JP2001279318A - Method for dephosphorizing molten iron - Google Patents

Method for dephosphorizing molten iron

Info

Publication number
JP2001279318A
JP2001279318A JP2000096317A JP2000096317A JP2001279318A JP 2001279318 A JP2001279318 A JP 2001279318A JP 2000096317 A JP2000096317 A JP 2000096317A JP 2000096317 A JP2000096317 A JP 2000096317A JP 2001279318 A JP2001279318 A JP 2001279318A
Authority
JP
Japan
Prior art keywords
temperature
hot metal
slag
treatment
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000096317A
Other languages
Japanese (ja)
Inventor
Takeo Imoto
健夫 井本
Shinya Kitamura
信也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000096317A priority Critical patent/JP2001279318A/en
Publication of JP2001279318A publication Critical patent/JP2001279318A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize reduction in the cost of an auxiliary material such as lime, and the shortening of a treating time by holding molten iron temperature to a suitable range in a dephosphorizing treatment with a converter type refining furnace and stabilizing the phosphorus distribution ratio at the end point time to a high level. SOLUTION: While continuously measuring the molten iron temperature in the converter type refining vessel, at least one or more conditions among an oxygen supplying condition, a bottom-blown stirring condition, a supplying amount or a supplying timing of the auxiliary material and a treating completion timing thereof, are decided based on the measured temperature. While holding the molten iron temperature from the starting to the completing of the oxygen supplying treatment to 1,210 deg.C-1,390 deg.C, the iron oxide concentration in slag when the oxygen supplying treatment is completed, is regulated to >=9 mass %.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶銑の脱燐処理を
上吹き転炉、上底吹き転炉、底吹き転炉、AODなどの転
炉型精錬容器で実施する溶銑脱燐処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dephosphorizing hot metal in which dephosphorization of hot metal is performed in a converter type refining vessel such as a top-blowing converter, an upper-bottom-blowing converter, a bottom-blowing converter, or an AOD. .

【0002】[0002]

【従来の技術】溶銑予備処理における脱燐反応は、溶鋼
段階の反応に比べて低温で進行させることができるた
め、発熱反応である脱燐反応を有利に進行させることが
できる。しかし、溶銑温度が低い場合にはスラグの滓化
率が低下することから、脱燐反応を効率よく進行させる
ためには、スラグの滓化が十分維持でき、かつ、反応効
率の良い範囲に操業条件をコントロールすることが重要
である。
2. Description of the Related Art Since the dephosphorization reaction in the hot metal pretreatment can proceed at a lower temperature than the reaction in the molten steel stage, the exothermic dephosphorization reaction can advantageously proceed. However, when the hot metal temperature is low, the rate of slag slag formation decreases, so in order for the dephosphorization reaction to proceed efficiently, slag slag formation can be sufficiently maintained and operation is performed within a range where reaction efficiency is good. It is important to control the conditions.

【0003】溶銑温度をコントロールするための冷却手
段としては、酸素供給源を鉄鉱石(吸熱酸化反応)とし
たり、スクラップ配合比率を高めるなどの手段があり、
また、加熱手段としては、気体酸素(発熱酸化反応)比
率を高めたり、炭材などの燃料を投入して酸化燃焼させ
るなどの手段がある。従来、主に脱炭精錬を目的に用い
られてきた転炉は、脱炭時に発生する激しいスプラッシ
ュにも対応できるように装入物体積の5〜10倍の炉容
で設計されていることから、フォーミングによる操業阻
害に対しては比較的操業裕度があることから溶銑脱燐専
用炉としても用いられるようになってきた。転炉を用い
た溶銑脱燐処理の例としては、特開昭63-195209号公報
に示されるような、脱燐処理終了後に溶銑を一旦出銑し
て異なる脱炭用転炉で脱炭処理する方法や、特開平7-24
2922号公報に見られるような、脱燐処理終了後に一旦排
滓を行い、同一転炉で脱炭処理を施す方法などが挙げら
れる。
[0003] As a cooling means for controlling the hot metal temperature, there are means such as using iron ore (endothermic oxidation reaction) as an oxygen supply source and increasing the mixing ratio of scrap.
Further, as the heating means, there are means for increasing the ratio of gaseous oxygen (exothermic oxidation reaction) and for oxidizing and burning by adding a fuel such as a carbon material. Conventionally, converters that have been used mainly for the purpose of decarburization and refining are designed with a furnace volume of 5 to 10 times the charged volume so as to be able to cope with the intense splash generated during decarburization. In addition, the furnace has been used as a dedicated furnace for hot metal dephosphorization because of the relatively large operating margin against the operation hindrance caused by forming. As an example of hot metal dephosphorization using a converter, as shown in Japanese Patent Application Laid-Open No. 63-195209, after hot dephosphorization is completed, hot metal is once poured and decarburized in a different decarburization converter. And Japanese Patent Application Laid-Open No. 7-24
As disclosed in Japanese Patent No. 2922, there is a method in which waste is once discharged after completion of the dephosphorization treatment and decarburization treatment is performed in the same converter.

【0004】[0004]

【発明が解決しようとする課題】転炉型精錬容器による
溶銑脱燐に対しては、スラグの滓化率を高い状態にして
スラグ側の物質移動速度を高めつつ、溶銑温度を常に低
温で維持することが重要である。従来の操業では、初期
の溶銑成分と温度などから、予め、処理終了時までの熱
バランスを計算してスクラップ配合率や鉄鉱石、CaO
等副材の投入量と投入タイミングを決定しているが、通
常の操業では、タップタップ間の放散熱のばらつきや、
前チャージからキャリーオーバーされる炉内の残留スラ
グ量や地金量の変動等によって熱バランスに大きなばら
つきが含まれる。これらの温度的ばらつきを補正するこ
とを目的に、サブランスに熱電対プローブを装着して処
理中の温度を測定し、測定温度に基づいて狙い温度にな
るように送酸条件や副材投入量などを決定する操業が行
われる。
With respect to dephosphorization of hot metal by a converter type refining vessel, the rate of slag slag is made high to increase the mass transfer rate on the slag side, and the hot metal temperature is always maintained at a low temperature. It is important to. In the conventional operation, the heat balance up to the end of the treatment is calculated in advance from the initial hot metal composition and the temperature, and the scrap mixing ratio, iron ore, CaO
Although the input amount and input timing of auxiliary materials are determined, in normal operation, the dispersion of heat dissipation between tap taps,
A large variation is included in the heat balance due to a change in the amount of residual slag and the amount of metal in the furnace carried over from the previous charge. To correct these temperature variations, a thermocouple probe is attached to the sub lance to measure the temperature during processing, and based on the measured temperature, the acid supply conditions and auxiliary material input amount etc. are adjusted to the target temperature. The operation to determine

【0005】しかし、サブランスプローブによる測温に
は高価な消耗型のプローブが用いられることから高コス
トになるし、数分間に1回しか測定できないため、脱燐
処理中の測定回数にはコスト的、機械能力的な限界があ
る。従って、溶銑温度の測定前、測定間に発生する温度
ばらつきを検知することができないため、脱燐処理中の
溶銑温度を常に一定の範囲に制御し続けることは困難で
あった。また、脱燐処理中に維持する温度範囲や処理終
了後の適正なスラグ中酸素ポテンシャルも不明確であっ
た。本発明は、転炉型精錬容器による溶銑脱燐におい
て、処理中の溶銑温度範囲を脱燐に有利な範囲に維持し
つつ、処理終了時のスラグ中酸素ポテンシャルも復燐等
のない高酸化鉄濃度に制御することによって、生石灰な
どの副原料コストを大幅に低減し、かつ、短時間の処理
を可能にするための手段を提供する。
However, the temperature measurement using a sublance probe is expensive because an expensive consumable probe is used, and the measurement can be performed only once every few minutes. There are limitations in terms of target and mechanical ability. Therefore, before the measurement of the hot metal temperature, it is difficult to detect the temperature variation occurring between the measurements, and thus it has been difficult to always keep the hot metal temperature in the dephosphorization process within a certain range. Also, the temperature range maintained during the dephosphorization treatment and the appropriate oxygen potential in the slag after the treatment were unclear. The present invention provides a method for dephosphorizing hot metal using a converter type refining vessel, while maintaining the hot metal temperature range during the process in a range advantageous for dephosphorization, the oxygen potential in the slag at the end of the process is high iron oxide without rephosphorization, By controlling the concentration, it is possible to significantly reduce the cost of auxiliary materials such as quicklime and provide a means for enabling a short-time treatment.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の手段である本発明は、以下の通りである。
The present invention, which is means for solving the above problems, is as follows.

【0007】転炉型精錬容器内の溶銑温度を連続的に
測定しつつ、測定温度に基づいて送酸条件、底吹き撹拌
条件、副原料の供給量または供給タイミング、処理終了
タイミングの少なくとも1条件以上を決定し、送酸処理
開始から終了までの溶銑温度を1210℃以上かつ13
90℃以下に維持しつつ、送酸処理完了時のスラグ中酸
化鉄濃度を9質量%以上にすることを特徴とする溶銑脱
燐処理方法。
[0007] While continuously measuring the hot metal temperature in the converter type refining vessel, at least one condition of an acid supply condition, a bottom blow stirring condition, a supply amount or supply timing of an auxiliary material, and a processing end timing based on the measured temperature. The above determination was made, and the hot metal temperature from the start to the end of the acid supply treatment was set to 1210 ° C. or more and 13
A method for dephosphorizing hot metal comprising maintaining the iron oxide concentration in slag at the time of completion of the acid supply treatment at 9% by mass or more while maintaining the temperature at 90 ° C or lower.

【0008】上記の方法において、脱燐処理前また
は処理中にスラグの酸化鉄濃度を少なくとも1回以上測
定することが望ましい。
In the above method, it is desirable to measure the iron oxide concentration of the slag at least once before or during the dephosphorization treatment.

【0009】[0009]

【発明の実施の形態】本発明の実施の形態を図1に従っ
て説明する。この図は、溶銑脱燐処理中の転炉を模式的
に示したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. This diagram schematically shows a converter during hot metal dephosphorization.

【0010】転炉1内に溶銑2が装入されており、上吹
きランス3より酸素ガス4を吹酸しつつ、底吹き羽口5
より撹拌ガス6を導入する。上吹きランス3および底吹
き羽口5から炉内に導入された酸素は、溶銑中のPを酸
化反応でP2O5として、スラグ7中に分離させると共に、
溶銑中のCやFe等も酸化してCOガスやFeO等の形
で溶銑中から分離させる。また、脱燐処理に対して必要
な生石灰や鉄鉱石などの副原料は、適宜炉上ホッパー1
0より炉内に添加される。
A hot metal 2 is charged into a converter 1, and while blowing oxygen gas 4 from an upper blowing lance 3, a bottom blowing tuyere 5 is formed.
More stirring gas 6 is introduced. Oxygen introduced into the furnace from the top blowing lance 3 and the bottom blowing tuyere 5 separates P in the hot metal into P 2 O 5 by oxidation reaction in the slag 7,
C, Fe, etc. in the hot metal are also oxidized and separated from the hot metal in the form of CO gas, FeO, or the like. Further, auxiliary materials such as quicklime and iron ore necessary for the dephosphorization treatment are appropriately supplied to the furnace hopper 1.
It is added into the furnace from 0.

【0011】溶銑温度は、酸化や二次燃焼などによって
発生する反応熱と炉体放散熱、排気ダクト8から排出さ
れるガス顕熱等の変化によって処理中を通して逐次変化
するが、溶銑温度は炉体に設けた温度センサー9によっ
て連続的に測定される。この温度センサー9は、ステン
レス羽口内から炉外に設けた二色温度計まで光を電送す
るグラスファイバー(図示しない)を挿入すると共に、
羽口内からArガスをパージして溶銑の羽口内侵入を回避
しつつ連続的に測温するものなどが望ましい。
The hot metal temperature changes successively throughout the process due to changes in reaction heat generated by oxidation, secondary combustion, etc., heat dissipated in the furnace, gas sensible heat discharged from the exhaust duct 8, and the like. It is continuously measured by a temperature sensor 9 provided on the body. The temperature sensor 9 includes a glass fiber (not shown) for transmitting light from inside the stainless steel tuyere to a two-color thermometer provided outside the furnace.
It is desirable to continuously measure the temperature while purging Ar gas from inside the tuyere to avoid intrusion of hot metal into the tuyere.

【0012】このとき、適正な溶銑温度範囲は1210
℃以上1390℃以下の範囲であり、連続的な測温を行
いながら、過去の温度変化の外挿値より処理中の溶銑温
度が適正範囲を外れると予想されるときには、送酸条件
(ランス高さ、送酸速度、複数系統のガス供給可能なラ
ンスについては各系統の供給量)、底吹き攪拌条件(底
吹きガス流量、底吹きガス種)、副原料の供給量や供給
タイミング、処理終了タイミングを決定して適正範囲を
維持する。溶銑温度が下限を下回ることが予想される場
合には、二次燃焼率上昇(ランス高さ上昇や二次燃焼ラ
ンスの副孔の酸素流量上昇)や上吹き送酸速度の上昇、
底吹きガス比率の低下やCO2等の吸熱性ガス比率の低
下、炭材やアルミ等の昇熱材の添加等によって加熱を促
進する。一方で、溶銑温度が上限を上回ることが予想さ
れる場合には、二次燃焼率低下(ランス高さ低下や二次
燃焼ランスの副孔の酸素流量低下)や上吹き送酸速度の
低下、底吹きガス比率の上昇やCO2等の吸熱性ガス比
率の上昇、鉄鉱石やスクラップ等の冷却剤の添加等によ
って冷却を促進する。このような昇温、降温手段を用い
て適正温度範囲に維持することができる。
At this time, the appropriate hot metal temperature range is 1210
If the hot metal temperature during processing is expected to be outside the appropriate range based on extrapolated values of past temperature changes while performing continuous temperature measurement, the acid supply conditions (lance height The acid supply rate, the supply amount of each system for the lances that can supply gas of multiple systems), bottom blowing stirring conditions (bottom blowing gas flow rate, bottom blowing gas type), supply amount and supply timing of auxiliary materials, processing end Determine the timing and maintain an appropriate range. If the hot metal temperature is expected to fall below the lower limit, an increase in the secondary combustion rate (increase in the lance height or an increase in the oxygen flow rate in the secondary hole of the secondary combustion lance), an increase in the top blowing acid transfer rate,
Heating is promoted by lowering the ratio of the bottom blown gas, lowering the ratio of endothermic gas such as CO 2 , and adding a heating material such as carbonaceous material or aluminum. On the other hand, when the hot metal temperature is expected to exceed the upper limit, a decrease in the secondary combustion rate (a decrease in the lance height or a decrease in the oxygen flow rate in the secondary hole of the secondary combustion lance), a decrease in the top-blow acid transfer rate, Cooling is promoted by increasing the ratio of bottom blown gas, increasing the ratio of endothermic gas such as CO 2 , and adding a coolant such as iron ore and scrap. It is possible to maintain an appropriate temperature range by using such a temperature raising / lowering means.

【0013】また、脱燐処理終了後のスラグ中の酸化鉄
濃度は9質量%以上確保することで効率の良い脱燐反応
を進行させることができる。ここで定義する酸化鉄濃度
は、スラグ中にFeO,Fe2O3の形で含有される酸化鉄の濃
度であるが、溶銑と共存する酸化鉄の場合、主成分はF
eOであることから、スラグ中のT.Fe分析値より以
下の式で推定することもできる。
Further, by ensuring that the iron oxide concentration in the slag after the dephosphorization treatment is 9% by mass or more, an efficient dephosphorization reaction can proceed. The iron oxide concentration defined here is the concentration of iron oxide contained in slag in the form of FeO and Fe 2 O 3. In the case of iron oxide coexisting with hot metal, the main component is F
Since it is eO, T.O. It can also be estimated from the Fe analysis value by the following equation.

【0014】酸化鉄濃度(質量%)=スラグ中t.Fe
(質量%)×(55.9+16.0)/55.9 ここで、55.9、16.0はそれぞれ鉄の原子量、酸
素の原子量である。
Iron oxide concentration (% by mass) = t. Fe
(Mass%) × (55.9 + 16.0) /55.9 Here, 55.9 and 16.0 are the atomic weight of iron and the atomic weight of oxygen, respectively.

【0015】処理中の溶銑温度と処理終了後の酸化鉄濃
度には適正な範囲を設けた。転炉型溶銑脱燐処理におい
ては通常スラグ中のCaOとSiO2の重量比で定義さ
れるスラグ塩基度(質量%CaO/質量%SiO2)は1.5前後
で操業される。処理中の溶銑温度が1210℃未満にな
った場合はスラグの滓化率が低下し、一旦溶融スラグ中
に分離除去されたP25のスラグ中溶解度が著しく低下
して溶銑中Pに還元再溶融する復燐が生じる。また、1
390℃以上の範囲になっても温度上昇による復燐が発
生する。従って、脱燐処理中に溶銑温度の上限値または
下限値を超えるような場合には、一旦脱燐によって低下
したP濃度が復燐によって再び高くなることから、上記
昇温、降温方法等によって処理中を通して適正温度に維
持する。また、脱燐処理終了時の酸化鉄濃度が9質量%
以下の領域では、上記適正温度範囲で操業しても高い燐
分配比は得られない。これは、主にFeOによって支配
されるスラグ中の酸素ポテンシャルが低いため、スラグ
のフォスフェイトキャパシティーが低下して十分な脱燐
能が確保できないためである。また、適正な酸化鉄濃度
には上限は設けないが、通常の溶銑脱燐に対して、酸化
鉄濃度の上昇による分配比の低下は見られないが、耐火
物保護、鉄歩留り維持の面から考えると45質量%を超
える範囲では経済的効果は比較的小さくなるものと考え
られる。
Appropriate ranges were set for the hot metal temperature during the treatment and the iron oxide concentration after the treatment. In the converter type hot metal dephosphorization treatment, the slag is usually operated at a slag basicity (mass% CaO / mass% SiO 2 ) defined by the weight ratio of CaO and SiO 2 in the slag of around 1.5. When the temperature of the hot metal during the treatment is lower than 1210 ° C., the slag conversion rate of the slag is reduced, and the solubility of P 2 O 5 once separated and removed in the molten slag in the slag is remarkably reduced to be reduced to P in the hot metal. Rephosphorization occurs which remelts. Also, 1
Even if the temperature is in the range of 390 ° C. or higher, phosphorus reversion occurs due to the temperature rise. Therefore, if the upper limit or lower limit of the hot metal temperature is exceeded during the dephosphorization treatment, the P concentration once reduced by the dephosphorization increases again due to the rephosphorization. Maintain proper temperature throughout. The iron oxide concentration at the end of the dephosphorization treatment was 9% by mass.
In the following regions, a high phosphorus distribution ratio cannot be obtained even when operating in the above-mentioned appropriate temperature range. This is because, since the oxygen potential in the slag mainly controlled by FeO is low, the phosphate capacity of the slag is reduced and sufficient dephosphorization ability cannot be secured. Although there is no upper limit on the appropriate iron oxide concentration, the distribution ratio does not decrease due to the increase in iron oxide concentration with respect to ordinary hot metal dephosphorization, but from the viewpoint of refractory protection and maintenance of iron yield. Considering this, the economic effect is considered to be relatively small in the range exceeding 45% by mass.

【0016】また、スラグ中酸化鉄濃度は、溶銑温度が
高い場合は溶銑による還元反応の速度が高まり、低下傾
向になり、溶銑温度が低い場合は逆に上昇傾向になるこ
とから、溶銑温度の連続分析値をガイダンスに用いて鉄
鉱石投入タイミングや量、処理終了タイミング等を決定
することが有効である。さらに、前チャージからキャリ
ーオーバーされるスラグ中の酸化鉄なども最終スラグ中
酸化鉄組成に影響することから、脱燐処理の前または処
理中にスラグ中酸化鉄濃度の迅速分析を行い、該酸化鉄
濃度の分析値と、処理中の平均溶銑温度、送酸量、底吹
き攪拌ガス流量、酸化鉄添加量などの操業データより脱
燐処理終了後の酸化鉄濃度との関係を重回帰式で予測し
て、スラグ中酸化鉄濃度が下限値の9質量%以上になる
ための適正な鉄鉱石添加量を決定して、処理終了時の酸
化鉄濃度予想値の精度を向上し、酸化鉄濃度の下限外れ
を回避したり、必要以上の鉄鉱石添加による副原料コス
ト増大、温度ロスなどを回避することが有効である。
The iron oxide concentration in the slag increases when the hot metal temperature is high, and tends to decrease when the hot metal temperature is low. On the contrary, when the hot metal temperature is low, the iron oxide concentration tends to increase. It is effective to use the continuous analysis values for guidance to determine the iron ore input timing and amount, the processing end timing, and the like. Furthermore, since iron oxide in the slag carried over from the previous charge also affects the iron oxide composition in the final slag, a rapid analysis of the iron oxide concentration in the slag is performed before or during the dephosphorization treatment, and the oxidation is performed. The relationship between the iron concentration analysis value and the iron oxide concentration after the dephosphorization treatment based on the operating data such as the average hot metal temperature during treatment, the amount of acid supply, the flow rate of the bottom-blown stirring gas, and the amount of iron oxide addition, is represented by a multiple regression equation. Predict and determine the appropriate iron ore addition amount so that the iron oxide concentration in the slag becomes 9% by mass or more of the lower limit, improve the accuracy of the iron oxide concentration prediction value at the end of the treatment, and improve the iron oxide concentration. It is effective to avoid the deviation from the lower limit of the above, and to avoid an increase in the cost of auxiliary materials and a temperature loss due to the addition of iron ore more than necessary.

【0017】スラグ中酸化鉄濃度の測定値を用いた脱燐
処理後スラグ中の酸化鉄濃度の推定方法としては、重回
帰法以外に、ニューラルネットワーク法などの統計的推
定方法や、反応速度論に基づいた物理モデルなどを用い
ても良いし、処理中のある一定時間に採取したスラグの
分析値と脱燐処理終了時の単純相関による方法なども挙
げられる。このための分析手法としては、ジルコニア等
の酸素濃淡電池によるスラグ中酸化鉄活量のオンライン
測定を用いたり、鉄と鋼Vol.85(1999)No.2,86頁に示さ
れるようなオンサイト迅速蛍光X線分析法などを用いて
チャージ内での酸化鉄濃度コントロールを実施すること
が望ましい。これらのスラグ中酸化鉄濃度は、処理前と
処理終了直前等、複数回の測定を実施することによっ
て、スラグ中酸化鉄濃度のコントロールを精度よく実施
することが可能である。しかし、測定には、1回に数分
を要し、分析コストの増加にも繋がることから、通常で
は、20分以内の処理で行われる転炉型精錬容器による
脱燐処理では1〜5回の測定が好ましい。
As a method of estimating the iron oxide concentration in the slag after the dephosphorization treatment using the measured value of the iron oxide concentration in the slag, in addition to the multiple regression method, a statistical estimation method such as a neural network method, a reaction kinetics method, and the like. May be used, or a method based on a simple correlation at the end of the dephosphorization process with the analysis value of the slag collected during a certain period of time during the process may be used. As an analytical method for this purpose, online measurement of iron oxide activity in slag using an oxygen concentration cell such as zirconia, or on-site iron and steel as shown in Vol. 85 (1999) No. 2, page 86 It is desirable to control the concentration of iron oxide in the charge using a rapid X-ray fluorescence analysis or the like. The iron oxide concentration in the slag can be accurately controlled by performing a plurality of measurements such as before the treatment and immediately before the end of the treatment. However, the measurement takes several minutes at one time, which leads to an increase in analysis cost. Therefore, usually, the dephosphorization treatment using a converter type refining vessel performed within 20 minutes or less takes 1 to 5 times. Is preferred.

【0018】[0018]

【実施例】6t上底吹き試験転炉によるテストを実施し
た。
EXAMPLE A 6-ton top-bottom blow test was conducted using a converter.

【0019】表1に試験操業において用いた処理前溶銑
の成分範囲を示す。上吹き送酸速度は700Nm3/h
を基本条件として、底吹きには60Nm3/hの窒素を
吹き込み、副原料として180kg(30kg/t)の
生石灰を初期に投入した。溶銑温度は二色温度計によっ
て連続的に測定し、目標温度より温度が低下すると予測
されるときは上吹き送酸速度を1000Nm3/hを上限に増加
させ、目標温度より温度が高まると予想されるときは上
吹き送酸速度を300Nm3/hを下限に低下させると共に、酸
化鉄濃度を高める必要がある場合には鉄鉱石投入を実施
した。処理時間は全チャージとも約12分±1分とし
た。
Table 1 shows the component ranges of the hot metal before treatment used in the test operation. Top blowing acid transfer rate is 700Nm 3 / h
Under the basic conditions, nitrogen of 60 Nm 3 / h was blown into the bottom blow, and 180 kg (30 kg / t) of quicklime was initially charged as an auxiliary material. The hot metal temperature is continuously measured by a two-color thermometer, and when it is predicted that the temperature will drop below the target temperature, the top blowing acid feed rate is increased to an upper limit of 1000 Nm 3 / h, and the temperature is expected to rise above the target temperature When this was done, the top blowing acid transfer rate was reduced to a lower limit of 300 Nm 3 / h, and when it was necessary to increase the iron oxide concentration, iron ore was charged. The processing time was about 12 minutes ± 1 minute for all charges.

【0020】[0020]

【表1】 [Table 1]

【0021】図2には、連続測温によって求めた脱燐処
理中の溶銑の最低温度(●印)と最高温度(黒三角印)と、
処理終了後の溶銑成分とスラグ成分の分析値より求めた
燐分配比(スラグ中P濃度(質量%)/溶銑中P濃度(質量
%))を縦軸に示す。また、比較のため、連続測温は温度
記録のみとしてガイダンスには用いず、サブランスによ
るバッチ測温による試験結果で得られた燐分配比を○印
(処理中最低温度)、△印(処理中最高温度)で示す。試験
の結果、連続測温によるガイダンス操業を行った場合に
は、脱燐処理中の溶銑温度を全て適正範囲の1210〜1390
℃にコントロールできたのに対して、連続測温の結果を
操業に反映していない従来法では、最高温度、最低温度
のいずれかが適正範囲を外れたものがあり、燐分配比が
100未満に低下しているのが分かる。また、操業中の
温度範囲が適正範囲の場合でも、処理終了後のスラグ中
酸化鉄濃度が9質量%未満になっているチャージについ
ては燐分配が低い値になっていることが分かる。スラグ
中酸化鉄濃度を9質量%以上にする精度を向上させるた
め、ジルコニア型酸素センサーによるスラグ中酸化鉄濃
度測定を行い、測定値に従って鉄鉱石投入量を調整した
チャージでは酸化鉄濃度の目標値に対する標準偏差は
6.1質量%に低減でき、酸素ポテンシャル測定を行わ
なかった場合の実績値の標準偏差11.4質量%に比べ
て大幅に制御性が向上した。
FIG. 2 shows the minimum temperature (●) and the maximum temperature (black triangle) of the hot metal during the dephosphorization treatment obtained by continuous temperature measurement.
Phosphorus distribution ratio (P concentration in slag (mass%) / P concentration in hot metal (mass) determined from analytical values of hot metal component and slag component after treatment
%)) Is shown on the vertical axis. For comparison, continuous temperature measurement was used only for temperature recording and was not used for guidance, and the phosphorus distribution ratio obtained from the test result of batch temperature measurement using a sublance was marked with a circle.
(Minimum temperature during processing) and Δ (highest temperature during processing). As a result of the test, when the guidance operation by continuous temperature measurement was performed, the hot metal temperature during the dephosphorization treatment was adjusted to the appropriate range of 1210 to 1390
In contrast, the conventional method, which does not reflect the results of continuous temperature measurement in the operation, could have a maximum or minimum temperature outside the proper range, and the phosphorus distribution ratio was less than 100. It can be seen that it has decreased. In addition, even when the temperature range during the operation is within the proper range, it can be seen that the phosphorus distribution is low for the charge in which the iron oxide concentration in the slag after the treatment is less than 9% by mass. In order to improve the accuracy of making the iron oxide concentration in slag 9% by mass or more, the iron oxide concentration in slag is measured using a zirconia-type oxygen sensor, and the target value of iron oxide concentration is set in the charge where the iron ore input amount is adjusted according to the measured value. Can be reduced to 6.1% by mass, and the controllability is greatly improved as compared with the standard deviation of 11.4% by mass of the actual value when the oxygen potential measurement was not performed.

【0022】図2に示す効果が明らかになったことか
ら、従来、安定的に燐分配比>100を達成するために
必要であった生石灰原単位43kg/t、処理時間1
5.5分以上をそれぞれ30kg/t、13分未満に達
成できており、副原料の節約、処理時間短縮の両面での
効果が確認できた。
Since the effects shown in FIG. 2 have been clarified, the conventional unit of quick lime 43 kg / t and the processing time of 1 required conventionally to stably achieve the phosphorus distribution ratio> 100.
5.5 minutes or more could be achieved at 30 kg / t and less than 13 minutes, respectively, confirming the effects of saving auxiliary materials and shortening the processing time.

【0023】[0023]

【発明の効果】本発明によって、転炉型精錬容器におけ
る脱燐処理の燐分配比を安定的に高位に維持できること
から、生石灰などの副原料コストの削減が可能になり低
コスト化が実現できると共に、処理時間の短縮による生
産性の向上も実現できる。
According to the present invention, since the phosphorus distribution ratio of the dephosphorization treatment in the converter type refining vessel can be stably maintained at a high level, the cost of auxiliary materials such as quicklime can be reduced and the cost can be reduced. At the same time, productivity can be improved by shortening the processing time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための装置の例を模式的に示
す図である。
FIG. 1 is a diagram schematically showing an example of an apparatus for carrying out the present invention.

【図2】本発明の実施の結果得られた燐分配比を従来法
と比較して示す図である。
FIG. 2 is a diagram showing a distribution ratio of phosphorus obtained as a result of the practice of the present invention in comparison with a conventional method.

【符号の説明】[Explanation of symbols]

1 転炉 2 溶銑 3 上吹きランス 4 酸素ガス 5 底吹き羽口 6 撹拌ガス 7 スラグ 8 排気ダクト 9 温度センサー 10 炉上ホッパー DESCRIPTION OF SYMBOLS 1 Converter 2 Hot metal 3 Top blowing lance 4 Oxygen gas 5 Bottom blowing tuyere 6 Stirring gas 7 Slag 8 Exhaust duct 9 Temperature sensor 10 Furnace hopper

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K002 AB01 AB04 AC07 AC08 AD02 AD05 AE01 AF02 AF04 BF05 4K014 AA03 AB03 AB04 AB18 AB21 AC01 AC08 AC13 AC16 AC17 AD00  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 4K002 AB01 AB04 AC07 AC08 AD02 AD05 AE01 AF02 AF04 BF05 4K014 AA03 AB03 AB04 AB18 AB21 AC01 AC08 AC13 AC16 AC17 AD00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 転炉型精錬容器内の溶銑温度を連続的に
測定しつつ、測定温度に基づいて送酸条件、底吹き撹拌
条件、副原料の供給量または供給タイミング、処理終了
タイミングの少なくとも1条件以上を決定し、送酸処理
開始から終了までの溶銑温度を1210℃以上かつ13
90℃以下に維持しつつ、送酸処理完了時のスラグ中酸
化鉄濃度を9質量%以上にすることを特徴とする溶銑脱
燐処理方法。
1. While continuously measuring the hot metal temperature in a converter type refining vessel, at least one of an acid supply condition, a bottom blow stirring condition, a supply amount or supply timing of an auxiliary material, and a processing end timing based on the measured temperature. One or more conditions are determined, and the hot metal temperature from the start to the end of the acid supply treatment is set to 1210 ° C. or more and 13
A method for dephosphorizing hot metal comprising maintaining the iron oxide concentration in slag at the time of completion of the acid supply treatment at 9% by mass or more while maintaining the temperature at 90 ° C or lower.
【請求項2】 脱燐処理前または処理中にスラグの酸化
鉄濃度を少なくとも1回以上測定することを特徴とする
請求項1記載の溶銑脱燐処理方法。
2. The hot metal dephosphorization treatment method according to claim 1, wherein the iron oxide concentration of the slag is measured at least once before or during the dephosphorization treatment.
JP2000096317A 2000-03-31 2000-03-31 Method for dephosphorizing molten iron Withdrawn JP2001279318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000096317A JP2001279318A (en) 2000-03-31 2000-03-31 Method for dephosphorizing molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000096317A JP2001279318A (en) 2000-03-31 2000-03-31 Method for dephosphorizing molten iron

Publications (1)

Publication Number Publication Date
JP2001279318A true JP2001279318A (en) 2001-10-10

Family

ID=18611102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000096317A Withdrawn JP2001279318A (en) 2000-03-31 2000-03-31 Method for dephosphorizing molten iron

Country Status (1)

Country Link
JP (1) JP2001279318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101293625B1 (en) 2011-08-26 2013-08-13 우진 일렉트로나이트(주) Determination System for FeO Sensing in Molten Slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101293625B1 (en) 2011-08-26 2013-08-13 우진 일렉트로나이트(주) Determination System for FeO Sensing in Molten Slag

Similar Documents

Publication Publication Date Title
JP5396834B2 (en) Converter refining method
JP5924186B2 (en) Method of decarburizing and refining hot metal in converter
JP5630324B2 (en) Method of decarburizing and refining hot metal in converter
JP2013136831A (en) Method of preliminary treatment for molten iron in converter
JP5678718B2 (en) Method of decarburizing and refining hot metal in converter
JP2001279318A (en) Method for dephosphorizing molten iron
Vidhyasagar et al. A Static Model for Energy‐Optimizing Furnace
JP3858150B2 (en) Estimation method of Mn concentration at the end of blowing in converter
KR910009867B1 (en) Process for producing chromium containing molten iron
JP2001279317A (en) Method for dephosphorizing molten iron
CA1205290A (en) Method of increasing the cold material charging capacity in the top-blowing production of steel
JP7319538B2 (en) Converter blowing control device, converter blowing control method and program
JP7211553B1 (en) Method for operating converter and method for producing molten steel
JP2002285223A (en) Method for dephosphorizing molten iron
JPH08104911A (en) Method for melting phosphorus-containing steel
JP4419594B2 (en) Hot metal refining method
JP7469646B2 (en) Converter blowing control device, statistical model building device, converter blowing control method, statistical model building method and program
JP2006249568A (en) Method for producing molten iron having low phosphorus
JP4850336B2 (en) Hot metal dephosphorization method
McBride The Physical Chemistry of Oxygen Steelmaking
JPH0925507A (en) Method for refining molten steel
JP3697944B2 (en) Converter blowing method
KR102534954B1 (en) Blowing control method and blowing control device of converter type dephosphorization refining furnace
WO2023017674A1 (en) Cold iron source melting rate estimation device, converter-type refining furnace control device, cold iron source melting rate estimation method, and molten iron refining method
Vidhyasagar et al. Effects of slag removal method on the process parameters of energy optimizing furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605