JP3988407B2 - Method for detecting abnormality in vacuum degree in vacuum degassing and method for improving internal quality of thick plate - Google Patents

Method for detecting abnormality in vacuum degree in vacuum degassing and method for improving internal quality of thick plate Download PDF

Info

Publication number
JP3988407B2
JP3988407B2 JP2001173881A JP2001173881A JP3988407B2 JP 3988407 B2 JP3988407 B2 JP 3988407B2 JP 2001173881 A JP2001173881 A JP 2001173881A JP 2001173881 A JP2001173881 A JP 2001173881A JP 3988407 B2 JP3988407 B2 JP 3988407B2
Authority
JP
Japan
Prior art keywords
vacuum
degree
pressure
thick plate
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001173881A
Other languages
Japanese (ja)
Other versions
JP2002363634A (en
Inventor
健二 大島
健治 安藤
寛 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001173881A priority Critical patent/JP3988407B2/en
Publication of JP2002363634A publication Critical patent/JP2002363634A/en
Application granted granted Critical
Publication of JP3988407B2 publication Critical patent/JP3988407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、溶融金属の真空脱ガス処理において、真空槽内の真空度を制御する際に、真空槽の真空度異常を検知し、その原因を判定する方法と、この方法を利用した厚板の内部品質改善方法に関するものである。
【0002】
【従来の技術】
溶融金属の清浄化や成分調整等を目的として、真空脱ガス処理が行われている。例えば、溶鋼を真空脱ガス処理するには、RH式真空脱ガス法やDH式真空脱ガス法のいずれかが適用されることが多い。この真空脱ガス処理は、図1に示すRH式の場合、溶鋼1を収容した容器2の上方に配置される真空槽3の内部に、その下部に設けた2本の浸漬管3a及び3bを介して、溶鋼1を循環導入して該真空槽3内の真空雰囲気と接触させて、ガスや不純物元素を除去するものである。さらに、真空槽3には、排気ダクト4から連続する排気系5が接続され、真空槽3内を所定の真空度に維持するための排気が行われる。
【0003】
また、図1において、符号6は酸素ガス吹込ランス、符号7は合金鉄シューター、符号8は圧力計、符号9は付着地金である。
なお、DH式真空脱ガス法では、1本の浸漬管によって溶鋼を引き上げるが、真空雰囲気に溶鋼を晒す基本は、RH式真空脱ガス法と同様である。
【0004】
かかる真空脱ガス処理においては、真空槽3内を所定の真空度に維持することが必要不可欠であることから、該真空槽3内の真空度を監視して設定した真空度から逸脱しないように制御することが肝要である。そこで、真空槽3内の雰囲気の一部を、排気ダクト4に設けた圧力計8に導いて圧力を測定し、その測定結果に基いて、真空槽3内の真空度を管理していた。
【0005】
また、特開平8−170116号公報には、真空槽に接続する、真空発生装置系と、これに続くダストセパレーター系及び合金添加系のそれぞれの系に真空度計を設置し、各真空度計による測定値を、真空脱ガス処理の操業パターンに応じて各々設定された真空度と比較して、その比較結果によって、真空度異常をまねく原因となったリーク箇所を特定することが開示されている。
【0006】
しかしながら、いずれの場合も、真空槽3の排気ダクト4以降の排気系や、合金添加系(合金鉄シューター)など、真空槽3の外側において真空度の測定を行うことから、溶鋼と直接接触する真空槽内の真空度の変動を正確に検知するのが難しいという問題があった。
【0007】
すなわち、真空槽の外側の排気系などにおいて測定した真空度の値は、その系内でのリークに起因した圧力変動の検知に有効であるが、例えば図1に示した排気系において、真空槽3との接続箇所である排気ダクト4の入側(真空槽側)に、真空槽3内の溶鋼が飛翔してそのまま凝固して付着物9となったような場合には、真空槽3内の真空度の正確な検知が不能になる。なぜなら、この付着物9が真空槽3から排気系へ導かれる排気の通過を阻害する結果、排気系における真空度があまり変動しないのに対して、真空槽内の真空度は急激に低下することになるからである。
従って、排気系における真空度と実際の真空槽内の真空度との間に差が生じる結果、真空槽内の真空度制御を正確に行うことができなくなるのである。
【0008】
また、上述した従来技術では、各系毎に真空度計を設けることから、そのメンテナンス負荷が大きいことも問題である。
【0009】
【発明が解決しようとする課題】
そこで、本発明は、真空槽内の真空度を制御するに当り、該真空槽と排気系との間に代表される継ぎ目からのリークに起因した真空槽内真空度の変動は勿論、排気ダクトの入側の付着物による排気能力の低下に起因した真空槽内真空度の変動を正確に検知し、該真空度の変動がいずれに起因するかをも判定し得る方法について提案することを目的とする。
【0010】
また、本発明の別の目的は、前記の方法によって得られる真空槽内真空度の検知結果を製品、特に厚板における偏析の抑制に利用する方法を提案することにある。
【0011】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたものであって、その要旨は以下のとおりである。すなわち、内部を真空に維持された真空槽内に、溶融金属を吸い上げて真空雰囲気と接触させて真空脱ガス処理を行うに当り、該真空槽内を予め設定した設定圧力に維持するための排気を行う、その排気系における圧力を連続して測定し、該測定圧力と前記設定圧力とを比較し、測定圧力が設定圧力をこえる場合はリークの発生による真空度異常と判定し、一方、測定圧力が設定圧力以下の場合は、さらに数チャージ毎に真空槽内の圧力を直接測定し、そして、該直接測定の圧力値が前記設定圧力値をこえた時点排気系詰まりによる真空度異常と判定することを特徴とする真空脱ガス処理における真空度異常検知判定方法である。
【0012】
また、本発明は、真空脱ガス処理を経た溶鋼を素材として厚板を製造するに当り、前記真空度異常検知判定方法によって真空度異常が検知された時点に、真空脱ガス処理を経た溶鋼については脱水素不良と判定し、該溶鋼から製造した厚板において脱水素処理を施すことを特徴とする厚板の内部品質改善方法である。
【0013】
ここで、前記脱水素不良の判定は、真空度異常時期に真空脱ガス処理を経た全てのチャージにわたって下すことが、厚板の内部品質を改善するのに好適である。
【0014】
【発明の実施の形態】
次に、本発明の真空脱ガス処理における真空度異常検知判定方法について、図2を参照して詳しく説明する。
まず、図1に示した真空脱ガス処理と同様、真空槽3内の雰囲気の一部を、排気ダクト4に設けた圧力計8に導く、圧力測定を定期的、例えばチャージ毎に行う。そして、この圧力計8での測定値(測定圧力)が、各操業毎に設定される真空槽内真空度(以下、単に「設定値」という)を超える場合は、真空槽内で真空度異常が発生したものと判断する。この場合は、真空槽3内および排気ダクト4の圧力が共に増加した訳であるから、排気ダクト4以降の排気系においてリークが発生したものと判定できる。
【0015】
一方、圧力計8での測定圧力の値が設定値以下である場合は、真空槽3内での真空度が所定範囲に維持されていると仮定できるが、この場合には、数チャージ、好適には5〜10チャージに1回、例えば図2に示すプローブ挿し込み口10からガスサンプリングプローブ(図示せず)を介して槽内に真空度計を挿入し、真空槽4内からガスの圧力を直接測定する。そして、この直接測定によって得た測定圧力の値(以下、単に「測定値」という)が前記設定値をこえた場合は、圧力計8による測定値が設定値以下であり、排気系でのリークは発生していないから、真空槽と排気ダクトとの間に前記付着物9が発生したと判断できるため、排気系詰まりとの判定を下すことになる。
【0016】
以上のように、真空度異常を検知し、その原因をも判定可能であるから、得られた情報に基いて、設備点検並びに補修を、容易かつ確実に実施することが可能である。
【0017】
ところで、真空脱ガス処理において除去するガスや不純物元素は様々であるが、不可避に混入する水素についても、真空脱ガス処理によって除去している。この水素は、製鋼段階で十分に低減されていない場合は、製品、特に厚板製品において板厚中心付近での偏析をまねいて不良品となることから、所定範囲内に抑制する必要がある。従来は、溶鋼から採取したサンプルの分析によって、該サンプルの水素量が許容範囲であれば、そのチャージの溶鋼は全て圧延工程へと廻していた。
【0018】
しかしながら、一般にサンプル分析というのは、図3に示すように、採取後の冷却条件によって大きく変化することからわかるように、同一チャージ内であっても操業条件の変化によって水素量が許容範囲を外れる場合がある。例えば、図4に示すように同一チャージの溶鋼から製造した各種の厚さの厚板について、サンプルによる水素分析値と製品における水素偏析に起因した不良の発生との間では、とくに強い相関があるとは限らない。そのため、サンプルによる水素分析に基づいて、水素偏析に起因した不良の発生を予測し防止することは困難であったのである。
【0019】
ここに、発明者らが鋭意研究したところ、溶鋼中の水素量は、真空脱ガス処理における真空度と良く相関しており、真空度が設定値から外れない限り水素量が増加することはなく、換言すると、真空度が変動した場合に水素量が増加することが判明した。
【0020】
従って、前記した真空度異常の検知判定方法を利用することによって、真空度の変動が把握されるため、これに基づいて、真空度異常が生じた操業については、水素含有量が増加している前提の下で、当該チャージでの溶鋼から製造した製品については、脱水素処理を行うことによって、製品での偏析起因の不良の発生を回避することを可能とした。
【0021】
すなわち、真空度異常検知判定方法によって真空度異常が検知された時点に、真空脱ガス処理を経た溶鋼については脱水素不良と判定し、該溶鋼から製造した厚板において脱水素処理を施すこととした。この脱水素処理としては、所謂、脱水素焼鈍を実施すればよく、炉を使用して行なうか、あるいは、製品に徐冷処理を施す方法などが有利に採用できる。なお、真空度異常を検知した場合は、検知された時点の真空脱ガス処理を経た溶鋼を含め、前回の真空度異常検知判定により、異常なしと判定された時点以降の真空脱ガス処理を経た溶鋼から製造した製品について全て脱水素処理を行なうことにして、全製品の保証を行なうものとする。
【0022】
なお、前記脱水素不良の判定は、真空度異常時期に真空脱ガス処理を経た全てのチャージにわたって下すことが、製品での偏析起因の不良の発生率を減少するのに有効である。
【0023】
【実施例】
比較例
150Pa以下の高真空にて行う溶鋼の真空脱ガス処理において、図1に示したように、圧力計8における圧力測定を行って、真空槽内真空度が設定値内と判定されたチャージの溶鋼のみから厚板(40mm厚)を製造した。その結果、厚板製品における1/2厚みに生じる面積性偏析不良の発生率は0.3%であった。
【0024】
発明例
同様に、150Pa以下の高真空にて行う溶鋼の真空脱ガス処理において、図2に示したように、圧力計8における圧力測定に併せて、ガスサンプリングプローブ10を介して、真空槽4から直接採取したガスの圧力測定を、5チャージに1回行って、真空槽内真空度が設定値内と判定されたチャージの溶鋼のみから厚板(40mm厚)を、比較例と同チャージ分製造した。その結果、厚板製品における1/2厚みに生じる面積性偏析不良の発生は皆無であった。
【0025】
【発明の効果】
以上説明したように本発明によれば、真空度異常を検知し、その原因をも判定可能であるから、得られた情報に基いて、設備点検並びに補修を、容易かつ確実に実施することが可能である。また、この方法によって得られる真空槽内真空度の検知結果を製品における偏析の抑制に利用することによって、製品における偏析不良の発生を防止することができる。
【図面の簡単な説明】
【図1】 真空脱ガス処理装置を示す図である。
【図2】 本発明に用いる真空脱ガス処理装置を示す図である。
【図3】 冷却条件によるサンプル分析値の変化を示す図である。
【図4】 サンプル分析値と偏析不良の発生との関係を示す図である。
【符号の説明】
1 溶鋼
2 容器
3 真空槽
3a,3b 浸漬管
4 排気ダクト
5 排気系
6 酸素ガス吹積パイプ
7 合金鉄シューター
8 圧力計
9 付着物
10 プローブ挿し込み口
[0001]
[Industrial application fields]
The present invention relates to a method for detecting an abnormality in the vacuum degree of a vacuum chamber and determining the cause when controlling the degree of vacuum in the vacuum vessel in the vacuum degassing treatment of molten metal, and a thick plate using this method. This is related to the internal quality improvement method.
[0002]
[Prior art]
Vacuum degassing is performed for the purpose of cleaning the molten metal and adjusting the components. For example, in order to vacuum degas the molten steel, either the RH vacuum degassing method or the DH vacuum degassing method is often applied. In the vacuum degassing process, in the case of the RH type shown in FIG. 1, two dip tubes 3 a and 3 b provided in the lower part of the vacuum chamber 3 disposed above the container 2 containing the molten steel 1 are provided. Then, the molten steel 1 is circulated and introduced into contact with the vacuum atmosphere in the vacuum chamber 3 to remove gas and impurity elements. Further, an exhaust system 5 continuing from the exhaust duct 4 is connected to the vacuum chamber 3, and exhaust for maintaining the inside of the vacuum chamber 3 at a predetermined degree of vacuum is performed.
[0003]
Moreover, in FIG. 1, the code | symbol 6 is an oxygen gas blowing lance, the code | symbol 7 is an alloy iron shooter, the code | symbol 8 is a pressure gauge, and the code | symbol 9 is an adhesion | attachment metal.
In the DH type vacuum degassing method, the molten steel is pulled up by a single dip tube, but the basics of exposing the molten steel to a vacuum atmosphere are the same as in the RH type vacuum degassing method.
[0004]
In such a vacuum degassing process, it is indispensable to maintain the inside of the vacuum chamber 3 at a predetermined degree of vacuum. Therefore, the degree of vacuum inside the vacuum chamber 3 is monitored and set so as not to deviate from that set. It is important to control. Therefore, a part of the atmosphere in the vacuum chamber 3 is guided to a pressure gauge 8 provided in the exhaust duct 4 to measure the pressure, and the degree of vacuum in the vacuum chamber 3 is managed based on the measurement result.
[0005]
Japanese Patent Laid-Open No. 8-170116 discloses that a vacuum gauge is installed in each of a vacuum generator system connected to a vacuum chamber, and a dust separator system and an alloy addition system following the vacuum generator system. It is disclosed that the measured value according to the above is compared with the degree of vacuum set according to the operation pattern of the vacuum degassing process, and the leaked part causing the abnormality in the degree of vacuum is identified by the comparison result. Yes.
[0006]
However, in any case, since the degree of vacuum is measured outside the vacuum chamber 3, such as an exhaust system after the exhaust duct 4 of the vacuum chamber 3 or an alloy addition system (alloy iron shooter), it is in direct contact with the molten steel. There was a problem that it was difficult to accurately detect fluctuations in the degree of vacuum in the vacuum chamber.
[0007]
That is, the value of the degree of vacuum measured in the exhaust system outside the vacuum chamber is effective for detecting pressure fluctuations caused by leakage in the system. For example, in the exhaust system shown in FIG. In the case where the molten steel in the vacuum chamber 3 flies to the entrance side (vacuum chamber side) of the exhaust duct 4, which is a connection place with the air duct 3, and solidifies as it is to become a deposit 9. Accurate detection of the degree of vacuum becomes impossible. This is because the adhering material 9 obstructs the passage of the exhaust gas guided from the vacuum chamber 3 to the exhaust system, so that the vacuum level in the exhaust system does not vary so much while the vacuum level in the vacuum chamber decreases rapidly. Because it becomes.
Therefore, as a result of the difference between the degree of vacuum in the exhaust system and the degree of vacuum in the actual vacuum chamber, it becomes impossible to accurately control the degree of vacuum in the vacuum chamber.
[0008]
In the above-described prior art, a vacuum meter is provided for each system, so that the maintenance load is also a problem.
[0009]
[Problems to be solved by the invention]
Therefore, in controlling the degree of vacuum in the vacuum chamber, the present invention is not limited to fluctuations in the degree of vacuum in the vacuum chamber due to leakage from a joint represented between the vacuum chamber and the exhaust system. The purpose is to propose a method that can accurately detect the fluctuation in the vacuum degree in the vacuum chamber due to the decrease in the exhaust capacity due to the deposit on the inlet side of the gas and determine which of the fluctuations in the vacuum degree is caused. And
[0010]
Another object of the present invention is to propose a method of using the detection result of the vacuum degree in the vacuum chamber obtained by the above method for suppressing segregation in a product, particularly a thick plate.
[0011]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and the gist thereof is as follows. That is, when vacuum degassing is performed by sucking molten metal into a vacuum chamber whose interior is maintained in vacuum and bringing it into contact with a vacuum atmosphere, exhaust for maintaining the vacuum chamber at a preset pressure. Measure the pressure in the exhaust system continuously, compare the measured pressure with the set pressure, and if the measured pressure exceeds the set pressure, determine that the degree of vacuum is abnormal due to the occurrence of a leak. When the pressure is lower than the set pressure, the pressure in the vacuum chamber is directly measured every several charges, and when the pressure value of the direct measurement exceeds the set pressure value, an abnormality in the degree of vacuum due to clogging of the exhaust system is detected. a vacuum abnormality detection determination method in the vacuum degassing process and judging.
[0012]
The present invention also hit the manufacturing planks molten steel passing through the vacuum degassing as a material, at the time the vacuum abnormality is detected by the vacuum abnormality detection determination method, the molten steel passing through the vacuum degassing process Is a method for improving the internal quality of a thick plate, characterized in that it is determined as a dehydrogenation failure and a dehydrogenation treatment is performed on the thick plate manufactured from the molten steel.
[0013]
Here, the determination of the dehydrogenation failure is preferably performed over all charges that have undergone the vacuum degassing process at the time when the degree of vacuum is abnormal, in order to improve the internal quality of the thick plate.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the vacuum degree abnormality detection determination method in the vacuum degassing process of the present invention will be described in detail with reference to FIG.
First, as in the vacuum degassing process shown in FIG. 1, a part of the atmosphere in the vacuum chamber 3 is led to a pressure gauge 8 provided in the exhaust duct 4 to perform pressure measurement periodically, for example, for each charge. If the measured value (measured pressure) with the pressure gauge 8 exceeds the vacuum degree in the vacuum chamber set for each operation (hereinafter simply referred to as “set value”), the vacuum degree is abnormal in the vacuum chamber. Is determined to have occurred. In this case, since both the pressure in the vacuum chamber 3 and the exhaust duct 4 have increased, it can be determined that a leak has occurred in the exhaust system after the exhaust duct 4.
[0015]
On the other hand, when the value of the pressure measured by the pressure gauge 8 is equal to or lower than the set value, it can be assumed that the degree of vacuum in the vacuum chamber 3 is maintained within a predetermined range. 1 to 5 to 10 charges, for example, a vacuum gauge is inserted into the tank through a gas sampling probe (not shown) from the probe insertion port 10 shown in FIG. Measure directly. When the measured pressure value obtained by this direct measurement (hereinafter simply referred to as “measured value”) exceeds the set value, the measured value by the pressure gauge 8 is less than the set value, and the leak in the exhaust system Therefore, it can be determined that the deposit 9 is generated between the vacuum chamber and the exhaust duct, and therefore, it is determined that the exhaust system is clogged.
[0016]
As described above, an abnormality in the degree of vacuum can be detected and the cause of the abnormality can be determined. Therefore, it is possible to easily and reliably carry out equipment inspection and repair based on the obtained information.
[0017]
By the way, although various gases and impurity elements are removed in the vacuum degassing process, hydrogen inevitably mixed is also removed by the vacuum degassing process. If this hydrogen is not sufficiently reduced at the steelmaking stage, segregation in the vicinity of the center of the thickness of the product, particularly a thick plate product, results in a defective product, so it is necessary to suppress this hydrogen within a predetermined range. Conventionally, if the amount of hydrogen in the sample is within an acceptable range according to the analysis of the sample taken from the molten steel, all of the charged molten steel is sent to the rolling process.
[0018]
However, in general, in the sample analysis, as shown in FIG. 3, the hydrogen amount deviates from the allowable range due to the change in the operation condition even within the same charge, as can be seen from the fact that the change greatly depends on the cooling condition after collection. There is a case. For example, as shown in FIG. 4, there is a particularly strong correlation between the hydrogen analysis value of the sample and the occurrence of defects due to hydrogen segregation in the product for the various thickness plates manufactured from the same charged molten steel. Not necessarily. Therefore, it has been difficult to predict and prevent the occurrence of defects due to hydrogen segregation based on hydrogen analysis using samples.
[0019]
Here, the inventors have intensively studied, and the amount of hydrogen in the molten steel correlates well with the degree of vacuum in the vacuum degassing process, and the amount of hydrogen does not increase unless the degree of vacuum deviates from the set value. In other words, it has been found that the amount of hydrogen increases when the degree of vacuum varies.
[0020]
Accordingly, since the fluctuation of the vacuum degree is grasped by using the above-described detection and determination method of the abnormality in the vacuum degree, the hydrogen content is increased based on this for the operation in which the abnormality in the vacuum degree has occurred. Under the premise, it was possible to avoid the occurrence of defects due to segregation in the product by dehydrogenating the product manufactured from the molten steel at the charge.
[0021]
That is, at the time when an abnormality in the degree of vacuum is detected by the method for detecting abnormality in the degree of vacuum, the molten steel that has undergone the vacuum degassing process is determined to be dehydrogenated, and a dehydrogenation process is performed on the thick plate manufactured from the molten steel; did. As this dehydrogenation treatment, so-called dehydrogenation annealing may be performed, and a method of performing a slow cooling treatment on a product or the like may be advantageously employed. In the case of detecting the degree of vacuum abnormalities, including molten steel passing through the vacuum degassing treatment at the time sensed by the last vacuum abnormality detection determination was performed in the vacuum degassing process after the time it is determined that no abnormality All products manufactured from molten steel shall be dehydrogenated to guarantee all products.
[0022]
It is effective to reduce the occurrence rate of defects due to segregation in the product by determining the dehydrogenation failure over all the charges that have been subjected to the vacuum degassing process when the degree of vacuum is abnormal.
[0023]
【Example】
Comparative Example In the vacuum degassing treatment of molten steel performed at a high vacuum of 150 Pa or less, as shown in FIG. 1, the pressure in the pressure gauge 8 is measured, and the vacuum in the vacuum chamber is determined to be within the set value. A thick plate (40 mm thick) was produced only from the molten steel. As a result, the incidence of area segregation failure occurring at 1/2 thickness in thick plate products was 0.3%.
[0024]
As in the invention example, in the vacuum degassing treatment of molten steel performed at a high vacuum of 150 Pa or less, the vacuum chamber 4 is connected via the gas sampling probe 10 together with the pressure measurement in the pressure gauge 8 as shown in FIG. Measure the pressure of the gas collected directly from 5 times once in 5 charges, and use a thick plate (40mm thickness) only from the molten steel with the charge determined that the vacuum in the vacuum chamber is within the set value. Manufactured. As a result, there was no occurrence of poor area segregation that occurred at 1/2 thickness in the thick plate product.
[0025]
【The invention's effect】
As described above, according to the present invention, it is possible to detect an abnormality in the degree of vacuum and determine the cause thereof, so that it is possible to easily and reliably carry out equipment inspection and repair based on the obtained information. Is possible. Further, by using the detection result of the vacuum degree in the vacuum chamber obtained by this method for suppressing segregation in the product, it is possible to prevent the occurrence of segregation failure in the product.
[Brief description of the drawings]
FIG. 1 is a view showing a vacuum degassing apparatus.
FIG. 2 is a view showing a vacuum degassing apparatus used in the present invention.
FIG. 3 is a diagram showing changes in sample analysis values depending on cooling conditions.
FIG. 4 is a diagram showing a relationship between sample analysis values and occurrence of segregation failure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Molten steel 2 Container 3 Vacuum tank 3a, 3b Immersion pipe 4 Exhaust duct 5 Exhaust system 6 Oxygen gas blowing pipe 7 Alloy iron shooter 8 Pressure gauge 9 Deposit 10 Probe insertion port

Claims (3)

溶融金属を真空槽内に吸い上げて真空脱ガス処理を行うに当り、該真空槽内を設定圧力に維持するために排気する、その排気系における圧力を測定し、該測定圧力と前記設定圧力とを比較し、測定圧力が設定圧力をこえる場合はリークの発生による真空度異常と判定し、一方、測定圧力が設定圧力以下の場合は、さらに数チャージ毎に真空槽内の圧力を直接測定し、そして、該直接測定の圧力値が前記設定圧力値をこえた時点排気系詰まりによる真空度異常と判定することを特徴とする真空脱ガス処理における真空度異常検知判定方法。In sucking the molten metal into the vacuum chamber and performing vacuum degassing treatment, the pressure in the exhaust system is measured to exhaust the vacuum chamber to maintain the set pressure, and the measured pressure and the set pressure If the measured pressure exceeds the set pressure, it is determined that the degree of vacuum is abnormal due to the occurrence of a leak.On the other hand, if the measured pressure is less than the set pressure, the pressure in the vacuum chamber is directly measured every few charges. and vacuum abnormality detection determination method in the vacuum degassing treatment, characterized in that the pressure value of the direct measurement is determined to vacuum abnormality of the exhaust system clogging at the time of exceeding the set pressure value. 真空脱ガス処理を経た溶鋼を素材として厚板を製造するに当り、請求項1に記載の方法によって真空度異常が検知された時点に、真空脱ガス処理を経た溶鋼については脱水素不良と判定し、該溶鋼から製造した厚板において脱水素処理を施すことを特徴とする厚板の内部品質改善方法。When manufacturing a thick plate using molten steel that has been subjected to vacuum degassing as a raw material, it is determined that the molten steel that has undergone vacuum degassing is defective in dehydrogenation when an abnormality in the degree of vacuum is detected by the method according to claim 1. And a method for improving the internal quality of the thick plate, wherein a dehydrogenation treatment is performed on the thick plate manufactured from the molten steel. 脱水素不良の判定は、真空度異常時期に真空脱ガス処理を経た全てのチャージにわたって下すことを特徴とする請求項2に記載の厚板の内部品質改善方法。3. The method for improving the internal quality of a thick plate according to claim 2, wherein the determination of a dehydrogenation failure is made over all charges that have undergone a vacuum degassing process at a time when the degree of vacuum is abnormal.
JP2001173881A 2001-06-08 2001-06-08 Method for detecting abnormality in vacuum degree in vacuum degassing and method for improving internal quality of thick plate Expired - Fee Related JP3988407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001173881A JP3988407B2 (en) 2001-06-08 2001-06-08 Method for detecting abnormality in vacuum degree in vacuum degassing and method for improving internal quality of thick plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001173881A JP3988407B2 (en) 2001-06-08 2001-06-08 Method for detecting abnormality in vacuum degree in vacuum degassing and method for improving internal quality of thick plate

Publications (2)

Publication Number Publication Date
JP2002363634A JP2002363634A (en) 2002-12-18
JP3988407B2 true JP3988407B2 (en) 2007-10-10

Family

ID=19015262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001173881A Expired - Fee Related JP3988407B2 (en) 2001-06-08 2001-06-08 Method for detecting abnormality in vacuum degree in vacuum degassing and method for improving internal quality of thick plate

Country Status (1)

Country Link
JP (1) JP3988407B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589814B2 (en) * 1977-09-10 1983-02-23 住友金属工業株式会社 Manufacturing method for high-toughness, high-tensile tempered steel sheet with reduced rolling anisotropy
JPH08170116A (en) * 1994-12-14 1996-07-02 Nippon Steel Corp Mutual monitoring of vacuum degree of vacuum degassing equipment and detection of abnormality of vacuum degree in vacuum degassing equipment, and vacuum degassing equipment
JP3376196B2 (en) * 1995-12-08 2003-02-10 新日本製鐵株式会社 Vacuum refining apparatus and operation method thereof
JP3204068B2 (en) * 1996-02-07 2001-09-04 住友金属工業株式会社 Method for controlling dehydrogenation concentration in vacuum degasser
JPH1171612A (en) * 1997-08-30 1999-03-16 Nippon Steel Corp Decarburizing and smelting of molten steel

Also Published As

Publication number Publication date
JP2002363634A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
JPH09184600A (en) Official approval system of gas piping system
CN103712816B (en) The systemic checking method that a kind of RH stove vacuum tightness is not up to standard
CN101988152B (en) Method for detecting cleaness of furnace gas in continuous annealing furnace
JP3988407B2 (en) Method for detecting abnormality in vacuum degree in vacuum degassing and method for improving internal quality of thick plate
CN101988151B (en) Continuous annealing furnace gas cleanliness detecting system
JP4262428B2 (en) Water leak detection method in metallurgical furnace
CN115524283A (en) RH loop immersion pipe detection device and method
JPH0375813B2 (en)
JP2833449B2 (en) Abnormality detection method for coke dry fire extinguishing equipment
US6659166B1 (en) Installation for controlling the sealed condition of water-gas heat exchangers for industrial furnaces
CN210626390U (en) Oxygen content measuring device for furnace chamber of plasma welding machine
JPH07173522A (en) Treatment of molten metal
CN219401698U (en) Purging device
CN115537494B (en) Method and system for monitoring water leakage of converter flue
JP2000256729A (en) Method for detecting drop of stuck material in rh degassing vessel
JP2677119B2 (en) Blast furnace stave pipe damage detection method
CN107812899A (en) On-line checking molds the device and detection method of argon gas protecting effect
CN112305043A (en) Oxygen content measuring device for furnace chamber of plasma welding machine and using method thereof
TW201808454A (en) Detecting method for air leakage of double discharging cone valves of dust collector comprising an upper space and a lower space, and an upper cone valve and a lower cone valve respectively located in the upper space and the lower space
JPH0574672A (en) Method and system for diagnosing semiconductor manufacturing facility
JP2000320461A (en) Method and device for managing soundness of dry gas seal
JP3678132B2 (en) Dehydrogenation refining method for molten steel
CN114609255A (en) Method for distinguishing influence of steelmaking and rolling reasons on ultrasonic flaw detection result of steel rail
JP2004018947A (en) Process for checking leakage in vacuum melting furnace
KR20220091183A (en) Airtight test apparatus of fuel cell separate plate and airtight test method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3988407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees