JPS5855519A - Controlling method for operation of aod furnace with computer simulation - Google Patents

Controlling method for operation of aod furnace with computer simulation

Info

Publication number
JPS5855519A
JPS5855519A JP15292781A JP15292781A JPS5855519A JP S5855519 A JPS5855519 A JP S5855519A JP 15292781 A JP15292781 A JP 15292781A JP 15292781 A JP15292781 A JP 15292781A JP S5855519 A JPS5855519 A JP S5855519A
Authority
JP
Japan
Prior art keywords
amount
oxidation
consumed
refining
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15292781A
Other languages
Japanese (ja)
Other versions
JPH0154410B2 (en
Inventor
Takeya Toge
峠 竹弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP15292781A priority Critical patent/JPS5855519A/en
Publication of JPS5855519A publication Critical patent/JPS5855519A/en
Publication of JPH0154410B2 publication Critical patent/JPH0154410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00

Abstract

PURPOSE:To accurately perform the control of the titled operation, by calculating the substances of components in steel melt and its heat balance, determining a time for charging a coolant, its amount to be charged, a time for switching the composition of refining gas and its amount to be injected, and refining the steel melt. CONSTITUTION:A residual amount of O2 obtained by subtracting an amount of O2 consumed for decarburizing, desilicating and demanganating reactions from an amount of O2 consumed in the interval of an infinitestimal time during the operation of an AOD furnace is considered as an amount of O2 consumed for the oxidation of Cr and the oxidation of Fe with a part of Cr2O3 as the oxidation product. On the other hand, an amount of O2 to be consumed for each of the oxidation of Cr and the oxidation of Fe with a part of Cr2O3 as the oxidation product is calculated from said residual amount of O2 on the basis of the mol ratio of Cr/Fe in slag obtained from data on the actual operation. In this way, the substances of components in the steel melt and its heat balance are calculated, an amount of a coolant to be changed and an amount of refining gas to be injected are determined while measuring the temperature of the steel melt at needs, and refining is performed. The point of time when a predetermined C amount and temperature are obtained is considered as the final point of refining.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ムOD炉操業の制御方法に関し、特に本発明
は、コンピューター・シミュレーションによるAOD脱
炭精錬における冷材投入タイミングと投入量の決定及び
吹錬終点制御方法に関するものであり、さらに詳しく言
−えば本発明は、0□−N2ガスまたはO8−ムrガス
の吹込みによりステンレス鋼の吹錬を行うAOD炉の操
業方法において、AOD炉に溶鋼を注入する時の溶鋼成
分ならびに温度を知った上で、コンピューター・シミュ
レーションにより予め任意の精錬ガス組成を定めて吹錬
する時に必要な塗材投入タイミングと投入量を算出決定
し、また精錬ガス組成を切換えるタイミングをも併せて
算出決定し1さらに吹錬終点を決定するモデルならびに
フンビューターによる計算プログラムにもとづいて吹錬
終点制御を行う方法に関するものである。 従来のAOD操業の解析方法によれば、%Qr−%C−
%0r2o3”” ”Co一温度の間には平衡関係があ
ることを前提として諸種の解析が行われている。 しかしながらQrと平衡するCよりも高いCを含有する
領域、すなわちQrは酸化しないと通常考えられる領域
においても脱Oと同時にQrの酸化が実際には生起して
いる◇従って従来のAOD操業解析手段による操業は実
際操業とのずれを避けることができず、その結果的確な
操業の制御を行うことが―しいという欠点があった。 本発明は、従来性なわれていた前記平衡関係に基づく解
析方法によるムOD操業の制御方法により生ずる的確な
操業の制御を行うことが困難であるという欠点を除去・
改善した制御方法を提供することを目的とするものであ
り、特許請求の範囲記載の方法を提供することによって
前記目的を達成することができる。 本発明は、従来解析の対象とされなかったOrおよびF
eの平衡状態からずれた酸化現象をも考慮した上で、コ
ンピューターにより操業の制御を行なうという新規な知
見に基くものである。 本発明によれば、特に平衡からずれた(+rの酸化量を
下記の手段によって決定する。 (イ) Cのある微小な時間間隔における脱炭量すなわ
ち脱炭速度を溶鋼中の物質移動律速、すなわち濃度差と
装置係数の積から計算する。前記装置係数は実測データ
から求める。 (ロ)S土についても上記ピ)に準じて求める。 (ハ) Mnについても前記(イ)に準じて求める。 に)上記微小な時間間隔中に消費された02量から(イ
)〜(ハ)の反応に使用された02itを差引いた残り
の02量をcrの酸化ならびに前記酸化されたCr2O
3中の1部のCr2O3によるyeの酸化に消費された
02量とする。 (ホ) スラグ中の0r20.が溶鋼中のFeを酸化し
てスラグ中にFeOが生成される。そのときのスラグ中
の(3r/li’e (モル比)は実際操業データから
求める。 (へ) 前記(イ)〜(ホ)によって得られるそれぞれ
の値から物質収支を計算し、溶鋼の重量変化、溶鋼中の
各成分量の変化、スラグ重量の変化、スラグ成分の変化
及び(イ)〜(ホ)の反応における反応熱とAOD容器
よりの放熱量から溶鋼・溶滓の熱収支を計算し、溶鋼の
温度変化を求める。 (ト)  前記(イ)〜(へ)により、AOD反応のす
べてを定撒的に把握することができる0 トコろで上記AOD反応によれば、溶鋼温度が所定温度
以上に上昇するので、かかる温度上昇を抑制するため塗
材の投入量と投入時期を算出決定する必要がある。上記
算出は下記の順序で行う。 (a)  溶鋼温度が所定温度に到達した時を塗材の投
入時期とする。 ■) 塗材の投入量は次のようにして算出する。 前記(イ)〜(ホ)における微小時間内の反応熱と反応
容器からの放熱量と塗材の溶解熱を考慮して定められた
温度幅だけ降下させるに必要な冷材量を算出する。 (0)  塗材の最終投入時を定めるためには前記(へ
)において算出した0%が予め実操業から求めたC含有
量範囲より低くなったことが判明したら、その時期以降
には塗材の投入を終了する。 (d)  一方精錬ガスの成分組成を精錬の進行に従っ
て適時変更する。同一成分組成で精錬ガスを飲込む段階
を1つのステップとすればかかるステップの変更の基準
は下記のようにして定める。 前記(イ)において求めた脱炭量が任意の脱炭量より小
さくなった時点でステップを変更する。 ′   □4□□。ゎつllG11ll#lI間や千あ
、定5、これに見合う脱炭量を意味するものとする。 (e)  前記(C)と(d)に従って操業遂行した結
果、所定の0量と温度が得られた時点をもって操業の終
点とする。 一方それまでに酸化された(3r、Mn%F6を還元す
るに必要なFe −S土量と石灰量とを算出し、このよ
うに算出された重量に見合うFe−8i、石灰を投入し
てQr還元期に移行する。 これ以降の精錬方法は従来性われている方法と同様であ
る。 次に本発明を実施例について説明する。 60を容量のAOD炉を用いてSUS 3041ステン
レス鋼を本発明により精錬した。 前記AOD炉としては羽口数がダ本とj本の炉であって
、炉内耐火物が新しい炉(炉壁が侵食されていないので
鋼浴深さは使い古した炉のそれに比し深いという炉特性
を有する。〕と炉内耐火物がある程度溶損した使い古し
た炉(炉壁が侵食されているので、鋼浴深さは炉内耐火
物が新しい炉のそれより浅いという−4特性を有する。 )のそれぞれの炉を用いて精錬を行なった。 実施例り 第1図は新しく築炉したダ本羽ロAOD炉を用いて操業
したコンピューター・シミュレーションの経過であって
、脱炭操業過程の鋼浴温度(Δ印で表す)、クロム濃度
(・印で表す)、炭素濃度(0印で表す)を時間の経過
に従って調べた図である。同図中■〜■は投入材の投入
時期を示し、それぞれの投入時期に投入した投入材の種
類と重量は下記のとおりであった。 ■ HGFeOr     1455 kg■鉄屑  
 2100 J19 ■鉄屑   2000 J9 ■  ステンレス屑    2500に90aO620
J9 ■  ステンレス屑    2ooOkg0aO、、l
、J    610 kg上記精錬中に吹込むガスの組
成と量を下記第1表のように変更したが、同一ガス組成
で吹錬した期間を1つのステップと称すると第1図に示
す精錬でハ/ −41のダつのステップでガス吹錬を行
った。 次に各ステップにおける吹込みガスの吹込量と組成比を
第1表に示す。 第  1  表 第1図から本発明による計算値の結果から予測される温
度推移(実線で示す)、〔Or)%推移(破線で示す)
ならびに((3)%推移(1点鎖線で示す)と実測値と
がそれぞれ非常によく一致していることが判り、本発明
の方法が優れていることが立証された。 第一図は第1図に示した操業の際のスラグ重着、Feo
lMno%0r203(%)の経時的変化を示す計算値
である・なお上記経時的変化の実測値は測定が非常に困
難であることから実測しなかった。 実施例2 S本羽口の使い古したムOD炉を用いて同じ(5US3
044ステンレス鋼を精錬した。第3図は本発明の数式
モデルによるシミュレーションと実測値の比較を示した
もので、Δ、−10印はそれぞれ第7図のそれと同一で
ある。同図において、■〜■は投入材の投入時期を示し
、それぞれの投入時期に投入した投入材の種類と重量は
下記のとおりであった。 ■ H(tFeOr    1204 J190a0 
    390719 ■ Fe −Ni    2000 kg■鉄屑   
810 I9 ■ re −yi22oo J9 ■ F19− Ni    2000 J90aO51
0kg ■ Oao      500 kg なお各ステップの吹込みガスの組成と組成比なヒびにそ
れぞれのガス量を第2表に示す。−第  2  表 第3図から本発明による計算値の結果から予測される温
度推移(実線で示す)、〔Or)%推移(破線で示す)
ならびに
The present invention relates to a method for controlling the operation of an AOD furnace, and more particularly, the present invention relates to a method for determining the timing and amount of cold material input in AOD decarburization refining using computer simulation, and a method for controlling the end point of blowing. -For example, the present invention provides a method for operating an AOD furnace for blowing stainless steel by blowing 0□-N2 gas or O8-mr gas, in which the composition and temperature of molten steel are known when injecting molten steel into the AOD furnace. After that, the timing and amount of coating material required for blowing with an arbitrary refining gas composition determined in advance through computer simulation are calculated and determined, and the timing for switching the refining gas composition is also calculated and determined. Furthermore, it relates to a method for controlling the blowing end point based on a model for determining the blowing end point and a calculation program by Hunbueter. According to the conventional analysis method of AOD operation, %Qr-%C-
%0r2o3"""Various analyzes have been carried out on the premise that there is an equilibrium relationship between Co and temperature. However, it is assumed that the region containing higher C than the C in equilibrium with Qr, that is, Qr, will not oxidize. Qr oxidation actually occurs at the same time as O removal even in the range that is normally considered. Therefore, operation using conventional AOD operation analysis means cannot avoid deviations from actual operation, and as a result, accurate operation cannot be carried out. The present invention has the drawback that it is difficult to control the operation accurately, which is caused by the conventional method of controlling the OD operation using the analysis method based on the above-mentioned equilibrium relationship. Eliminate the drawbacks of being
The object is to provide an improved control method, and this object can be achieved by providing the method according to the claims. The present invention solves the problems of Or and F, which were not subject to conventional analysis.
This is based on the new knowledge that the operation is controlled by a computer, taking into account the oxidation phenomenon that deviates from the equilibrium state of e. According to the present invention, in particular, the amount of oxidation (+r) that deviates from equilibrium is determined by the following means. In other words, it is calculated from the product of the concentration difference and the equipment coefficient.The equipment coefficient is determined from the actual measurement data.(b) S soil is also determined in accordance with (ii) above. (c) Mn is also determined in accordance with (a) above. B) The remaining amount of 02 after subtracting the amount of 02 used in the reactions (a) to (c) from the amount of 02 consumed during the minute time interval is used for oxidation of cr and the oxidized Cr2O.
Let it be the amount of 02 consumed in the oxidation of ye by one part of Cr2O3 in 3. (e) 0r20 in slag. oxidizes Fe in the molten steel and produces FeO in the slag. The (3r/li'e (molar ratio)) in the slag at that time is determined from the actual operation data. Calculate the heat balance of molten steel and slag from the change in the amount of each component in molten steel, the change in slag weight, the change in slag component, and the reaction heat in reactions (a) to (e) and the amount of heat released from the AOD container. Then, find the temperature change of the molten steel. (g) According to the above AOD reaction, the molten steel temperature is Since the temperature rises above a predetermined temperature, it is necessary to calculate and determine the amount and timing of application of the coating material in order to suppress such temperature rise.The above calculations are performed in the following order: (a) When the molten steel temperature reaches the predetermined temperature The time when the coating material is added is the time to add the coating material. ■) The amount of the coating material to be added is calculated as follows. The amount of cooling material required to lower the temperature by a predetermined range is calculated by taking into account the heat of reaction within the minute time in (a) to (e) above, the amount of heat released from the reaction vessel, and the heat of melting of the coating material. (0) In order to determine the final time to add the coating material, if it is found that the 0% calculated in (f) above is lower than the C content range determined in advance from actual operation, after that time, the coating material should be added. Finish inputting. (d) On the other hand, the composition of the refining gas is changed as appropriate according to the progress of refining. If the step of swallowing refining gas with the same component composition is considered as one step, the criteria for changing this step is determined as follows. The step is changed when the amount of decarburization determined in (a) above becomes smaller than the desired amount of decarburization. ' □4□□.ゎ ゎ ゎ G 1 1 I l # 1 I between 1,000, 5, and the amount of decarburization commensurate with this. (e) As a result of carrying out the operation according to (C) and (d) above, the end point of the operation is when the predetermined zero amount and temperature are obtained. On the other hand, calculate the amount of Fe-S soil and lime necessary to reduce the oxidized (3r, Mn%F6), and add Fe-8i and lime corresponding to the weight calculated in this way. Transition to the Qr reduction period. The refining method after this is the same as the conventional method. Next, the present invention will be explained with reference to an example. The above-mentioned AOD furnaces have a number of tuyeres of 2 and 1, and the refractories in the furnace are new (the furnace walls are not eroded, so the depth of the steel bath is the same as that of a used furnace. ] and a worn-out furnace in which the refractory in the furnace has been eroded to some extent (the furnace wall is eroded, so the depth of the steel bath is shallower than that in a new furnace). Refining was carried out using each of the furnaces with -4 characteristics. Fig. 1 shows the progress of a computer simulation of operation using a newly built AOD furnace. This is a diagram in which the steel bath temperature (represented by Δ), chromium concentration (represented by ・), and carbon concentration (represented by 0) were investigated over time during the decarburization process. The input times of input materials are shown below, and the types and weights of input materials input at each input time are as follows: ■ HGFeOr 1455 kg ■ Iron scrap
2100 J19 ■ Iron scrap 2000 J9 ■ Stainless steel scrap 2500 to 90aO620
J9 ■ Stainless steel scrap 2ooOkg0aO,,l
, J 610 kg The composition and amount of the gas blown during the above refining were changed as shown in Table 1 below, but if the period of blowing with the same gas composition is referred to as one step, then the refining shown in Figure 1 Gas blowing was performed in two steps of / -41. Next, Table 1 shows the amount and composition ratio of the blown gas in each step. Table 1 Temperature transition (shown by solid line) and [Or)% change (shown by broken line) predicted from the results of calculated values according to the present invention from Table 1
It was found that the ((3)% transition (indicated by the dashed line) and the actual measured values were in very good agreement with each other, proving that the method of the present invention is superior. Slag deposition during operation shown in Figure 1, Feo
This is a calculated value showing the change over time in lMno%0r203 (%).The actual value of the above change over time was not measured because it is very difficult to measure. Example 2 The same method (5US3
Refined 044 stainless steel. FIG. 3 shows a comparison between the simulation using the mathematical model of the present invention and the actual measured values, and the Δ and -10 marks are the same as those in FIG. 7, respectively. In the figure, ■ to ■ indicate the timing of input materials, and the types and weights of input materials input at each input time were as follows. ■ H(tFeOr 1204 J190a0
390719 ■ Fe -Ni 2000 kg ■ Iron scrap
810 I9 ■ re -yi22oo J9 ■ F19- Ni 2000 J90aO51
0 kg ■ Oao 500 kg The composition and composition ratio of the blown gas in each step and the amount of gas for each crack are shown in Table 2. - Temperature transition (shown by solid line) and [Or)% change (shown by broken line) predicted from the results of calculation values according to the present invention from Table 2 and Figure 3
as well as

〔0〕%推移(1点鎖線で示す)と実測値とが
それぞれ非常に良く一致していることが判る。例えばn
ayecrの投入によってOra度が高くなり、またl
t6− IJiの投入(■、■、■)によりQr濃度が
希釈されて低くなって行く状況がよくシミュレートされ
ている。 実施例& 第3図に示す操業炉と同じS本羽口の炉であるが、耐火
物を新しくした新炉を用いてガス量、ガス比は第3図に
示す条件と同一条件で操業した。 この結果を第q図に示す。 同図において■〜■は投入材の投入時期を示し、それぞ
れの投入時期に投入した投入材の種類と重量は下記のと
おりであった。 ■  鉄  屑       950119NiO78
6kg ■ Fe −Ni   、1685 kg      
、鉄  屑       510に9 QaQ     −660719 ■ l’e −Ni    2272に9■ he −
yiJ2176 kg ■ Oao      500に9 ■ Ca056CaO 36O103kg 第q図から判るように本発明の数式iデルによるシミュ
レーションと実測値は、この場合もまたよく一致してい
た。 前記第1,3及びq図にそれぞれ示した実施例1〜3の
脱炭終了後の鋼浴温度、鋼浴組成についての計算値と実
施値とを第3表にそれぞれ示すが、いずれの例も極めて
よく一致していることが判る。 第  3  表 実施側番 第S図はAOD受鋼時の溶鋼成分、温度を初期条件とし
てシミュレーションを行い実操業したが、途中でチェッ
ク分析、測温を行い、これを初期条件として再度シミュ
レーションを行い操業を修正した結果を示したものであ
る。 同図において■〜■は投入材の投入時期を示し、それぞ
れの投入時期に投入した投入材の種類と重量は下記のと
おりであった。 ■ Fe820 kg NiO786kg ■Fe−N1608に9 0aO−r:r9okg ■ Fe −Ni    1533 kg−1e −O
r  、   193 kg■ cao      5
00 kg Fθ−Ni    1731 kg ■Fe −Ni    2476 kgOaO500k
g 同図中点線で示したものがAOD受鋼時の成分、温度を
初期条件としてシミュレーションを行い、吹錬を行った
ものである0コステツプ末でチェック分析、測温を行っ
た。それによると溶#Ii温度が計算値より75℃高く
、また0、cr%も低目になり過酸化気味になっている
ので、この後昇温を抑えるために02量を初めに計算し
た点線の場合上りもis%減じて吹錬した0この計算値
は実線で示しており、操業値はム、・、0(それぞれ温
度、Qr%、0%)で示した。修正結果は脱炭末の温度
を低くすることができ、またクロムロスも防止すること
ができ、過酸化を避けることができた。 第4表にAOD受鋼時の成分、温度これを初期条件とし
た場合の2ステツプ末、脱炭末の計算値と1、コステッ
プ末の成分、温度の実測値ならびにこれを初期条件とし
て再シミュレーションした脱炭末の計算値と実測値を示
す。なおダステップで脱炭を終了しているが、その後ム
rのみ吹込んで溶鋼中の過剰酸素とCの反応を促進せし
めるlr脱炭のシミュレーションと操業結果を合せて示
す。 下記第5表は脱炭精錬時のガス組成と吹込み量を示す。 第  5  表 注* 3 、45TEP実操業はこの表から02ii1
5%減 以上本発明によれば、従来解析の対象とされなかったa
rおよびFeの平衡からずれた酸化現象をも考慮して、
電子計算機によりAOD炉による脱炭精錬における塗材
投入タイミングと投入量を決定し、かつ吹錬終点制御を
適確に行なうことができる。
It can be seen that the [0]% transition (indicated by the one-dot chain line) and the actual measured values match very well. For example n
By adding ayecr, the degree of Ora increases, and l
The situation in which the Qr concentration is diluted and lowered by the injection of t6-IJi (■, ■, ■) is well simulated. Example & A furnace with the same S tuyere as the operating furnace shown in Figure 3 was used, but a new furnace with new refractories was used and the gas amount and gas ratio were operated under the same conditions as shown in Figure 3. . The results are shown in Figure q. In the same figure, ■ to ■ indicate the timing of input materials, and the types and weights of input materials input at each input time were as follows. ■ Iron scrap 950119NiO78
6kg ■ Fe-Ni, 1685 kg
, Iron scrap 510 to 9 QaQ -660719 ■ l'e - Ni 2272 to 9 ■ he -
yiJ2176 kg ■ Oao 500 to 9 ■ Ca056CaO 36O103 kg As can be seen from Figure q, the simulation based on the formula iDel of the present invention and the measured value were in good agreement in this case as well. Calculated values and actual values for the steel bath temperature and steel bath composition after the completion of decarburization in Examples 1 to 3 shown in Figures 1, 3, and q are shown in Table 3, respectively. It can be seen that they match extremely well. Table 3 Implementation side number S Figure S was simulated using the molten steel composition and temperature at the time of receiving AOD steel as the initial conditions, and the actual operation was carried out, but a check analysis and temperature measurement were performed on the way, and the simulation was performed again using these as the initial conditions. This shows the results of modifying operations. In the same figure, ■ to ■ indicate the timing of input materials, and the types and weights of input materials input at each input time were as follows. ■ Fe820 kg NiO786 kg ■ Fe-N1608 to 90aO-r:r9okg ■ Fe -Ni 1533 kg-1e -O
r, 193 kg ■ cao 5
00 kg Fθ-Ni 1731 kg ■Fe-Ni 2476 kgOaO500k
g The dotted line in the figure shows the composition and temperature at the time of AOD receiving as initial conditions, and the simulation was performed, and the check analysis and temperature measurement were performed at the end of 0 cost step, which is the one after blowing. According to this, the temperature of the melt #Ii is 75℃ higher than the calculated value, and the 0 and Cr% are also low, making it a little overoxidized. Therefore, in order to suppress the temperature increase, the dotted line was calculated using the 02 amount at the beginning. In the case of 0, the upstream was also reduced by is% and blown. This calculated value is shown by a solid line, and the operating value is shown by M, ·, 0 (temperature, Qr%, and 0%, respectively). As a result of the modification, it was possible to lower the temperature of the decarburized powder, prevent chromium loss, and avoid overoxidation. Table 4 shows the calculated values of the components and temperature at the end of 2nd step and the end of decarburization when receiving AOD steel, and the actual measured values of the components and temperature at the end of 1st step and the end of decarburization, using these as the initial conditions. The calculated values and actual measured values of the simulated decarburized powder are shown. Although the decarburization is completed by dastep, the simulation and operation results of lr decarburization, in which only murium is injected to promote the reaction between excess oxygen and C in the molten steel, are also shown. Table 5 below shows the gas composition and injection amount during decarburization refining. Table 5 Note * 3 , 45TEP actual operation is 02ii1 from this table.
5% or more reduction According to the present invention, a, which was not subject to conventional analysis,
Considering the oxidation phenomenon that deviates from the equilibrium of r and Fe,
The timing and amount of coating material to be added in decarburization refining using an AOD furnace can be determined by an electronic computer, and the blowing end point can be accurately controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法によるダ本羽口を有するAODlf
r炉Wl業のコンピューター・シミュレーションの経過
を示す図、第一図は第1図に示す操業においてスラグ重
量、FeO%MnO%0r203(%)の経時変化の計
算値を示す図、第3図は本発明方法によるj本羽口を有
するAOD古炉操炉操業ンピューター・シミュレーショ
ンの経過を示す図、第9図は本発明方法によるj本羽口
を有するムOD新炉操業のコンピューター・シミュレー
ションの経過を示す図、第3図は本発明により実操業し
、途中でチェック分析測定を行い、これを初期条件とし
て再度シミュレーションを行い操業を修正したコンピュ
ーター・シミュレーションの経過を示す図である。
FIG. 1 shows an AODlf having a double tuyere according to the method of the present invention.
Figure 1 is a diagram showing the progress of computer simulation of the r-furnace Wl industry. Figure 1 is a diagram showing calculated values of changes in slag weight and FeO%MnO%0r203 (%) over time during the operation shown in Figure 1. Figure 3 is Figure 9 shows the progress of a computer simulation of the operation of an old AOD furnace with J-shaped tuyeres according to the method of the present invention. Fig. 3 is a diagram showing the progress of a computer simulation in which actual operation according to the present invention was carried out, check analysis and measurement was performed midway, and the simulation was performed again using this as an initial condition to correct the operation.

Claims (1)

【特許請求の範囲】[Claims] L ムOD炉に溶鋼を注入する時の溶鋼成分ならびに温
度を知った上で、%Qr−%C−%(3r203− P
o□一温度の間に平衡関係があるこ゛とを前提として予
め任意の精錬ガス組成を定めて吹錬する時に必要な冷材
投入時−期と投入量を算出決定し、また精錬ガス組成を
切換える時期を算出決定し、さらに吹錬終・点を決定す
るモデルならびにプログラムにもとづいて吹錬終点制御
を行うコンピューター・シミュレーションによるムOD
炉操業の制御方法において、前記AOD炉操業中の微小
時間間隔中に消費された02皺から脱C1脱Si、脱M
nの反応に消費された02量を差引いた残りの02皺を
Orの酸化ならびに前記酸化されたCr2O3中の一部
の0r203によるF6の酸化に消費された02量、と
し、予め実際操業データから求めたスラグ中のC1rA
?eモル比に基いて前記残りの02jlのうちQrの酸
化と前記酸化された0r203中の一部のCr2O3に
よる3eの酸化にそれぞれ消費される02量を算出しつ
つ溶鋼中の成分の物質収支および熱収支を演算し、必要
により溶鋼温度を測定しながら、冷材投入時期ならびに
投入量を決定し、かつ精錬ガス組成の切換え時期ならび
にガス吹込量を決定して精錬し、所定のC量と温度が得
られた時点を吹錬終点とすることを特徴とするコンピュ
ーターシミュレーションによるAOD 炉m業の制御方
法。
%Qr-%C-%(3r203-P
□ On the premise that there is an equilibrium relationship between temperatures, determine an arbitrary refining gas composition in advance, calculate and determine the timing and amount of coolant input necessary for blowing, and switch the refining gas composition. MoOD by computer simulation that calculates and determines the timing and controls the blowing end point based on the model and program that determines the blowing end point.
In the method for controlling furnace operation, the method includes removing Cl, deSi, and M from the 02 wrinkles consumed during a minute time interval during the AOD furnace operation.
The amount of 02 remaining after subtracting the amount of 02 consumed in the reaction of n is the amount of 02 consumed in the oxidation of Or and the oxidation of F6 by some of the 0r203 in the oxidized Cr2O3. C1rA in the determined slag
? Based on the e molar ratio, calculate the amount of 02 consumed in the oxidation of Qr out of the remaining 02jl and the oxidation of 3e by some Cr2O3 in the oxidized 0r203, and calculate the mass balance of the components in the molten steel. Calculate the heat balance, measure the temperature of the molten steel if necessary, determine the timing and amount of cold material to be introduced, and determine the timing and amount of gas injection to change the refining gas composition. A control method for an AOD furnace operation by computer simulation, characterized in that the point at which the blowing temperature is obtained is set as the blowing end point.
JP15292781A 1981-09-29 1981-09-29 Controlling method for operation of aod furnace with computer simulation Granted JPS5855519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15292781A JPS5855519A (en) 1981-09-29 1981-09-29 Controlling method for operation of aod furnace with computer simulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15292781A JPS5855519A (en) 1981-09-29 1981-09-29 Controlling method for operation of aod furnace with computer simulation

Publications (2)

Publication Number Publication Date
JPS5855519A true JPS5855519A (en) 1983-04-01
JPH0154410B2 JPH0154410B2 (en) 1989-11-17

Family

ID=15551178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15292781A Granted JPS5855519A (en) 1981-09-29 1981-09-29 Controlling method for operation of aod furnace with computer simulation

Country Status (1)

Country Link
JP (1) JPS5855519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315800A (en) * 1988-03-28 1989-12-20 Nec Corp Linear inference type voice analyzing and synthesizing device
JPH0310014A (en) * 1989-06-08 1991-01-17 Nippon Steel Corp Method for controlling end point in secondary refining
KR100904006B1 (en) * 2001-11-13 2009-06-22 지멘스 브이에이아이 메탈스 테크놀로지스 게엠베하 앤드 컴퍼니 Aod process for producing a steel using a process model

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852603A (en) * 1971-11-01 1973-07-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852603A (en) * 1971-11-01 1973-07-24

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315800A (en) * 1988-03-28 1989-12-20 Nec Corp Linear inference type voice analyzing and synthesizing device
JPH0310014A (en) * 1989-06-08 1991-01-17 Nippon Steel Corp Method for controlling end point in secondary refining
KR100904006B1 (en) * 2001-11-13 2009-06-22 지멘스 브이에이아이 메탈스 테크놀로지스 게엠베하 앤드 컴퍼니 Aod process for producing a steel using a process model

Also Published As

Publication number Publication date
JPH0154410B2 (en) 1989-11-17

Similar Documents

Publication Publication Date Title
JP2015131999A (en) Dephosphorization method of molten iron
JPS5855519A (en) Controlling method for operation of aod furnace with computer simulation
CA3133378C (en) Method for monitoring a steelmaking process and associated computer program
JP6516906B1 (en) Wind blow calculation method, blow blow calculation program
CN110570911A (en) Compilation method of AOD static calculation model
JP4140939B2 (en) Converter blowing method
KR910009867B1 (en) Process for producing chromium containing molten iron
JP2015010267A (en) Method and apparatus for blowing control
WO2022050139A1 (en) Smelting process control device and smelting process control method
JPH0310012A (en) Steelmaking method in converter
JPH0433846B2 (en)
JP4048010B2 (en) Method for estimating phosphorus equilibrium in converters and hot metal pretreatment vessels.
JPS6246606B2 (en)
CN117683962A (en) Method for predicting FeO content of converter final slag
JP3788392B2 (en) Method for producing high Cr molten steel
JP2021031684A (en) Converter blowing control device, statistic model construction device, converter blowing control method, statistic model construction method and program
Nakanishi Recent Progress of OBM/Q-BOP Steelmaking at Kawasaki Steel Corporation
Mei et al. Real-Time Carbon and Temperature Model of Converter Based on the Weights of Elemental Reaction Rate
JPS60204818A (en) Method for controlling temperature of molten steel during refining by composite blowing in converter
JP2024059560A (en) Method for removing slag from converter-type refining furnace and method for operating converter
JP2001279317A (en) Method for dephosphorizing molten iron
JPS58147511A (en) Refining method of stainless steel
JPS6246605B2 (en)
JP2001279318A (en) Method for dephosphorizing molten iron
JPS6159367B2 (en)