present invention.

【図3】 逐次型最小自乗法による,スラグ成分測定ご
との各パラメータの変動を示す図。
FIG. 3 is a diagram showing variation of each parameter for each slag component measurement by the recursive least squares method.

【図4】 ニューラルネットワークの構成を示す模式
図。
FIG. 4 is a schematic diagram showing the configuration of a neural network.

【符号の説明】[Explanation of symbols]

1…最適化計算部 2…記憶装置 3…物理モデル計算部 4…記憶装置 5…プロセスコンピュータ 6…成分分析装置 A0…副原料投入量計算装置 A1…オンライン処理部 A2…オフライン処理部 1 ... Optimization calculation unit 2 ... Storage device 3 ... Physical model calculation unit 4 ... Storage device 5 ... Process computer 6 ... Component analysis device A0 ... Auxiliary raw material input amount calculation device A1 ... Online processing unit A2 ... Offline processing unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 転炉中の溶鋼成分濃度を目標値に近づけ
るために投入する副原料の量を算定する副原料投入量計
算装置において,物質バランス及び平衡反応を考慮した
物理モデルを用いた最適計算を行うことによって各副原
料の投入量を算定することを特徴とする転炉の副原料投
入量計算装置。
1. An optimum amount of an auxiliary raw material input calculator for calculating the amount of an auxiliary raw material to be input in order to bring the molten steel component concentration in a converter close to a target value, using a physical model in consideration of material balance and equilibrium reaction. An auxiliary raw material input amount calculation device for a converter, characterized in that the input amount of each auxiliary raw material is calculated.
【請求項2】 スラグ成分を測定する度に,上記物理モ
デルを逐次更新することを特徴とする請求項1記載の転
炉の副原料投入量計算装置。
2. The auxiliary raw material input amount calculation device for a converter according to claim 1, wherein the physical model is sequentially updated every time the slag component is measured.
【請求項3】 上記物理モデルの更新を,逐次型最小自
乗法を用いて行う請求項1又は2記載の転炉の副原料投
入量計算装置。
3. The auxiliary raw material input amount calculation device for a converter according to claim 1 or 2, wherein the updating of the physical model is performed by using a sequential least squares method.
【請求項4】 上記物理モデルの更新を,ニューラルネ
ットワークで学習させたニューロモデルを用いて行う請
求項1又は2記載の転炉の副原料投入量計算装置。
4. The auxiliary raw material input amount calculation device for a converter according to claim 1, wherein the physical model is updated by using a neuro model learned by a neural network.
【請求項5】 上記物理モデル全体がニューロモデルに
より構成されてなる請求項1記載の転炉の副原料投入量
計算装置。
5. The auxiliary raw material input amount calculation device for a converter according to claim 1, wherein the entire physical model is constituted by a neuro model.
【請求項6】 上記副原料投入によって調整される溶鋼
中の対象成分を,S,Si,Pのうちのいずれか,又は
複数とする請求項1記載の転炉の副原料投入量計算装
置。
6. The auxiliary raw material input calculation device for a converter according to claim 1, wherein the target component in the molten steel adjusted by the input of the auxiliary raw material is any one or a plurality of S, Si and P.
JP8062509A 1996-03-19 1996-03-19 Device for calculating charging quantity of auxiliary raw material into converter Pending JPH09256021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8062509A JPH09256021A (en) 1996-03-19 1996-03-19 Device for calculating charging quantity of auxiliary raw material into converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8062509A JPH09256021A (en) 1996-03-19 1996-03-19 Device for calculating charging quantity of auxiliary raw material into converter

Publications (1)

Publication Number Publication Date
JPH09256021A true JPH09256021A (en) 1997-09-30

Family

ID=13202226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8062509A Pending JPH09256021A (en) 1996-03-19 1996-03-19 Device for calculating charging quantity of auxiliary raw material into converter

Country Status (1)

Country Link
JP (1) JPH09256021A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181194A (en) * 2012-03-01 2013-09-12 Jfe Steel Corp Support method for blowing process operation and support device for blowing process operation
JP2014201775A (en) * 2013-04-02 2014-10-27 Jfeスチール株式会社 Device and method for scheduling auxiliary raw material transport
CN109541143A (en) * 2018-11-28 2019-03-29 西安建筑科技大学 A kind of prediction technique that the constituent element clinker actual constituent transitivity containing volatilization changes over time
CN114875196A (en) * 2022-07-01 2022-08-09 北京科技大学 Method and system for determining converter tapping quantity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181194A (en) * 2012-03-01 2013-09-12 Jfe Steel Corp Support method for blowing process operation and support device for blowing process operation
JP2014201775A (en) * 2013-04-02 2014-10-27 Jfeスチール株式会社 Device and method for scheduling auxiliary raw material transport
CN109541143A (en) * 2018-11-28 2019-03-29 西安建筑科技大学 A kind of prediction technique that the constituent element clinker actual constituent transitivity containing volatilization changes over time
CN109541143B (en) * 2018-11-28 2021-07-06 西安建筑科技大学 Prediction method for actual components and physical property of slag containing volatile components along with time change
CN114875196A (en) * 2022-07-01 2022-08-09 北京科技大学 Method and system for determining converter tapping quantity
CN114875196B (en) * 2022-07-01 2022-09-30 北京科技大学 Method and system for determining converter tapping quantity

Similar Documents

Publication Publication Date Title
JP6531782B2 (en) Hot metal temperature prediction method, hot metal temperature prediction device, blast furnace operation method, operation guidance device, hot metal temperature control method, and hot metal temperature control device
JP2009052109A (en) Method and system for controlling blowing in converter
JPH09256021A (en) Device for calculating charging quantity of auxiliary raw material into converter
JP4140939B2 (en) Converter blowing method
JP6825348B2 (en) Hot metal pretreatment method, hot metal pretreatment control device, program and recording medium
US4227921A (en) Method of controlling a blast furnace operation
JP6516906B1 (en) Wind blow calculation method, blow blow calculation program
JP7043949B2 (en) T. Fe estimation method, T.I. Fe control method, converter blow control device, and program
RU2180923C1 (en) Method of control of melting process in electric furnace
KR960023106A (en) Carbon Concentration Prediction Method Using Flue Gas and Neural Network and Converter Endpoint Blowing Control System Using It
JPH0797611A (en) Method for controlling molten steel temperature in steelmaking process
WO2019117200A1 (en) Method for refining molten iron
JP3204068B2 (en) Method for controlling dehydrogenation concentration in vacuum degasser
JP4048010B2 (en) Method for estimating phosphorus equilibrium in converters and hot metal pretreatment vessels.
JP2004035986A (en) Converter operation guidance model
JPH06264129A (en) Method for controlling end point of steelmaking in converter
JPH07268433A (en) Method for controlling end point in steel making process of converter
JP2724365B2 (en) Blast furnace operation method
Niwa et al. Application of a self-learning function to an expert system for blast furnace heat control
JP2004059955A (en) Method for controlling converter blowing
JP2015010267A (en) Method and apparatus for blowing control
RU2205228C2 (en) Method of related automatic controlling for supplying of energy carrier into blast furnace
JP3858150B2 (en) Estimation method of Mn concentration at the end of blowing in converter
WO2022004117A1 (en) Converter blowing control method and converter blowing control system
JPH11117013A (en) Converter blowing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210