JP3204068B2 - Method for controlling dehydrogenation concentration in vacuum degasser - Google Patents

Method for controlling dehydrogenation concentration in vacuum degasser

Info

Publication number
JP3204068B2
JP3204068B2 JP02102196A JP2102196A JP3204068B2 JP 3204068 B2 JP3204068 B2 JP 3204068B2 JP 02102196 A JP02102196 A JP 02102196A JP 2102196 A JP2102196 A JP 2102196A JP 3204068 B2 JP3204068 B2 JP 3204068B2
Authority
JP
Japan
Prior art keywords
vacuum
degree
predicted
concentration
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02102196A
Other languages
Japanese (ja)
Other versions
JPH09209027A (en
Inventor
康憲 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP02102196A priority Critical patent/JP3204068B2/en
Publication of JPH09209027A publication Critical patent/JPH09209027A/en
Application granted granted Critical
Publication of JP3204068B2 publication Critical patent/JP3204068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空脱ガス装置を
用いた精錬において、脱水素濃度を制御する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling dehydrogenation concentration in refining using a vacuum degassing apparatus.

【0002】[0002]

【従来の技術】真空脱ガス装置を用いた精錬は、高純度
精錬設備として製鋼プロセス中で重要な位置を占めてい
る。そして、この真空脱ガス装置を用いた精錬方法とし
て、種々の方法が提案されている。
2. Description of the Related Art Refining using a vacuum degassing apparatus occupies an important position in a steelmaking process as a high-purity refining facility. Various methods have been proposed as refining methods using this vacuum degassing apparatus.

【0003】例えば特開昭53−102819号では、
浸漬管より酸素と炭化水素ガスを鋼中に吹き込んで脱炭
反応を促進させ、脱炭反応後にArガスを吹き込んで溶解
水素を除去する方法を提案している。また、特開昭63
−282208号では、取鍋内の溶鋼にRH槽下部のパ
イプを挿入し、RH槽内を高真空にした後、任意の低真
空に保ちながら、パイプに窒素ガスを流入させることに
より、溶鋼の脱ガスと窒素添加を短時間で行う方法を提
案している。
For example, in JP-A-53-102819,
A method has been proposed in which oxygen and hydrocarbon gas are blown into steel through an immersion tube to accelerate the decarburization reaction, and after the decarburization reaction, Ar gas is blown to remove dissolved hydrogen. Also, JP-A-63
In -282208, a pipe at the lower part of the RH tank is inserted into the molten steel in the ladle, a high vacuum is created in the RH tank, and nitrogen gas is flown into the pipe while maintaining a low vacuum. We propose a method to perform degassing and nitrogen addition in a short time.

【0004】また、特開平7−41833号では、溶鋼
の真空精錬において、溶鋼中の〔C〕が100ppm 未満
の時に、特定深さから特定圧力で水素ガスを吹き込むこ
とにより、脱炭速度を上昇させて迅速に極低炭素鋼を製
造する方法を提案している。
In Japanese Patent Application Laid-Open No. 7-41833, in vacuum refining of molten steel, when [C] in the molten steel is less than 100 ppm, a degassing rate is increased by blowing hydrogen gas from a specific depth at a specific pressure. To produce ultra-low carbon steel quickly.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記提
案されている方法は、いずれも脱炭又は脱水素に関する
操業までしか言及しておらず、過剰な値にまで脱炭や脱
水素を行っている可能性がある。加えて、近年、極低水
素鋼のニーズが高まる中、真空脱ガスによる精錬時間が
延び、次工程(連続鋳造工程)とのラインバランス上の
問題が誘発される。
However, all of the above-mentioned proposed methods only refer to operations related to decarburization or dehydrogenation, and perform decarburization and dehydrogenation to excessive values. there is a possibility. In addition, as the need for ultra-low hydrogen steel has increased in recent years, the refining time by vacuum degassing has been prolonged, and problems with line balance with the next step (continuous casting step) have been induced.

【0006】本発明は、上記した従来の問題点に鑑みて
なされたものであり、過剰な脱水素処理をなくし、鋼中
水素濃度を高精度に制御できる方法を提供することを目
的としている。
[0006] The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a method capable of eliminating the excessive dehydrogenation treatment and controlling the hydrogen concentration in steel with high accuracy.

【0007】[0007]

【課題を解決するための手段】上記した目的を達成する
ために、本発明の真空脱ガス装置における脱水素濃度制
御方法は、真空脱ガス装置を用いた精錬において、精錬
前に、プリセットされた、以前のエジェクター及びブー
スターの運転パターンにより予測した排気量に基づいて
真空度を予測し、この予測した真空度に基づいて鋼中水
素濃度を予め推定しておき、精錬開始後、実績としての
真空度を前記予測した真空度と比較し、これらの差の絶
対値が許容誤差より小さい場合には、実績としての真空
度から水素濃度を推定計算する一方、実績としての真空
度が前記予測した真空度より大きい場合には、実績とし
ての真空度を予測した真空度曲線と交差する点まで過去
の方向に移動させ、反対に、実績としての真空度が前記
予測した真空度より小さい場合には、実績としての真空
度を予測した真空度曲線と交差する点まで将来の方向に
移動させ、これらの交差する点を現在の予測した真空度
とすべく入れ替え、度精錬終了までの真空度を予測
し、その予測値に応じた水素濃度を推定することを、精
錬中、一定周期で繰り返し行い、現時点での推定水素濃
度が目標水素濃度未満となった時に精錬を終了すること
としているのである。
In order to achieve the above-mentioned object, a method for controlling the concentration of dehydrogenation in a vacuum degassing apparatus according to the present invention is provided in a refining using a vacuum degassing apparatus. The degree of vacuum is predicted based on the exhaust amount predicted by the previous operation pattern of the ejector and the booster, the hydrogen concentration in the steel is estimated in advance based on the predicted degree of vacuum, and after the start of refining, the vacuum the degree compared with the degree of vacuum described above prediction, absolute of these differences
If the logarithmic value is smaller than the tolerance, the actual vacuum
The hydrogen concentration is estimated and calculated from the
If the degree is greater than the predicted degree of vacuum,
Up to the point where all vacuum degrees intersect with the predicted vacuum curve
In the direction of
If it is smaller than the predicted vacuum degree,
In the future direction up to the point where the predicted vacuum degree curve intersects
Move these intersections to the current predicted vacuum
Replaced in order to and to predict the degree of vacuum of up to re Dosei refining ends, to estimate the hydrogen concentration in accordance with the predicted value, in the refining, repeated at a constant period, the estimated hydrogen concentration target hydrogen at the moment Refining is to be terminated when the concentration falls below the concentration.

【0008】[0008]

【発明の実施の形態】本発明の真空脱ガス装置における
脱水素濃度制御方法は、エアーリーク量や設備特性等が
チャージ毎に異なるなどの原因によって予測精度が悪化
するのを防止するために、前の精錬完了時にプリセット
されていたエジェクター及びブースターの運転パターン
と、実績排気能力特性と、真空度特性を推定計算演算器
を介して操業データ収集演算器に蓄え、過去のNチャー
ジ分の実績を例えば一次回帰等の統計処理によって運転
パターン毎に排気量と真空度の関係を検量線として精錬
完了毎にメンテナンスしておく。
BEST MODE FOR CARRYING OUT THE INVENTION The method for controlling dehydrogenation in a vacuum degassing apparatus according to the present invention is intended to prevent the prediction accuracy from being deteriorated due to factors such as the amount of air leak and equipment characteristics differing between charges. The operation pattern of the ejector and booster preset at the completion of the previous refining, the actual exhaust capacity characteristic, and the vacuum degree characteristic are stored in the operation data collection arithmetic unit via the estimation calculation arithmetic unit, and the past N charge results are stored. For example, by performing statistical processing such as linear regression, the relationship between the exhaust amount and the degree of vacuum is set as a calibration curve for each operation pattern, and maintenance is performed each time refining is completed.

【0009】そして、精錬前に、プリセットされた、以
前のエジェクター及びブースターの運転パターンによ
り、前記精錬完了毎にメンテナンスされた排気量と真空
度の検量線より、排気能力特性を推定計算演算器で予測
した後、この予測した排気能力特性に基づいて、同じく
推定計算演算器で真空度特性を予測する。さらに、この
予測した真空度特性に基づいて推定計算演算器では、例
えば脱水素反応を、d[H]/dt = KH ( [%H]ini −[%
H]e ) 〔但し、[%H]ini は初期水素濃度、[%H]e は平衡
水素濃度〕で表される一次反応式と仮定し、また、RH
脱水素還流中に加炭材や合金鉄を投入した場合、加炭材
を投入したときのみ水素上昇がみられ、その他の合金鉄
を投入しても水素上昇はみられないことから、後述する
ようにして鋼中水素濃度を推定するのである。なお、前
記一次反応式の KH は総括脱水素反応容量係数である。
Then, before the refining, an exhaust capacity characteristic is estimated by a calculator based on a preset operation pattern of the ejector and the booster from a calibration curve of the exhaust amount and the degree of vacuum maintained each time the refining is completed. After the prediction, the degree-of-vacuum characteristic is similarly predicted by the estimation calculator based on the predicted exhaust capacity characteristic. Further, based on the predicted degree of vacuum characteristics, the estimating calculator calculates, for example, the dehydrogenation reaction as d [H] / dt = K H ([% H] ini − [%
H] e ) [where [% H] ini is the initial hydrogen concentration and [% H] e is the equilibrium hydrogen concentration].
When carburizing material or ferroalloys are charged during dehydrogenation reflux, hydrogen rise is seen only when carburizing materials are charged, and hydrogen rise is not seen even when other ferroalloys are charged, so it will be described later. Thus, the hydrogen concentration in steel is estimated. Here, K H in the above primary reaction formula is the overall dehydrogenation reaction capacity coefficient.

【0010】次に、精錬開始後、実績としての真空度に
基づいて前記したのと同様に一定時間毎に鋼中の水素濃
度を推定する。一方、一定時間毎の実績としての真空度
と、前記予測した真空度を比較し、その差が許容範囲よ
り外れる場合には、以下のように軌道修正を行う。
Next, after the refining is started, the hydrogen concentration in the steel is estimated at regular intervals based on the actual degree of vacuum as described above. On the other hand, the degree of vacuum as an actual result for each fixed time is compared with the predicted degree of vacuum, and if the difference is out of an allowable range, the trajectory is corrected as follows.

【0011】 実績としての真空度が予測した真空度よりも大きい
場合 実績としての真空度〔図7(a)中の実線〕が予測した
真空度〔図7(a)中の破線〕よりも大きい場合には、
図7(a)に矢印イで示すように、実績としての真空度
予測した真空度曲線と交差する点まで過去の方向に移
動させ、この交差する点を現在の予測した真空度とすべ
く入れ替え、再度精錬終了までの真空度を予測し、それ
に応じた水素濃度を推定する。
When the actual vacuum degree is larger than the predicted vacuum degree The actual vacuum degree (solid line in FIG. 7A) is larger than the predicted vacuum degree (dashed line in FIG. 7A) in case of,
As shown by the arrow b in FIG. 7 (a), it is moved in the direction of the vacuum curve to the point until in the past crossed predicted degree of vacuum as proven a vacuum degree of the point of the intersection and the current prediction The degree of vacuum until the end of refining is predicted again, and the hydrogen concentration is estimated accordingly.

【0012】 実績としての真空度が予測した真空度よりも小さい
場合 実績としての真空度〔図7(b)中の実線〕が予測した
真空度〔図7(b)中の破線〕よりも小さい場合には、
図7(b)に矢印ロで示すように、実績としての真空度
予測した真空度曲線と交差する点まで将来の方向に移
動させ、この交差する点を現在の予測した真空度とすべ
く入れ替え、再度精錬終了までの真空度を予測し、それ
に応じた水素濃度を推定する。
When the actual vacuum degree is smaller than the predicted vacuum degree The actual vacuum degree (solid line in FIG. 7B) is smaller than the predicted vacuum degree (dashed line in FIG. 7B) in case of,
As shown by the arrow B in FIG. 7 (b), is moved into the vacuum curve and the direction of the point or in future intersect the predicted degree of vacuum as proven the vacuum degree predicted point of this intersection of the current The degree of vacuum until the end of refining is predicted again, and the hydrogen concentration is estimated accordingly.

【0013】上記した操作を一定時間毎に行いつつ操業
を続け、現時点での推定水素濃度が、目標水素濃度に例
えば連続鋳造工程等の後工程を加味した実質目標水素濃
度未満となった時に精錬を終了するのである。
[0013] The operation is continued while performing the above-mentioned operation at regular intervals, and when the estimated hydrogen concentration at the present time becomes less than the actual target hydrogen concentration in consideration of a post-process such as a continuous casting process, the refining is performed. It ends.

【0014】[0014]

【実施例】以下、本発明の真空脱ガス装置における脱水
素濃度制御方法を、図1〜図6に示す一実施例に基づい
て説明する。図1は本発明の真空脱ガス装置における脱
水素濃度制御方法のシステム概略図、図2は本発明の真
空脱ガス装置における脱水素濃度制御方法の前半部分の
フロー図、図3は本発明の真空脱ガス装置における脱水
素濃度制御方法の中間部分のフロー図、図4は本発明の
真空脱ガス装置における脱水素濃度制御方法の後半部分
のフロー図、図5は本発明の真空脱ガス装置における脱
水素濃度制御方法の操業者ガイダンス用CRTイメージ
図、図6は本発明の真空脱ガス装置における脱水素濃度
制御方法を適用した場合の水素濃度の推定精度を示す図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for controlling the dehydrogenation concentration in a vacuum degassing apparatus according to the present invention will be described below with reference to one embodiment shown in FIGS. FIG. 1 is a system schematic diagram of a dehydrogenation concentration control method in a vacuum degassing apparatus of the present invention, FIG. 2 is a flow chart of a first half part of a dehydrogenation concentration control method in a vacuum degassing apparatus of the present invention, and FIG. Flow chart of the middle part of the method for controlling the dehydrogenation concentration in the vacuum degassing apparatus, FIG. 4 is a flow chart of the latter part of the method for controlling the dehydrogenation concentration in the vacuum degassing apparatus of the present invention, and FIG. 5 is the vacuum degassing apparatus of the present invention. FIG. 6 is a diagram showing a CRT image for operator guidance of the dehydrogenation concentration control method in FIG. 6, and FIG. 6 is a diagram showing the estimation accuracy of the hydrogen concentration when the dehydrogenation concentration control method in the vacuum degassing apparatus of the present invention is applied.

【0015】図1において、1は取鍋、2はRH脱ガス
装置であり、これらには例えば真空度,排ガス流量,分
析水素値,合金鉄投入量,還流ガス流量,還流ガス種を
計測する各種センサー3が設置されている。そして、こ
れら各種センサー3からの情報は、端子ボックス4を介
して推定計算演算器5に入力されている。
In FIG. 1, reference numeral 1 denotes a ladle and reference numeral 2 denotes an RH degassing device, which measures, for example, the degree of vacuum, exhaust gas flow rate, analytical hydrogen value, ferroalloy input amount, reflux gas flow rate, and reflux gas type. Various sensors 3 are provided. Then, information from these various sensors 3 is input to the estimation calculator 5 via the terminal box 4.

【0016】このような真空脱ガス装置において、精錬
が終了すると、このチャージにおける実績情報は、各種
センサー3から推定計算演算器5に送られ、さらに推定
計算演算器5より操業データ収集演算器6に電送され
る。操業データ収集演算器6では、このチャージにおけ
るエジェクター,ブースターの運転パターン毎の、過去
における実績情報に今回のチャージの実績情報を追加
し、この運転パターンで過去のNチャージ分におけるパ
ターン切替え毎の排気量(=k5×k2×exp[(log(k1/k2)/
log(k3/k4)) ×log(真空度/k4)] ×T/3600:但し、T は
予想時間間隔)と真空度の関数の常数kij (j番目の真
空度におけるi番目の常数)を、各チャージにてそれぞ
れ決定する。この時、最新のチャージ(時間的に新し
い)程、影響が大きくなるように、例えば加重平均を取
って前記常数kij を決定する。以上の作業が終了する
と、次のチャージ運転パターンが確定するまで待機す
る。この操作を図2のフローチャートに示している。
In such a vacuum degassing apparatus, when the refining is completed, the result information on this charge is sent from the various sensors 3 to the estimation calculation arithmetic unit 5, and further the operation data collection arithmetic unit 6 from the estimation calculation arithmetic unit 5. Is transmitted to The operation data collection arithmetic unit 6 adds the actual information of the current charge to the past actual information for each of the operation patterns of the ejector and the booster in this charge, and uses this operation pattern to perform the exhaust for each pattern change in the past N charges. Quantity (= k5 × k2 × exp [(log (k1 / k2) /
log (k3 / k4)) × log (vacuum / k4)] × T / 3600: where T is the expected time interval) and the constant kij (the i-th constant at the j-th vacuum) of the function of the vacuum , For each charge. At this time, the constant kij is determined, for example, by taking a weighted average so that the latest charge (newer in time) has a greater influence. When the above operation is completed, the process waits until the next charge operation pattern is determined. This operation is shown in the flowchart of FIG.

【0017】推定計算演算器5が次のチャージ予定情報
を上位演算器7より受信すると、操業データ収集演算器
6では次のチャージの運転パターンを確定し、この確定
した運転パターンにおける前記常数kij を推定演算器5
に電送する。推定演算器5では、精錬開始から終了(推
定水素濃度が目標水素濃度を下回るタイミング)までの
真空度、及び脱水素量の予測計算を、次式によって実行
する。
When the estimation calculation arithmetic unit 5 receives the next charge schedule information from the host arithmetic unit 7, the operation data collection arithmetic unit 6 determines the operation pattern of the next charge, and calculates the constant kij in the determined operation pattern. Estimation calculator 5
Send to The estimation computing unit 5 executes prediction calculations of the degree of vacuum and the amount of dehydrogenation from the start of refining to the end (timing at which the estimated hydrogen concentration falls below the target hydrogen concentration) by the following formula.

【0018】〔真空度の予測計算〕 Mini =mini ×(const1/const2) ×P(0)/760 Min =QAr+QH +Qair +QN2out =T秒後の推定排気量 Mt =(Min−Mout )×T P(T)=(Mt +M)/Mini ×760 但し、Mini :RH真空槽容量の初期値 Min :時刻Tでの脱ガス量 Mt :時刻TでのRH真空槽内変化容量 mini :時刻TでのRH真空系容量(定数) const1, const2:係数 P(0) :真空度実測値 QAr :時刻TでのAr流量 QH :時刻Tでの脱[H] 量 Qair :時刻TでのAir リーク量 QN2 :時刻TでのN2流量 P(T):時間T秒後の槽内真空度の推定値[Prediction calculation of vacuum degree] M ini = m ini × (const1 / const2) × P (0) / 760 M in = Q Ar + Q H + Q air + Q N2 M out = Estimated displacement Mt after T seconds Mt = (M in -M out) × T P (T) = (Mt + M) / M ini × 760 where, M ini: the RH vacuum tank capacitance initial value M in: degassing quantity Mt at time T: time T Change capacity in the RH vacuum chamber at min ini : RH vacuum capacity at time T (constant) const1, const2: coefficient P (0): actual measured value of vacuum degree Q Ar : Ar flow rate at time T Q H : time T [H] amount at time Q air : Air leak amount at time T Q N2 : N 2 flow rate at time T P (T): Estimated value of vacuum degree in tank after time T seconds

【0019】〔脱水素量の予測計算〕 V2 ×dHV =Q×( HV −HL )[前回] +dHup+α+β V1 ×dHL =Q×( HL −HV )[前回] +ak×( HV −He )[前回] HV [現在] =HV [前回] +dHV L [ 現在] =HL [前回] +dHL 但し、V1 :RH真空槽内溶鋼体積 V2 :取鍋内溶鋼体積 Q :還流量 HV :RH真空槽内[H] 濃度 HL :取鍋内[H] 濃度 dHup:時刻Tでの合金鉄からの水素上昇量 α :定数(梅雨等の季節変動要因) β :定数(ノロ厚による補正項) ak:RH真空槽内脱[H] 反応係数 He :[H] 平衡値[0019] [Prediction of the dehydrogenation amount] V 2 × dH V = Q × (H V -H L) [ previous] + dH up + α + β V 1 × dH L = Q × (H L -H V) [ previous] + ak × (H V -H e ) [ previous] H V [current] = H V [previous] + dH V H L [current] = H L [previous] + dH L However, V 1: RH vacuum tank molten steel volume V 2 : molten steel volume in the ladle Q: reflux amount H V : RH concentration in the vacuum chamber [H] concentration HL : concentration in the ladle [H] concentration dH up : amount of hydrogen rise from the ferroalloy at time T α: constant ( seasonal variation factors rainy season, etc.) beta: constant (Noro correction term due to the thickness) ak: RH vacuum tank de [H] reacting factor H e: [H] equilibrium value

【0020】そして、予測精錬終了時間より予測精錬時
間を算出し、この算出した予測精錬時間を上位演算器7
に送信し、精錬の開始を待つ。この操作を図3のフロー
チャートに示している。
The predicted refining time is calculated from the predicted refining end time, and the calculated predicted refining time is
And wait for the start of refining. This operation is shown in the flowchart of FIG.

【0021】精錬が開始すると、各種センサー3によっ
て、実績としての排気量,真空度等を計測して推定計算
演算器5に出力する。推定計算演算器5では、これらの
計測値のうち実績としての真空度と予測した真空度を比
較し、これらの差の絶対値が許容誤差より小さいか否か
を判断する。そして、許容誤差より小さい場合には、実
績としての真空度から水素濃度を推定計算する。一方、
大きい場合には、実績としての真空度と予測した真空度
のどちらが大きいかを判断する。
When the refining is started, the various sensors 3 measure the actual amount of exhaust, the degree of vacuum, etc., and output them to the estimation calculator 5. The estimation calculator 5 compares the actual vacuum degree with the predicted vacuum degree among these measured values, and determines whether or not the absolute value of these differences is smaller than an allowable error. If it is smaller than the allowable error, the hydrogen concentration is estimated and calculated from the actual vacuum degree. on the other hand,
If it is larger, it is determined which of the actual vacuum degree and the predicted vacuum degree is larger.

【0022】そして、実績としての真空度が大きい場合
には、実績としての真空度を予測した真空度曲線と交差
する点まで過去の方向に移動(後退)させ、この交差す
る点を現在の予測した真空度とすべく入れ替え、再度精
錬終了までの真空度を予測し、それに応じた水素濃度を
推定する。
[0022] Then, as if the vacuum degree is high performance, moving in the direction of the vacuum curve and point intersecting or in the past predicted degree of vacuum as proven by (retracted), the point of this intersection the current replaced in order to the predicted degree of vacuum, and predict the degree of vacuum to the refining finished again, and estimates the hydrogen concentration accordingly.

【0023】反対に、実績としての真空度が小さい場合
には、実績としての真空度を予測した真空度曲線と交差
する点まで将来の方向に移動(前進)させ、この交差す
る点を現在の予測した真空度とすべく入れ替え、再度精
錬終了までの真空度を予測し、それに応じた水素濃度を
推定する。
[0023] On the contrary, as in the case the degree of vacuum is small, the actual results, go to the vacuum degree curve to the direction of the point or in the future intersect predicted the degree of vacuum as actual results (forward) is, the point of this intersection The degree of vacuum is replaced with the current predicted degree of vacuum, the degree of vacuum until the end of refining is predicted again, and the hydrogen concentration is estimated accordingly.

【0024】上記した操作を例えば10秒周期で繰り返
し行いつつ操業を続け、現時点での推定水素濃度が、目
標水素濃度に例えば連続鋳造工程等の後工程を加味した
実質目標水素濃度未満となった時に精錬を終了する。こ
の操作を図4のフローチャートに示している。
The operation is continued while repeating the above-mentioned operation at a cycle of, for example, 10 seconds, and the estimated hydrogen concentration at the present time becomes less than the actual target hydrogen concentration in consideration of a post-process such as a continuous casting process. Refining is sometimes terminated. This operation is shown in the flowchart of FIG.

【0025】ちなみに、本発明の真空脱ガス装置におけ
る脱水素濃度制御方法を適用し、真空度と水素濃度につ
いてのそれぞれの推定値(推定曲線)を求めた結果と実
績値を、計算機制御システムの操業者ガイダンス用CR
T8に表示した場合のイメージを図5に、また、その際
の水素濃度推定精度を図6に示すが、これら図5,図6
より本発明の真空脱ガス装置における脱水素濃度制御方
法を適用した場合に高精度に水素濃度を制御できるのが
判る。そして、この実施例の場合、従来、平均12分を
要していた精錬が、本発明方法を適用することで、平均
10分に短縮することができた。
Incidentally, by applying the dehydrogenation concentration control method in the vacuum degassing apparatus of the present invention, the results and the actual values of the respective estimated values (estimated curves) of the degree of vacuum and the hydrogen concentration are obtained by the computer control system. Operator guidance CR
FIG. 5 shows an image displayed at T8, and FIG. 6 shows the hydrogen concentration estimation accuracy at that time.
It can be seen that the hydrogen concentration can be controlled with high accuracy when the dehydrogenation concentration control method in the vacuum degassing apparatus of the present invention is applied. In the case of this example, the refining, which conventionally required an average of 12 minutes, could be reduced to an average of 10 minutes by applying the method of the present invention.

【0026】[0026]

【発明の効果】以上説明したように、本発明の真空脱ガ
ス装置における脱水素濃度制御方法によれば、精錬中の
鋼中水素濃度を高精度に制御できるので、過剰な脱水素
処理がなくせ、精錬時間を短縮することができる。
As described above, according to the method for controlling the dehydrogenation concentration in the vacuum degassing apparatus of the present invention, the hydrogen concentration in steel during refining can be controlled with high precision, so that excessive dehydrogenation treatment can be eliminated. , Refining time can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の真空脱ガス装置における脱水素濃度制
御方法のシステム概略図である。
FIG. 1 is a system schematic diagram of a dehydrogenation concentration control method in a vacuum degassing apparatus of the present invention.

【図2】本発明の真空脱ガス装置における脱水素濃度制
御方法の前半部分のフロー図である。
FIG. 2 is a flowchart of the first half of a method for controlling the dehydrogenation concentration in the vacuum degassing apparatus of the present invention.

【図3】本発明の真空脱ガス装置における脱水素濃度制
御方法の中間部分のフロー図である。
FIG. 3 is a flow chart of an intermediate portion of the method for controlling the concentration of dehydrogenation in the vacuum degassing apparatus of the present invention.

【図4】本発明の真空脱ガス装置における脱水素濃度制
御方法の後半部分のフロー図である。
FIG. 4 is a flowchart of the latter half of the method for controlling the dehydrogenation concentration in the vacuum degassing apparatus of the present invention.

【図5】本発明の真空脱ガス装置における脱水素濃度制
御方法の操業者ガイダンス用CRTイメージ図である。
FIG. 5 is a CRT image diagram for operator guidance of a method for controlling the dehydrogenation concentration in the vacuum degassing apparatus of the present invention.

【図6】本発明の真空脱ガス装置における脱水素濃度制
御方法を適用した場合の水素濃度の推定精度を示す図で
ある。
FIG. 6 is a diagram showing the accuracy of estimating the hydrogen concentration when the method for controlling the dehydrogenation concentration in the vacuum degassing apparatus of the present invention is applied.

【図7】本発明の真空脱ガス装置における脱水素濃度制
御方法の要部を説明する図であり、(a)は実績として
の真空度が推定した真空度よりも大きい場合を、(b)
は実績としての真空度が推定した真空度よりも小さい場
合を示す。
7A and 7B are diagrams illustrating a main part of a method for controlling the dehydrogenation concentration in the vacuum degassing apparatus of the present invention. FIG. 7A illustrates a case where the actual vacuum degree is larger than the estimated vacuum degree, and FIG.
Indicates a case where the actual vacuum degree is smaller than the estimated vacuum degree.

【符号の説明】[Explanation of symbols]

2 RH脱ガス装置 5 推定計算演算器 6 操業データ収集演算器 7 上位演算器 2 RH degassing device 5 Estimation calculation operation unit 6 Operation data collection operation unit 7 High-order operation unit

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 真空脱ガス装置を用いた精錬において、
精錬前に、プリセットされた、以前のエジェクター及び
ブースターの運転パターンにより予測した排気量に基づ
いて真空度を予測し、この予測した真空度に基づいて鋼
中水素濃度を予め推定しておき、精錬開始後、実績とし
ての真空度を前記予測した真空度と比較し、これらの差
の絶対値が許容誤差より小さい場合には、実績としての
真空度から水素濃度を推定計算する一方、実績としての
真空度が前記予測した真空度より大きい場合には、実績
としての真空度を予測した真空度曲線と交差する点まで
過去の方向に移動させ、反対に、実績としての真空度が
前記予測した真空度より小さい場合には、実績としての
真空度を予測した真空度曲線と交差する点まで将来の方
向に移動させ、これらの交差する点を現在の予測した真
空度とすべく入れ替え、度精錬終了までの真空度を予
測し、その予測値に応じた水素濃度を推定することを、
精錬中、一定周期で繰り返し行い、現時点での推定水素
濃度が目標水素濃度未満となった時に精錬を終了するこ
とを特徴とする真空脱ガス装置における脱水素濃度制御
方法。
In refining using a vacuum degassing device,
Before refining, the degree of vacuum is predicted based on the preset displacement, which is predicted by the previous operation pattern of the ejector and the booster, and the hydrogen concentration in steel is estimated in advance based on the predicted degree of vacuum. after starting, the degree of vacuum as results as compared to the degree of vacuum and the predicted, these differences
If the absolute value of
While estimating and calculating the hydrogen concentration from the degree of vacuum,
If the degree of vacuum is greater than the predicted degree of vacuum, the actual
To the intersection with the predicted vacuum degree curve
Move in the past direction, and on the contrary,
If it is smaller than the predicted vacuum degree,
Until the point where the vacuum degree intersects the predicted vacuum degree curve,
Direction and move these intersecting points to the current
Replaced in order to empty the degree, to predict the degree of vacuum to re Dosei refining ends, to estimate the hydrogen concentration in accordance with the predicted value,
A method for controlling the concentration of dehydrogenation in a vacuum degassing apparatus, comprising: performing repetition at regular intervals during refining, and terminating refining when a current estimated hydrogen concentration becomes less than a target hydrogen concentration.
【請求項2】(2) 鋼中水素濃度の推定を、Estimation of hydrogen concentration in steel V 2Two ×dH × dH VV =Q×( H = Q × (H VV −H -H LL )[前回] +dH ) [Previous] + dH upup +α+β+ Α + β V 11 ×dH × dH LL =Q×( H = Q × (H LL −H -H VV )[前回] +ak×( H ) [Previous] + ak × (H VV −H -H ee )[前回] ) [Last time] H VV [現在] =H [Present] = H VV [前回] +dH [Last time] + dH VV H LL [現在] =H [Present] = H LL [前回] +dH [Last time] + dH LL 但し、VWhere V 11 :RH真空槽内溶鋼体積 : Volume of molten steel in RH vacuum chamber V 2Two :取鍋内溶鋼体積 : Volume of molten steel in ladle Q :還流量Q: reflux amount H VV :RH真空槽内[H] 濃度 : [H] concentration in RH vacuum chamber H LL :取鍋内[H] 濃度 : [H] concentration in ladle dHdH upup :時刻Tでの合金鉄からの水素上昇量: Amount of hydrogen rise from ferro-alloy at time T α :定数(梅雨等の季節変動要因)α: Constant (seasonal fluctuation factors such as rainy season) β :定数(ノロ厚による補正項)β: constant (correction term based on noro thickness) ak:RH真空槽内脱[H] 反応係数ak: removal of [H] reaction coefficient in RH vacuum chamber H ee :[H] 平衡値 : [H] equilibrium value によって実行することを特徴とする請求項1記載の真空The vacuum according to claim 1, wherein the vacuum is performed.
脱ガス装置における脱水素濃度制御方法。A method for controlling a dehydrogenation concentration in a degassing device.
JP02102196A 1996-02-07 1996-02-07 Method for controlling dehydrogenation concentration in vacuum degasser Expired - Fee Related JP3204068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02102196A JP3204068B2 (en) 1996-02-07 1996-02-07 Method for controlling dehydrogenation concentration in vacuum degasser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02102196A JP3204068B2 (en) 1996-02-07 1996-02-07 Method for controlling dehydrogenation concentration in vacuum degasser

Publications (2)

Publication Number Publication Date
JPH09209027A JPH09209027A (en) 1997-08-12
JP3204068B2 true JP3204068B2 (en) 2001-09-04

Family

ID=12043388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02102196A Expired - Fee Related JP3204068B2 (en) 1996-02-07 1996-02-07 Method for controlling dehydrogenation concentration in vacuum degasser

Country Status (1)

Country Link
JP (1) JP3204068B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988407B2 (en) * 2001-06-08 2007-10-10 Jfeスチール株式会社 Method for detecting abnormality in vacuum degree in vacuum degassing and method for improving internal quality of thick plate
KR101280940B1 (en) * 2011-10-31 2013-07-02 주식회사 포스코 Method for refining hot metal and method of manufacturing free-cutting steel using the same
KR101412141B1 (en) * 2013-03-28 2014-06-25 현대제철 주식회사 Method for manufacturing molten steel

Also Published As

Publication number Publication date
JPH09209027A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JP3204068B2 (en) Method for controlling dehydrogenation concentration in vacuum degasser
JP2017025379A (en) Molten iron pretreating method, and molten iron pretreatment control device
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
US5028258A (en) Process of controlling the slag in a top-blowing steelmaking converter
JP3146907B2 (en) Converter end point control method for converter
JP2985643B2 (en) Method of estimating carbon concentration in molten steel using RH type vacuum chamber
JP6547901B2 (en) Hot metal pretreatment method and hot metal pretreatment control device
JPH09256021A (en) Device for calculating charging quantity of auxiliary raw material into converter
JP4048010B2 (en) Method for estimating phosphorus equilibrium in converters and hot metal pretreatment vessels.
RU2817694C1 (en) Refining process control device and refining process control method
KR101570582B1 (en) Vacuum Oxygen decarburization apparatus of chromium comprising melting steel and vacuum oxygen decarburization method using the apparatus
JPH06274231A (en) Device and method for controlling converter blowing
JP2023166207A (en) Control device for vacuum degassing facility, control method for vacuum degassing facility, operation method, and production method for molten steel
JP2019183222A (en) T.Fe ESTIMATION METHOD, T.Fe CONTROL METHOD, STATISTICAL MODEL CREATION METHOD, CONVERTER BLOWING CONTROL DEVICE, STATISTICAL MODEL CREATION DEVICE, AND PROGRAM
US20030208287A1 (en) Method and device for calculating process variables of an industrial process
JP3072115B2 (en) Method of changing slab width in continuous casting of steel
EP3943618A1 (en) Blowing control method of converter-type dephosphorization refining furnace and blowing control device
JPS56160819A (en) Controlling method for thickness of front end of steel sheet
JPH0433846B2 (en)
JPS57131310A (en) Method for controlling content of phosphorus of molten steel
JPS6154843B2 (en)
JPH07268433A (en) Method for controlling end point in steel making process of converter
JP2001011520A (en) Method and apparatus for controlling blowing in converter
JPH0219413A (en) Converter blow-refining method
CN110722007A (en) Method for obtaining outlet thickness of finishing mill

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees