JP2020105606A - Converter blowing control device, converter blowing control method, and program - Google Patents
Converter blowing control device, converter blowing control method, and program Download PDFInfo
- Publication number
- JP2020105606A JP2020105606A JP2018246670A JP2018246670A JP2020105606A JP 2020105606 A JP2020105606 A JP 2020105606A JP 2018246670 A JP2018246670 A JP 2018246670A JP 2018246670 A JP2018246670 A JP 2018246670A JP 2020105606 A JP2020105606 A JP 2020105606A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- value
- predicted
- correction term
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
本発明は、転炉吹錬制御装置、転炉吹錬制御方法およびプログラムに関する。 The present invention relates to a converter blowing control device, a converter blowing control method, and a program.
転炉吹錬では、吹止め時の溶鋼成分濃度(例えば炭素濃度)や溶鋼温度を目標値に的中させるために、スタティック制御とダイナミック制御とを組み合わせた吹錬制御が行われている。スタティック制御では、吹錬開始前に物質収支や熱収支に基づいた数式モデルなどを用いて上記の目標を達成するための吹込み酸素量や各種副原料の投入量を決定する。ダイナミック制御では、吹錬中にサブランスを用いて測定された溶鋼成分濃度や溶鋼温度に基づいて同様の計算が実行され、吹込み酸素量や各種副原料の投入量が修正される。 In converter blowing, blowing control combining static control and dynamic control is performed in order to bring the molten steel component concentration (for example, carbon concentration) and the molten steel temperature at the time of blowing stop to a target value. In the static control, before starting the blowing, a mathematical model based on a mass balance and a heat balance is used to determine the amount of injected oxygen and the amount of various auxiliary materials to be introduced to achieve the above target. In the dynamic control, the same calculation is executed based on the molten steel component concentration and the molten steel temperature measured by using the sublance during blowing, and the blown oxygen amount and the input amounts of various auxiliary raw materials are corrected.
ここで、特許文献1には、転炉吹錬時における排ガス成分および排ガス流量を定期的に測定し、これらの測定値と操業条件とに基づいて推定される脱りん速度定数を用いて吹錬中の溶鋼中りん濃度を逐次推定する技術が記載されている。このような推定の結果に応じて操業条件を変更することによって、吹止め時の溶鋼中りん濃度の制御精度を高めることができる。
Here, in
また、特許文献2には、石灰投入量計算式または石灰投入量計算手順を表す関数を用いて吹止め時の溶鋼中りん濃度を適切に制御する技術が記載されている。関数は、溶鋼温度、溶鋼中りん濃度、溶鋼中炭素濃度、およびその他の操業要因を表す項と、吹錬のチャージごとに更新される学習項とを含み、学習項を逐次更新することによって、精度よく適切な石灰投入量を算出し、溶鋼中りん濃度を適切に制御することができる。
近年、転炉吹錬を含む一次精錬工程では、スラグ発生量抑制へのニーズが高くなっている。スラグの主な発生源の1つは、吹錬初期に投入される生石灰などの媒溶材である。媒溶材は、以下に示すような脱りん反応に用いられるCaOの供給源である。従って、吹錬初期に溶鋼中のりん濃度が精度よく推定できていれば、必要十分な量の媒溶材を投入することによってスラグ発生量を最低限に抑制することができる。
3(CaO)+5(FeO)+2[P]=(3CaO・P2O5)+5[Fe]
※()はスラグ内、[]は溶銑内を示す
In recent years, in the primary refining process including converter blowing, there is an increasing need to suppress the amount of slag generated. One of the main sources of slag is a solvent solution such as quick lime that is added in the early stage of blowing. The solvent is a source of CaO used for the dephosphorization reaction as shown below. Therefore, if the phosphorus concentration in the molten steel can be accurately estimated at the initial stage of blowing, the amount of slag generated can be suppressed to the minimum by adding a necessary and sufficient amount of the medium-melting material.
3(CaO)+5(FeO)+2[P]=(3CaO·P 2 O 5 )+5[Fe]
*() indicates inside the slag, and [] indicates inside the hot metal.
しかしながら、上記の特許文献1に記載された技術は、吹錬の開始後に排ガス成分および排ガス流量の測定値を用いて溶鋼中りん濃度を逐次推定するものであるため、吹錬初期における媒溶材の投入量を適正化するためには利用できない。また、上記の特許文献2に記載された技術は、学習項に相当する誤差が各チャージで同様に発生することを前提にしている。つまり、各チャージにおいて誤差の値が変動する場合には、この技術を用いても石灰投入量や溶鋼中りん濃度を精度よく制御することは難しい。
However, since the technique described in the above-mentioned
そこで、本発明は、吹錬開始前の時点における溶鋼中りん濃度の予測精度を向上させることが可能な転炉吹錬制御装置、転炉吹錬制御方法およびプログラムを提供することを目的とする。 Therefore, an object of the present invention is to provide a converter blowing control device, a converter blowing control method, and a program capable of improving the prediction accuracy of the phosphorus concentration in molten steel before the start of blowing. ..
本発明のある観点によれば、転炉で吹錬処理される溶銑に関する溶銑データ、および転炉に投入される副原料に関する副原料データを転炉における吹錬処理時の溶鋼中りん濃度に関連付ける関数に、転炉における過去の吹錬処理時の溶鋼中りん濃度の予測値および実績値を含む第1の予測実績データに基づいて学習される第1の補正項を加えることによって溶鋼中りん濃度の予測値を算出する予測値算出手段と、第1の補正項および第2の補正項を表現する多変量の状態空間モデルを構築し、状態空間モデルに対してカルマンフィルタを適用することによって第1の補正項を算出する補正項算出手段とを備え、第2の補正項は、溶銑データおよび副原料データを転炉における吹錬処理時の溶鋼中炭素濃度に関連付ける関数に加えられる補正項であり、転炉における過去の吹錬処理時の溶鋼中炭素濃度の予測値および実績値を含む第2の予測実績データに基づいて学習され、カルマンフィルタは、第1の予測実績データに含まれる溶鋼中りん濃度の予測値と実績値との差分、および第2の予測実績データに含まれる溶鋼中炭素濃度の予測値と実績値との差分を観測値とする転炉吹錬制御装置が提供される。
上記の構成によれば、溶鋼中りん濃度の予測値を算出するための補正項の学習を逐次実行することができ、補正項に含まれる本質的なプロセス変動の影響とノイズとを区別することができる。また、補正項を多変量の状態空間モデルで表現することで、補正項の予測精度が向上する。従って、吹錬開始前の時点における溶鋼中りん濃度の予測精度を向上させることができる。
According to an aspect of the present invention, the hot metal data relating to the hot metal blown in the converter and the auxiliary raw material data relating to the auxiliary raw materials fed into the converter are related to the phosphorus concentration in the molten steel during the blowing process in the converter. The phosphorus concentration in molten steel is added to the function by adding the first correction term learned based on the first predicted actual data including the predicted value and the actual value of the phosphorus concentration in molten steel during the past blowing process in the converter. By constructing a multivariate state space model expressing the first correction term and the second correction term and applying a Kalman filter to the state space model. The second correction term is a correction term added to a function that relates the hot metal data and the auxiliary raw material data to the carbon concentration in the molten steel during the blowing process in the converter. , The Kalman filter is learned based on the second predicted actual data including the predicted value and the actual value of the carbon concentration in the molten steel during the past blowing process in the converter, and the Kalman filter uses the molten steel medium phosphorus contained in the first predicted actual data. Provided is a converter blowing control device that uses, as an observed value, a difference between a predicted value of a concentration and an actual value, and a difference between a predicted value of a carbon concentration in molten steel and an actual value included in the second predicted actual data.
According to the above configuration, the learning of the correction term for calculating the predicted value of the phosphorus concentration in the molten steel can be sequentially executed, and the influence of the essential process variation included in the correction term and the noise can be distinguished. You can Further, by expressing the correction term with a multivariate state space model, the prediction accuracy of the correction term is improved. Therefore, it is possible to improve the prediction accuracy of the phosphorus concentration in the molten steel before the start of blowing.
本発明の別の観点によれば、転炉で吹錬処理される溶銑に関する溶銑データ、および転炉に投入される副原料に関する副原料データを転炉における吹錬処理時の溶鋼中りん濃度に関連付ける関数に、転炉における過去の吹錬処理時の溶鋼中りん濃度の予測値および実績値を含む第1の予測実績データに基づいて学習される第1の補正項を加えることによって溶鋼中りん濃度の予測値を算出する予測値算出工程と、第1の補正項および第2の補正項を表現する多変量の状態空間モデルを構築し、状態空間モデルに対してカルマンフィルタを適用することによって第1の補正項を算出する補正項算出工程とを含み、第2の補正項は、溶銑データおよび副原料データを転炉における吹錬処理時の溶鋼中炭素濃度に関連付ける関数に加えられる補正項であり、転炉における過去の吹錬処理時の溶鋼中炭素濃度の予測値および実績値を含む第2の予測実績データに基づいて学習され、カルマンフィルタは、第1の予測実績データに含まれる溶鋼中りん濃度の予測値と実績値との差分、および第2の予測実績データに含まれる溶鋼中炭素濃度の予測値と実績値との差分を観測値とする転炉吹錬制御方法が提供される。 According to another aspect of the present invention, the hot metal data relating to the hot metal blown in the converter, and the auxiliary raw material data relating to the auxiliary raw material to be fed into the converter are set to the phosphorus concentration in the molten steel during the blowing process in the converter. By adding the first correction term learned based on the first predicted actual data including the predicted value and the actual value of the phosphorus concentration in the molten steel during the past blowing process in the converter to the associating function, A predictive value calculation step of calculating a predicted value of the concentration, a multivariate state space model expressing the first correction term and the second correction term, and applying a Kalman filter to the state space model The second correction term is a correction term added to a function that relates the hot metal data and the auxiliary raw material data to the carbon concentration in the molten steel during the blowing process in the converter. Yes, the Kalman filter is learned based on the second predicted actual result data including the predicted value and the actual value of the carbon concentration in the molten steel during the past blowing process in the converter, and the Kalman filter includes the molten steel contained in the first predicted actual data. Provided is a converter blowing control method in which the difference between the predicted value and the actual value of the phosphorus concentration and the difference between the predicted value and the actual value of the carbon concentration in molten steel included in the second predicted actual data are observed values. ..
本発明のさらに別の観点によれば、転炉で吹錬処理される溶銑に関する溶銑データ、および転炉に投入される副原料に関する副原料データを転炉における吹錬処理時の溶鋼中りん濃度に関連付ける関数に、転炉における過去の吹錬処理時の溶鋼中りん濃度の予測値および実績値を含む第1の予測実績データに基づいて学習される第1の補正項を加えることによって溶鋼中りん濃度の予測値を算出する予測値算出手段と、第1の補正項および第2の補正項を表現する多変量の状態空間モデルを構築し、状態空間モデルに対してカルマンフィルタを適用することによって第1の補正項を算出する補正項算出手段とを備え、第2の補正項は、溶銑データおよび副原料データを転炉における吹錬処理時の溶鋼中炭素濃度に関連付ける関数に加えられる補正項であり、転炉における過去の吹錬処理時の溶鋼中炭素濃度の予測値および実績値を含む第2の予測実績データに基づいて学習され、カルマンフィルタは、第1の予測実績データに含まれる溶鋼中りん濃度の予測値と実績値との差分、および第2の予測実績データに含まれる溶鋼中炭素濃度の予測値と実績値との差分を観測値とする転炉吹錬制御装置としてコンピュータを機能させるためのプログラムが提供される。 According to still another aspect of the present invention, the hot metal data relating to the hot metal blown in the converter, and the auxiliary raw material data relating to the auxiliary raw materials to be fed into the converter are used as the phosphorus concentration in the molten steel during the blowing treatment in the converter. By adding the first correction term learned based on the first predicted actual result data including the predicted value and the actual value of the phosphorus concentration in the molten steel during the past blowing process in the converter to the function relating to By constructing a predictive value calculating means for calculating a predictive value of phosphorus concentration and a multivariate state space model expressing the first correction term and the second correction term, and applying a Kalman filter to the state space model. And a correction term added to a function relating the hot metal data and the auxiliary raw material data to the carbon concentration in the molten steel during the blowing process in the converter. That is, the learning is performed based on the second predicted actual data including the predicted value and the actual value of the carbon concentration in the molten steel during the past blowing process in the converter, and the Kalman filter includes the molten steel included in the first predicted actual data. A computer is used as a converter blowing control device that uses the difference between the predicted value and the actual value of the medium phosphorus concentration and the difference between the predicted value and the actual value of the molten steel carbon concentration included in the second predicted actual data as the observed value. A program is provided to make it work.
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this specification and the drawings, constituent elements having substantially the same functional configuration are designated by the same reference numerals, and duplicate description is omitted.
これから説明する本発明の一実施形態では、転炉における溶銑の吹錬処理(転炉吹錬)において、吹錬処理の開始前の時点で、モデル式を用いて吹錬処理時の溶鋼中りん濃度の予測値を算出する。ここで、本明細書において、吹錬処理時は、吹錬処理の開始後、吹錬処理の終了(吹止め)までの間を意味し、溶鋼中りん濃度の予測値は、この間の任意の時点を対象にして算出される。具体的には、例えば、後述する中間サブランス測定の時点における溶鋼中りん濃度の予測値が算出されてもよいし、吹止め時の溶鋼中りん濃度の予測値が算出されてもよい。 In one embodiment of the present invention to be described below, in the hot metal blowing process (converter blowing process) in a converter, before the start of the blowing process, a model formula is used to melt phosphorus in molten steel during the blowing process. Calculate the predicted concentration. Here, in the present specification, the blowing process means a period from the start of the blowing process to the end (blowing stop) of the blowing process, and the predicted value of the phosphorus concentration in the molten steel is arbitrary during this period. It is calculated for the time point. Specifically, for example, a predicted value of the phosphorus concentration in the molten steel at the time of the intermediate sublance measurement described later may be calculated, or a predicted value of the phosphorus concentration in the molten steel at the time of blowing stop may be calculated.
また、溶鋼中りん濃度の予測値を算出する過程では、転炉における過去の吹錬処理時の溶鋼中りん濃度の実績値が参照されるが、この実績値についても、吹錬処理時の任意の時点で測定されたものを利用することができる。従って、例えば、中間サブランス測定の時点における溶鋼中りん濃度の実績値が利用可能であれば、吹止め時の溶鋼中りん濃度の実績値は必ずしも必要ではない。従って、以下で説明する本発明の一実施形態は、吹止め時に溶鋼成分濃度や溶鋼温度を測定せずに出鋼する、いわゆるダイレクトタップが採用される場合でも利用可能である。 Further, in the process of calculating the predicted value of the phosphorus concentration in the molten steel, the actual value of the phosphorus concentration in the molten steel in the past blowing process in the converter is referred to, but this actual value is also arbitrary in the blowing process. What was measured at the time of can be used. Therefore, for example, if the actual value of the phosphorus concentration in the molten steel at the time of the intermediate sublance measurement is available, the actual value of the phosphorus concentration in the molten steel at the time of blowing is not necessarily required. Therefore, one embodiment of the present invention described below can be used even when a so-called direct tap is adopted, which is used for tapping without measuring the molten steel component concentration or the molten steel temperature at the time of blowing.
(システム構成)
図1は、本発明の一実施形態に係る転炉吹錬制御装置を含む精錬設備の概略的な構成を示す図である。図1に示されるように、精錬設備1は、転炉設備10と、計測制御装置20と、転炉吹錬制御装置30とを含む。このうち、転炉設備10は、転炉11と、上吹きランス12と、投入装置13とを含む。転炉設備10では、転炉11の炉口から挿入された上吹きランス12が溶銑111に供給する酸素ガスによって、一次精錬の脱炭処理が行われる。脱炭処理を経た溶銑111は、溶鋼112として次工程に送られる。また、脱炭処理では、溶銑111内のりんおよびケイ素も酸素ガス121、またはスラグ113に含まれる副原料と反応し、スラグ113中に取り込まれて安定化する。投入装置13は、スラグ113を構成する生石灰などを含む副原料131を転炉11内に投入する。なお、副原料131が粉体である場合は、上吹きランス12を用いて酸素ガス121とともに吹き込むことも可能である。
(System configuration)
FIG. 1 is a diagram showing a schematic configuration of refining equipment including a converter blowing control device according to an embodiment of the present invention. As shown in FIG. 1, the
計測制御装置20は、転炉設備10における精錬処理に関する各種の計測、および精錬処理の制御を実行する。具体的には、計測制御装置20は、サブランス21と、酸素供給装置22と、副原料投入制御装置23とを含む。サブランス21は、上吹きランス12とともに転炉11の炉口から挿入され、先端に設けられた測定装置を脱炭処理中の所定のタイミングで溶鋼112に浸漬させることによって、炭素濃度およびりん濃度を含む溶鋼112の成分濃度、および溶鋼112の温度(以下、溶鋼温度ともいう)などを測定する。吹錬中におけるサブランス21を用いた測定を、本明細書では中間サブランス測定という。サブランス測定の結果は、転炉吹錬制御装置30に送信される。酸素供給装置22は、上吹きランス12に酸素ガス121を供給する。供給される酸素ガス121の流量は調節可能である。副原料投入制御装置23は、投入装置13による副原料131の投入を制御する。具体的には、副原料投入制御装置23は、副原料131の投入のタイミングおよび投入量を制御する。上記の酸素供給装置22および副原料投入制御装置23の動作は、いずれも、転炉吹錬制御装置30から受信される制御信号に従って実行される。
The measurement control device 20 executes various measurements regarding refining processing in the
転炉吹錬制御装置30は、通信部31と、演算部32と、記憶部33と、入出力部34とを含む。通信部31は、計測制御装置20の各要素と有線または無線で通信する各種の通信装置であり、計測制御装置20において得られた測定結果を受信するとともに、計測制御装置20に制御信号を送信する。演算部32は、プログラムに従って各種の演算を実行する演算装置であり、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)、およびROM(Read Only Memory)によって構成される。プログラムは、ROMまたは記憶部33に格納される。上記の転炉吹錬制御装置30において、演算部32は、プログラムに従って動作することによって、溶鋼中りん濃度予測部321、補正項算出部322および媒溶材量修正部323として機能する。記憶部33は、各種のデータを格納することが可能なストレージであり、溶銑・副原料データ331、予測実績データ332、目標データ333、およびパラメータ334が格納される。これらのデータは、例えば初期データとして格納されるのに加えて、演算部32における演算の結果に従って随時更新される。入出力部34は、ディスプレイまたはプリンタなどの出力装置と、キーボード、マウス、またはタッチパネルなどの入力装置とを含む。出力装置は、例えば、溶鋼中りん濃度予測部321によって予測された吹錬中の溶鋼中りん濃度などの値を出力する。入力装置は、例えば、媒溶材量修正部323が実行する制御に関する指示入力を取得する。
The converter
上記の転炉吹錬制御装置30において、記憶部33に格納される溶銑・副原料データ331は、転炉11で吹錬処理される溶銑111に関する溶銑データと、転炉11に投入される副原料131に関する副原料データとを含む。溶銑データは、例えばチャージごとの初期の溶銑重量、溶銑成分(炭素、ケイ素、りん、およびマンガンなど)の濃度、溶銑温度、溶銑率などを含む。また、副原料データは、副原料131の成分やチャージごとの投入量などを含む。上述の通り、本実施形態では吹錬処理の開始前の時点で吹錬処理時の溶鋼中りん濃度の予測値を算出するため、溶銑データおよび副原料データは、新たに溶鋼中りん濃度の予測値が算出されるチャージにおける予定値を含む。予測実績データ332は、転炉11における過去の吹錬処理時の溶鋼中りん濃度の予測値および実績値(第1の予測実績データ)と、溶鋼中炭素濃度の予測値および実績値(第2の予測実績データ)と、溶鋼温度の予測値および実績値(第3の予測実績データ)とを含む。目標データ333は、例えば中間サブランス測定の時点、または吹止め時などにおける溶銑111(または溶鋼112)中の成分濃度および温度などの目標値を含む。パラメータ334は、後述する溶鋼中りん濃度の予測値を算出するためのモデル式のパラメータを含む。
In the converter
演算部32では、本実施形態における予測値算出手段である溶鋼中りん濃度予測部321が、記憶部33から読み込んだ溶銑・副原料データ331および予測実績データ332に基づいて、吹錬処理時の溶鋼中りん濃度の予測値を算出する。具体的には、溶鋼中りん濃度予測部321は、溶銑・副原料データ331を吹錬処理時の溶鋼中りん濃度に関連付ける関数に後述する補正項βp(第1の補正項)を加えることによって、溶鋼中りん濃度の予測値を算出する。補正項算出部322は、後述するように、溶鋼中りん濃度の予測値の算出に用いられる補正項βpを表現する多変量の状態空間モデルを構築し、この状態空間モデルに対してカルマンフィルタを適用することによって補正項βpを算出する。また、演算部32では、本実施形態における投入量修正手段である媒溶材量修正部323が、溶鋼中りん濃度予測部321によって算出された溶鋼中りん濃度の予測値に基づいて、副原料131に含まれるCaO含有副原料、具体的には生石灰などの媒溶材の投入量を、溶銑・副原料データ331に含まれる予定値からより適正な値に修正する。
In the
(工程の概要)
図2は、本発明の一実施形態に係る転炉吹錬制御方法の工程を概略的に示すフローチャートである。図示された工程は、転炉11における吹錬処理の開始前に実行される。図示された例では、まず、転炉吹錬制御装置30の溶鋼中りん濃度予測部321が、記憶部33から溶銑・副原料データ331および予測実績データ332を読み込む(ステップS11,S12)。ここで、補正項算出部322が、読み込まれた予測実績データ332に基づいて、溶鋼中りん濃度予測のための補正項βpを算出する(ステップS13)。次に、溶鋼中りん濃度予測部321は、算出された補正項βpを用いて溶鋼中りん濃度の予測値を算出する(ステップS14)。次に、媒溶材量修正部323が、目標データ333に含まれる溶鋼中りん濃度の目標値と、溶鋼中りん濃度予測部321によって算出された溶鋼中りん濃度の予測値とに基づいて媒溶材の投入量を修正する(ステップS15)。修正された投入量を含む制御信号は、通信部31を介して副原料投入制御装置23に送信される。その後、吹錬処理の初期において、修正された投入量に従って副原料投入制御装置23が副原料131として生石灰などの媒溶材を投入する。
(Outline of process)
FIG. 2 is a flowchart schematically showing steps of the converter blowing control method according to the embodiment of the present invention. The illustrated process is executed before the start of the blowing process in the
図3は、図2に示された処理を実行するときのタイムチャートの一例である。図示された例では、n回目のチャージ(n=1,2,・・・)において中間サブランス測定の時点における溶鋼中りん濃度の予測値が算出され、また中間サブランス測定において溶鋼中りん濃度の実測値が取得される。溶鋼中炭素濃度および溶鋼温度についても、同様に予測値の算出および実測値の取得が実施される。n回目のチャージにおいて中間サブランス測定(ステップS21)が実行されると、溶鋼中りん濃度などの実測値が取得され、n+1回目のチャージを対象として、図2に示したような一連の工程が実行可能になる。具体的には、補正項算出部322が補正項βpを算出し(ステップS22)、算出された補正項βpを用いて溶鋼中りん濃度予測部321がn+1回目のチャージにおける中間サブランス測定の時点における溶鋼中りん濃度の予測値を算出する(ステップS23)。
FIG. 3 is an example of a time chart when the processing shown in FIG. 2 is executed. In the illustrated example, the predicted value of the phosphorus concentration in the molten steel at the time of the intermediate sublance measurement at the n-th charge (n=1, 2,...) Is calculated, and the phosphorus concentration in the molten steel is actually measured at the intermediate sublance measurement. The value is retrieved. For the carbon concentration in molten steel and the molten steel temperature, the predicted value is calculated and the measured value is acquired in the same manner. When the intermediate sublance measurement (step S21) is performed in the nth charge, the measured values such as the phosphorus concentration in the molten steel are acquired, and the series of steps shown in FIG. 2 is performed for the n+1th charge. It will be possible. Specifically, the correction
次に、媒溶材量修正部323が媒溶材の投入量を修正する(ステップS24)ことによって、n+1回目のチャージにおける媒溶材の適正な投入量が設定される。一連の工程は、上記のステップS24がn+1回目のチャージにおける媒溶材の投入より前に終了するように実行されればよい。従って、図示された例ではn回目のチャージにおける中間サブランス測定(ステップS21)の直後にステップS22以降の工程が開始されているが、これらの工程はn回目のチャージの吹錬処理が終了してから開始されてもよい。あるいは、ステップS24までの工程がn回目のチャージの吹錬処理が終了する前に終了していてもよい。
Next, the medium-melting-material-
以下、本実施形態において溶鋼中りん濃度の予測値の算出に用いられるモデル式ならびに補正項、および予測値に基づく媒溶材投入量の適正化について、さらに具体的に説明する。 Hereinafter, the model formula and the correction term used to calculate the predicted value of the phosphorus concentration in the molten steel in this embodiment, and the optimization of the amount of the medium-melting material input based on the predicted value will be described more specifically.
(モデル式)
本実施形態では、溶鋼中りん濃度(以下、[P](%)とも表記する)の時間変化が、以下の式(1)の一次反応式で表されるものとする。なお、[P]ini(%)は[P]の初期値(溶銑中りん濃度)、k(sec−1)は脱りん速度定数を表す。
(Model formula)
In the present embodiment, the temporal change of the phosphorus concentration in molten steel (hereinafter, also referred to as [P](%)) is represented by the primary reaction equation of the following equation (1). Note that [P] ini (%) represents the initial value of [P] (phosphorus concentration in the hot metal), and k (sec −1 ) represents the dephosphorization rate constant.
式(1)より、吹錬処理の開始からt秒後の[P]は、以下の式(2)で表される。ただし、脱りん速度定数kは、式(3)に示すように、例えば溶銑・副原料データ331に含まれるような操業要因Xjを説明変数とする重回帰式によって表されるものとする。なお、αjは回帰係数を表す。
From Expression (1), [P] after t seconds from the start of the blowing process is expressed by the following Expression (2). However, the dephosphorization rate constant k is assumed to be represented by a multiple regression equation with the operating factor X j included in the hot metal/
上記の式(2)は、溶銑・副原料データ331を吹錬処理時の溶鋼中りん濃度[P]に関連付ける関数の例である。本実施形態では、以下の式(4)に示されるように、この関数に補正項(学習項)βpを加えることによって、溶鋼中りん濃度[P]の予測値の精度を向上させる。補正項βpは、溶鋼中りん濃度[P]の予測値および実績値(第1の予測実績データ)に基づいて学習される。
The above equation (2) is an example of a function that associates the hot metal/auxiliary
ここで、溶鋼などの精錬分野で広く知られた式として、以下で式(5)として示すHealyのりん分配式がある。なお、式(5)において、Lpは分配比、(%P)はスラグ中りん濃度、[P]は溶鋼中りん濃度、Tは温度、(%T.Fe),(%CaO)はスラグ中T.Fe,CaO濃度、a,b,c,dは定数である。 Here, as a formula widely known in the refining field of molten steel and the like, there is a Healy phosphorus distribution formula represented by formula (5) below. In the formula (5), Lp is the distribution ratio, (%P) is the phosphorus concentration in the slag, [P] is the phosphorus concentration in the molten steel, T is the temperature, (%T.Fe), (%CaO) is in the slag. T. Fe, CaO concentrations, a, b, c, d are constants.
本発明者らは、式(5)のりん分配式からすると直接の因果関係はない、溶鋼中炭素濃度(以下、[C](%)とも表記する)に着目した。溶鋼中炭素濃度[C]は、(%T.Fe)や(%CaO)、温度Tには相関すると考えられるため、上記の式(5)より、間接的には溶鋼中りん濃度[P]との関係があるといえる。そこで、本実施形態では、溶鋼中りん濃度の予測値の算出に用いられるモデル式における補正項βp(第1の補正項)に加えて、後述する溶鋼中炭素濃度[C]のモデル式における補正項βC(第2の補正項)、および溶鋼温度Tのモデル式における補正項βT(第3の補正項)を表現する多変量の状態空間モデルを構築することによって、さらなる溶鋼中りん濃度[P]の予測値の精度向上を図る。 The inventors of the present invention focused on the carbon concentration in molten steel (hereinafter also referred to as [C] (%)), which has no direct causal relationship based on the phosphorus distribution formula of formula (5). Since the carbon concentration [C] in the molten steel is considered to correlate with (%T.Fe), (%CaO), and the temperature T, the phosphorus concentration [P] in the molten steel is indirectly obtained from the above formula (5). Can be said to have a relationship with. Therefore, in the present embodiment, in addition to the correction term β p (first correction term) in the model formula used to calculate the predicted value of the phosphorus concentration in molten steel, in the model formula for carbon concentration in molten steel [C] described later. By constructing a multivariate state space model expressing the correction term β C (second correction term) and the correction term β T (third correction term) in the model formula of the molten steel temperature T, further phosphorus in the molten steel can be obtained. The accuracy of the predicted value of the density [P] is improved.
上記の検討に基づき、溶鋼中炭素濃度[C]および溶鋼温度Tを、式(6)および式(7)のような重回帰式で表現する。式(6)および式(7)は、溶銑・副原料データ331を吹錬処理時の溶鋼中炭素濃度[C]および溶鋼温度Tにそれぞれ関連付ける関数であり、上記の溶鋼中りん濃度[P]の例と同様に予測値の精度向上のために補正項(学習項)βC,βTが加えられる。補正項βCは溶鋼中炭素濃度[C]の予測値および実績値(第2の予測実績データ)に基づいて学習され、補正項βTは溶鋼温度Tの予測値および実績値(第3の予測実績データ)に基づいて学習される。
Based on the above examination, the carbon concentration in molten steel [C] and the molten steel temperature T are expressed by multiple regression equations such as equations (6) and (7). Equations (6) and (7) are functions that relate the hot metal/
上記で図3に示したようなチャージの継続性を考慮した場合、式(4)、式(6)および式(7)における補正項βp,βC,βTは、一種の時系列データとみなすことができる。そこで、本実施形態では、時系列データのモデリング手法の1つである状態空間モデルで補正項βp,βC,βTを表現する。状態空間モデルは、連続的であるか離散的であるか、周期的であるか否か、単変量であるか多変量であるか、定常的であるか非定常的であるかを問わず、様々な時系列データに適用できる広範な統計モデルの枠組みであり、時系列データの増減を例えばトレンド、季節変動、回帰変動などの要素に分解できるという特徴をもつ。本実施形態で扱う補正項βp,βC,βTは多変量、かつ非定常的であると考えられるが、上記の通り状態空間モデルを適用することが可能である。一方、他の一般的な時系列データのモデリング手法である自己回帰モデルは、解析対象のデータが定常的であることを前提としているため、非定常的であると考えられる補正項βp,βC,βTに適用するのは容易ではない(変数変換や差分処理によって定常化する必要が生じる)。また、自己回帰モデルでは時系列データの増減を分解することが困難である。 When considering the continuity of charge as shown in FIG. 3 above, the correction terms β p , β C , and β T in the equations (4), (6), and (7) are a kind of time series data. Can be regarded as Therefore, in the present embodiment, the correction terms β p , β C , and β T are expressed by a state space model, which is one of modeling methods for time series data. State-space models can be continuous or discrete, periodic or not, univariate or multivariate, stationary or non-stationary, It is a framework of a wide range of statistical models that can be applied to various time series data, and has the feature that the increase or decrease in time series data can be decomposed into factors such as trends, seasonal fluctuations, and regression fluctuations. The correction terms β p , β C , and β T used in this embodiment are considered to be multivariate and non-stationary, but the state space model can be applied as described above. On the other hand, other general auto-regressive models that are modeling methods of time series data are based on the assumption that the data to be analyzed is stationary, and thus the correction terms β p and β that are considered to be non-stationary. It is not easy to apply it to C and β T (it becomes necessary to make steady by variable conversion and difference processing). In addition, it is difficult for the autoregressive model to decompose the increase and decrease in time series data.
状態空間モデルでは、状態方程式および観測方程式の2つの方程式を用いる。測定されない量(状態量)を表すのが状態方程式であり、状態量に観測誤差が加えられた観測方程式によって観測値が得られるという考え方である。状態方程式および観測方程式がいずれも線形であり、かつ観測誤差が正規分布であると仮定できる場合には、観測値の時系列データを用いて状態量を修正するカルマンフィルタというアルゴリズムが確立されている。本実施形態では、補正項βp,βC,βTを状態量とし、過去の吹錬処理時における溶鋼中りん濃度[P]、溶鋼温度、および溶鋼中炭素濃度[C]の予測値と実績値との差分を観測値(状態量に測定誤差を加えた値)としてカルマンフィルタを適用することによって補正項βpを精度よく予測する。 The state space model uses two equations, a state equation and an observation equation. The state equation expresses an unmeasured quantity (state quantity), and the idea is that an observation value is obtained by an observation equation in which an observation error is added to the state quantity. When both the state equation and the observation equation are linear and it can be assumed that the observation error has a normal distribution, an algorithm called a Kalman filter that corrects the state quantity using time series data of the observation value has been established. In the present embodiment, the correction terms β p , β C , and β T are used as state quantities, and the predicted values of the phosphorus concentration in molten steel [P], the molten steel temperature, and the carbon concentration in molten steel [C] during the past blowing process are used. The Kalman filter is applied with the difference from the actual value as the observed value (value obtained by adding the measurement error to the state quantity) to accurately predict the correction term β p .
なお、最終的な溶鋼中りん濃度[P]の予測に用いられるのは補正項βpのみであるが、上述のように溶鋼温度Tおよび溶鋼中炭素濃度[C]は溶鋼中りん濃度[P]と関係があるため、溶鋼温度Tおよび溶鋼中炭素濃度[C]の補正項βC,βTを含む多変量かつ単一の状態空間モデルを用いて溶鋼中りん濃度[P]の補正項βpを表現することによって、補正項βpの予測精度が向上し、ひいては溶鋼中りん濃度[P]の予測精度も向上する。 Although only the correction term β p is used to predict the final phosphorus concentration [P] in the molten steel, the molten steel temperature T and the carbon concentration [C] in the molten steel are used to predict the phosphorus concentration [P] in the molten steel as described above. ], the correction term for the molten steel temperature T and the carbon concentration in the molten steel [C] is corrected by using a multivariate and single state space model including the correction terms β C and β T. by expressing beta p, it improves the prediction accuracy of the correction term beta p, is improved prediction accuracy of thus phosphorus concentration in the molten steel [P].
上述のように、状態空間モデルは、時系列データの増減を要素に分解できるという特徴をもつ。より具体的には、状態空間モデルの定式化では状態量という概念が用いられ、状態量にノイズを加えたものを観測値としているため、予測誤差に含まれる状態量とノイズとを区別することが可能になる。従って、本実施形態では、状態空間モデルで表現された補正項βpをカルマンフィルタを用いて精度よく予測することによって、補正項βpに対応する予測誤差を本質的なプロセス変動に起因する要素とノイズ要素とに分解することができる。本質的なプロセス変動に起因する要素については、当該要素の変動と具体的な操業要因の変動とを関連付けることによって、予測誤差と操業要因との関係を明確化することもできる。 As described above, the state space model has a feature that the increase/decrease of time series data can be decomposed into elements. More specifically, in the formulation of the state space model, the concept of state quantities is used, and the observation value is the state quantity plus noise.Therefore, it is necessary to distinguish between the state quantity and noise included in the prediction error. Will be possible. Therefore, in the present embodiment, by accurately predicting the correction term β p represented by the state space model using the Kalman filter, the prediction error corresponding to the correction term β p is regarded as an element due to an essential process variation. It can be decomposed into noise elements. For elements that are caused by essential process variations, the relationship between the prediction error and the operation factors can be clarified by associating the variations of the elements with the specific changes of the operation factors.
(カルマンフィルタの概要)
カルマンフィルタは、対象プロセスのダイナミクスが線形の状態空間モデルに従う場合に、観測値からモデル内部の状態量を逐次的に推定する手法である。本実施形態では、式(4)における補正項βpの状態空間モデルが線形であると仮定しているため、カルマンフィルタの適用が可能である。カルマンフィルタは、以下の式(8)で表されるような線形ガウス状態空間モデルを対象にする。なお、xtは状態量ベクトル、ytは観測値ベクトル、Ftは時変のn×m行列、Gtは時変のn×1行列、Htは時変のn×m行列、Rnはn次元ベクトル空間を表す。
(Outline of Kalman filter)
The Kalman filter is a method for sequentially estimating the state quantity inside the model from the observed value when the dynamics of the target process follows a linear state space model. In the present embodiment, it is assumed that the state space model of the correction term β p in equation (4) is linear, so the Kalman filter can be applied. The Kalman filter targets a linear Gaussian state space model represented by the following equation (8). In addition, x t is a state quantity vector, y t is an observation value vector, F t is a time-varying n×m matrix, G t is a time-varying n×1 matrix, H t is a time-varying n×m matrix, and R is R. n represents an n-dimensional vector space.
上記の式(8)において、vtはシステムノイズ、wtは観測ノイズと呼ばれる。本実施形態では、vtおよびxtについて、以下の式(9)のような多次元正規分布に従うものとする。なお、N(0,Qt)は平均0、分散共分散行列Qtの多次元正規分布、N(0,Rt)は平均0、分散共分散行列Rtの多次元正規分布を表す。以下、Qtをシステムノイズの分散共分散行列、Rtを観測ノイズの分散共分散行列ともいう。 In the above equation (8), v t is called system noise and w t is called observation noise. In the present embodiment, it is assumed that v t and x t follow a multidimensional normal distribution such as the following Expression (9). Incidentally, N (0, Q t) represents the average 0, multidimensional normal distribution of variance-covariance matrix Q t, N (0, R t) is zero mean, multidimensional normal distribution of variance-covariance matrix R t. Hereinafter, the variance-covariance matrix of system noise Q t, also called variance-covariance matrix of the observation noise R t.
カルマンフィルタのアルゴリズムでは、上記のような状態空間モデルにおいて、状態量ベクトルの推定値の初期値x0|0および状態量ベクトルの推定値の誤差分散共分散行列の初期値V0|0を与えた上で、以下で説明するような予測およびフィルタリングの手順を逐次的に繰り返す。 In the Kalman filter algorithm, the initial value x 0|0 of the estimated value of the state quantity vector and the initial value V 0|0 of the error covariance matrix of the estimated value of the state quantity vector are given in the above state space model. Above, the procedure of prediction and filtering as described below is sequentially repeated.
まず、予測の手順では、以下の式(10)に示されるように、時刻(t−1)における状態量ベクトルの推定値xt−1|t−1および状態量ベクトルの推定値の誤差分散共分散行列Vt−1|t−1を用いて、時刻tにおけるそれぞれの予測値xt|t−1およびVt|t−1を算出する。 First, in the procedure of prediction, as shown in the following equation (10), the error variance of the estimated value x t−1 |t−1 of the state quantity vector and the estimated value of the state quantity vector at time (t−1) Using the covariance matrix Vt -1|t-1 , the respective predicted values xt|t-1 and Vt |t-1 at time t are calculated.
次に、フィルタリングの手順では、以下の式(11)に示されるように、時刻tにおける状態量ベクトルの推定値の誤差分散共分散行列の修正値Vt|tおよびカルマンゲインKtを算出する。 Next, in the filtering procedure, the correction value V t|t and the Kalman gain K t of the error covariance matrix of the estimated value of the state quantity vector at time t are calculated as shown in the following equation (11). ..
さらに、上記の式(11)で算出されたカルマンゲインKtと、時刻tにおける観測値ベクトルytとを用いて、上記の式(10)で算出された時刻tにおける状態量ベクトルの予測値xt|t−1の修正値xt|tを、以下の式(12)に示されるように算出することができる。 Furthermore, using the Kalman gain K t calculated by the above equation (11) and the observed value vector y t at the time t, the predicted value of the state quantity vector at the time t calculated by the above equation (10) x t | t-1 of the correction value x t | a t, can be calculated as shown in the following equation (12).
なお、上記の式(8)〜式(12)は、カルマンフィルタを利用した状態推定で利用される数式の一例である。カルマンフィルタは状態推定の手法として既に広く利用されており、利用される具体的な数式についても、上記の例には限られず様々なものが知られている。これらの他の例についても、当然に本実施形態において適用することが可能である。 The above equations (8) to (12) are examples of equations used in state estimation using the Kalman filter. The Kalman filter is already widely used as a state estimation method, and various specific mathematical formulas are known, not limited to the above examples. Of course, these other examples can also be applied in the present embodiment.
(状態量をランダムウォークさせる場合)
上述のように、本実施形態では、溶鋼中りん濃度の予測値を算出するための式(4)、式(6)および式(7)における補正項βp,βC,βTを状態空間モデルで表現し、この状態空間モデルに対してカルマンフィルタを適用することによって補正項βp,βC,βTを算出する。
(When randomly walking the state quantity)
As described above, in the present embodiment, the correction terms β p , β C , and β T in the equations (4), (6), and (7) for calculating the predicted value of the phosphorus concentration in the molten steel are set in the state space. The correction terms β p , β C , and β T are calculated by applying a Kalman filter to this state space model by expressing the model.
ここで、式(8)において、以下の式(13)のような設定を考える。 Here, in equation (8), consider the setting as in equation (13) below.
この設定は、状態量と観測値が多変量で、状態量の状態遷移がランダムウォークに基づくことを意味している。この設定の場合、式(8)は式(14)および式(15)で表される状態空間モデルとなる。なお、xt=(x1,t,x2,t,x3,t)は補正項βp,βC,βTの真の値を表す状態量であり、yt=(y1,t,y2,t,y3,t)は補正項βp,βC,βTにそれぞれ対応する観測値である。 This setting means that the state quantity and the observed value are multivariate, and the state transition of the state quantity is based on a random walk. In this setting, the equation (8) becomes the state space model represented by the equations (14) and (15). Note that x t =(x 1,t , x 2,t , x 3,t ) is a state quantity representing the true value of the correction terms β p , β C , β T , and y t =(y 1, t 1 , y 2,t , y 3,t ) are observed values corresponding to the correction terms β p , β C , and β T , respectively.
上記の式(14)および式(15)で表される状態空間モデルは、状態量xt(補正項βp,βC,βTの真の値)をランダムウォーク(次の時点における状態量xtが確率的にランダムに決定される運動)させるもので、今回の状態量xtが前回の状態量xt−1とよく似ている状況を表現している。なお、式(14)および式(15)におけるQおよびRは、予め得られている溶鋼中りん濃度[P]の予測誤差実績値データと、溶鋼温度Tの予測誤差実績値データと、溶鋼中炭素濃度[C]の予測誤差実績値データとを用いて、最尤法などによってその値が算出されている前提である。式(14)および式(15)のような多変量の状態空間モデルでは、vi,tおよびwi,tが分散共分散行列(例えば、r11はx1(補正項βpの真値:状態量)の分散を表し、r12はx1(補正項βpの真値:状態量)とx2(補正項βCの真値:状態量)との共分散を表す)であるQおよびRを分散とする正規分布に従うとされており、この関係を通じて各変量間の相関を取り入れている。式(14)および式(15)で表される状態空間モデルにカルマンフィルタを適用することによって、前回チャージでの観測値yt−1から今回チャージでの状態量xt(補正項βp,βC,βTの真の値)および観測値ytを算出することが可能になる。 In the state space model expressed by the above equations (14) and (15), the state quantity x t (correct values of the correction terms β p , β C , and β T ) is randomly walked (state quantity at the next time point). xt is a motion randomly determined at random), and represents a situation in which the current state quantity xt is very similar to the previous state quantity xt-1 . Note that Q and R in the equations (14) and (15) are the prediction error actual value data of the phosphorus concentration [P] in the molten steel obtained in advance, the prediction error actual value data of the molten steel temperature T, and the molten steel medium It is a premise that the value is calculated by the maximum likelihood method or the like using the prediction error actual value data of the carbon concentration [C]. In a multivariate state space model such as equations (14) and (15), v i,t and w i,t are the variance-covariance matrix (for example, r 11 is x 1 (the true value of the correction term β p . : R 12 is a covariance of x 1 (correction term β p true value: state quantity) and x 2 (correction term β C true value: state quantity). It is said to follow a normal distribution with variances of Q and R, and the correlation between each variable is incorporated through this relationship. By applying the Kalman filter to the state space model expressed by the equations (14) and (15), the state quantity x t (correction terms β p , β) from the observed value y t-1 in the previous charge to the current charge It becomes possible to calculate the true value of C , β T ) and the observed value y t .
(状態空間モデルの効果)
図4〜図7は、本発明の一実施形態における状態空間モデルの使用の効果について説明するためのグラフである。それぞれのグラフにおいて、溶鋼中りん濃度[P]の予測値および実測値は、いずれも中間サブランス測定の時点における値であり、従ってSL[P]calおよびSL[P]actと記載されている。なお、SL[P]calおよびSL[P]actの値はいずれも正規化されている。図4には、ケース0として、補正項βp,βC,βTをいずれも含まない上記の式(2)を用いて[P]を予測した場合の予測値SL[P]calと実測値SL[P]actとの関係が示されている。図5には、ケース1として、溶鋼中りん濃度[P]の補正項βpを含む上記の式(4)、および式(8)〜式(15)を用い、式(14)および式(15)では補正項βpのみを導入して(補正項βC,βTは無視して)[P]を予測した場合の予測値SL[P]calと実測値SL[P]actとの関係が示されている。図6には、ケース2として、補正項βpに加えて補正項βCを含む上記の式(4)、式(6)、および式(8)〜式(15)を用い、式(14)および式(15)では補正項βp,βC(補正項βTは無視して)[P]を予測した場合の予測値SL[P]calと実測値SL[P]actとの関係が示されている。図7には、ケース3として、補正項βp,βC,βTをすべて含む上記の式(4)、式(6)、式(7)、および式(8)〜式(15)を用いて[P]を予測した場合の予測値SL[P]calと実測値SL[P]actとの関係が示されている。
(Effect of state space model)
4 to 7 are graphs for explaining the effect of using the state space model in the embodiment of the present invention. In each graph, the predicted value and the actual measured value of the phosphorus concentration in molten steel [P] are the values at the time of the intermediate sublance measurement, and are therefore described as SL[P]cal and SL[P]act. The values of SL[P]cal and SL[P]act are both normalized. In FIG. 4, as
ケース0(図4)では、予測値SL[P]calの標準偏差が0.858、実測値SL[P]actに対する誤差平均が0.101である。これに対して、ケース1(図5)では標準偏差が0.753、誤差平均が−0.0171である。ケース1では、標準偏差(予測値のばらつき)が改善されたのに加えて、ケース0における予測値SL[P]calが全体として実測値SL[P]actよりも高くなる傾向が改善されている。ケース2(図6)では、標準偏差が0.639、誤差平均が−0.0172であり、予測値SL[P]calの分布の中心が実測値SL[P]actに近い状態を維持しつつ、標準偏差がより改善されている。さらに、ケース3(図7)では、標準偏差が0.426、誤差平均が0.0236であり、標準偏差をケース0〜ケース2に比べて大きく改善しつつ、予測値SL[P]calの分布の中心が実測値SL[P]actに近い状態を維持できている。
In case 0 (FIG. 4), the standard deviation of the predicted value SL[P]cal is 0.858, and the average error with respect to the measured value SL[P]act is 0.101. On the other hand, in case 1 (FIG. 5), the standard deviation is 0.753 and the error average is -0.0171. In
(媒溶材投入量の適正化)
上記のようにして補正項βp,βC,βTを導入して算出された溶鋼中りん濃度[P]の予測値を用いることによって、吹錬処理の初期に投入されるCaO含有副原料、具体的には生石灰などの媒溶材の投入量を適正化することができる。既に述べたように、転炉吹錬ではスタティック制御とダイナミック制御とを組み合わせた吹錬制御が行われている。本実施形態では、スタティック制御において、予め物質収支や熱収支に基づいた数式モデルなどを用いて決定された生石灰などの媒溶材の投入量を、補正項βp,βC,βTを含む[P]の予測値を用いて修正する。
(Adjusting the amount of solvent input)
By using the predicted value of the phosphorus concentration in molten steel [P] calculated by introducing the correction terms β p , β C , and β T as described above, the CaO-containing auxiliary raw material that is input in the initial stage of the blowing process is used. Specifically, it is possible to optimize the input amount of the medium-soluble material such as quick lime. As described above, in the converter blowing, blowing control combining static control and dynamic control is performed. In the present embodiment, in static control, the input amount of a medium-soluble material such as quick lime determined in advance by using a mathematical model based on a mass balance or a heat balance includes correction terms β p , β C , and β T [ Correct using the predicted value of P].
図8は、本実施形態における媒溶材投入量の適正化について説明するためのグラフである。図8の実線で示されているように、スタティック制御における溶銑重量あたりの媒溶材投入量(kg/ton)は、目標とする溶鋼中りん濃度(%)に応じて予め決定されている。具体的には、今回チャージにおける溶鋼中りん濃度の目標値がP1(%)である場合、予め決定される媒溶材投入量はWCaO(kg/ton)である。これに対して、補正項βpを導入して算出された溶鋼中りん濃度の予測値がP2(%)(P2<P1)であった場合、媒溶材投入量WCaOを維持すると、ΔP=P1−P2(%)だけ過剰に脱りんが発生することになる。この場合、図8の実線で示した目標溶鋼中りん濃度と溶銑重量あたりの媒溶材投入量との関係が、破線のグラフにシフトしていると考えられる。そのため、例えば以下の式(16)に示すように、媒溶材量補正関数f(ΔP)を用いて媒溶材投入量をWCaOからW’CaOに補正する。これによって、脱りんのために必要十分な量の媒溶材を投入することができ、溶鋼中りん濃度の目標値を達成しながら、媒溶材に起因するスラグ発生量を最低限に抑制することができる。 FIG. 8 is a graph for explaining the optimization of the amount of the solvent input in this embodiment. As shown by the solid line in FIG. 8, the amount of the medium-melting material input (kg/ton) per weight of the hot metal in the static control is determined in advance according to the target phosphorus concentration (%) in the molten steel. Specifically, when the target value of the phosphorus concentration in the molten steel in the current charge is P 1 (%), the amount of the medium-solvent input determined in advance is W CaO (kg/ton). On the other hand, when the predicted value of the phosphorus concentration in the molten steel calculated by introducing the correction term β p is P 2 (%) (P 2 <P 1 ), the medium-fluid material input amount W CaO is maintained. , ΔP=P 1 −P 2 (%) causes excessive dephosphorization. In this case, it is considered that the relationship between the target phosphorus concentration in the molten steel and the amount of the medium-melting material charged per weight of the hot metal shown by the solid line in FIG. 8 is shifted to the broken line graph. Therefore, for example, as shown in the following formula (16), the amount of the solute material is corrected from W CaO to W′ CaO by using the solute material correction function f(ΔP). As a result, it is possible to add a necessary and sufficient amount of the medium solution material for dephosphorization, and to minimize the amount of slag generated due to the medium solution material while achieving the target value of the phosphorus concentration in the molten steel. it can.
上記で説明したような本発明の一実施形態では、状態量がランダムウォークすると仮定した状態空間モデルを導入しカルマンフィルタを適用して、溶鋼中りん濃度[P]の予測値を算出するための補正項βp,βC,βTの学習を逐次実行することができる。また、回帰効果を導入した状態空間モデルにカルマンフィルタを適用することによって、補正項βp,βC,βTに含まれる本質的なプロセス変動の影響とノイズとを区別することができる。従って、吹錬開始前の時点における溶鋼中りん濃度[P]の予測精度を向上させることができる。溶鋼中りん濃度[P]の予測精度が向上すれば、吹錬処理の初期に投入されるCaO含有副原料の投入量を適正化することができ、溶鋼中りん濃度の目標値を達成しながら、媒溶材に起因するスラグ発生量を最低限に抑制することができる。 In one embodiment of the present invention as described above, a correction for calculating the predicted value of the phosphorus concentration in molten steel [P] by introducing a state space model assuming that the state quantity randomly walks and applying a Kalman filter. The learning of the terms β p , β C , and β T can be sequentially executed. Further, by applying the Kalman filter to the state space model in which the regression effect is introduced, it is possible to distinguish the influence of the essential process variation contained in the correction terms β p , β C , and β T from the noise. Therefore, the prediction accuracy of the phosphorus concentration in molten steel [P] before the start of blowing can be improved. If the prediction accuracy of the phosphorus concentration in molten steel [P] is improved, it is possible to optimize the amount of CaO-containing auxiliary raw material that is introduced in the initial stage of the blowing process, while achieving the target value of phosphorus concentration in molten steel. The amount of slag generated due to the solvent material can be suppressed to the minimum.
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, but the present invention is not limited to these examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
1…精錬設備、10…転炉設備、11…転炉、12…上吹きランス、13…投入装置、20…計測制御装置、21…サブランス、22…酸素供給装置、23…副原料投入制御装置、30…転炉吹錬制御装置、31…通信部、32…演算部、321…溶鋼中りん濃度予測部、322…補正項算出部、323…媒溶材量修正部、33…記憶部、331…溶銑・副原料データ、332…予測実績データ、333…目標データ、334…パラメータ、34…入出力部、111…溶銑、112…溶鋼、113…スラグ、121…酸素ガス、131…副原料。
DESCRIPTION OF
Claims (8)
前記第1の補正項および第2の補正項を表現する多変量の状態空間モデルを構築し、前記状態空間モデルに対してカルマンフィルタを適用することによって前記第1の補正項を算出する補正項算出手段と
を備え、
前記第2の補正項は、前記溶銑データおよび前記副原料データを前記転炉における吹錬処理時の溶鋼中炭素濃度に関連付ける関数に加えられる補正項であり、前記転炉における過去の吹錬処理時の溶鋼中炭素濃度の予測値および実績値を含む第2の予測実績データに基づいて学習され、
前記カルマンフィルタは、前記第1の予測実績データに含まれる溶鋼中りん濃度の予測値と実績値との差分、および前記第2の予測実績データに含まれる溶鋼中炭素濃度の予測値と実績値との差分を観測値とする、転炉吹錬制御装置。 The function of associating the hot metal data on the hot metal blown in the converter with the phosphorus content in the molten steel at the time of the blowing process in the converter, The predicted value of the phosphorus concentration in the molten steel is calculated by adding the first correction term learned based on the first predicted performance data including the predicted value and the actual value of the phosphorus concentration in the molten steel during the past blowing process. Predictive value calculating means,
Correction term calculation for calculating the first correction term by constructing a multivariate state space model expressing the first correction term and the second correction term and applying a Kalman filter to the state space model Means and
The second correction term is a correction term added to a function relating the molten pig iron data and the auxiliary raw material data to the carbon concentration in molten steel at the time of the blowing treatment in the converter, and the past blowing treatment in the converter. Learned based on the second predicted actual data including the predicted value and the actual value of the carbon concentration in molten steel at the time,
The Kalman filter uses the difference between the predicted value and the actual value of the phosphorus concentration in molten steel included in the first predicted actual data, and the predicted value and the actual value of the carbon concentration in molten steel included in the second predicted actual data. A converter blowing control device that uses the difference between the two as the observed value.
前記第2の予測実績データは、前記転炉における過去の吹錬処理時の中間サブランス測定の時点における溶鋼中炭素濃度の予測値、および前記中間サブランス測定で取得された溶鋼中炭素の実績値を含む、請求項1または請求項2に記載の転炉吹錬制御装置。 The first predicted actual data is the predicted value of phosphorus concentration in molten steel at the time of intermediate sublance measurement during the past blowing process in the converter, and the actual value of phosphorus concentration in molten steel acquired by the intermediate sublance measurement. Including
The second predicted performance data is a predicted value of carbon concentration in molten steel at the time of intermediate sublance measurement during the past blowing process in the converter, and an actual value of molten carbon in the intermediate sublance measured. The converter blowing control apparatus according to claim 1 or claim 2, which comprises:
前記第3の補正項は、前記溶銑データおよび前記副原料データを前記転炉における吹錬処理時の溶鋼温度に関連付ける関数に加えられる補正項であり、前記転炉における過去の吹錬処理時の溶鋼温度の予測値および実績値を含む第3の予測実績データに基づいて学習され、
前記カルマンフィルタは、前記第1の予測実績データに含まれる溶鋼中りん濃度の予測値と実績値との差分、および前記第2の予測実績データに含まれる溶鋼中炭素濃度の予測値と実績値との差分に加えて、前記第3の予測実績データに含まれる溶鋼温度の予測値と実績値との差分を観測値とする、請求項1から請求項3のいずれか1項に記載の転炉吹錬制御装置。 The state space model is a multivariate state space model that expresses a third correction term in addition to the first correction term and the second correction term,
The third correction term is a correction term added to a function that associates the molten pig iron data and the auxiliary raw material data with the molten steel temperature during the blowing process in the converter, Learned based on the third predicted actual data including the predicted value and the actual value of the molten steel temperature,
The Kalman filter uses the difference between the predicted value and the actual value of the phosphorus concentration in molten steel included in the first predicted actual data, and the predicted value and the actual value of the carbon concentration in molten steel included in the second predicted actual data. In addition to the difference, the converter of any one of claims 1 to 3, wherein the difference between the predicted value and the actual value of the molten steel temperature included in the third predicted actual data is an observed value. Blowing control device.
前記第1の補正項および第2の補正項を表現する多変量の状態空間モデルを構築し、前記状態空間モデルに対してカルマンフィルタを適用することによって前記第1の補正項を算出する補正項算出工程と
を含み、
前記第2の補正項は、前記溶銑データおよび前記副原料データを前記転炉における吹錬処理時の溶鋼中炭素濃度に関連付ける関数に加えられる補正項であり、前記転炉における過去の吹錬処理時の溶鋼中炭素濃度の予測値および実績値を含む第2の予測実績データに基づいて学習され、
前記カルマンフィルタは、前記第1の予測実績データに含まれる溶鋼中りん濃度の予測値と実績値との差分、および前記第2の予測実績データに含まれる溶鋼中炭素濃度の予測値と実績値との差分を観測値とする、転炉吹錬制御方法。 The function of associating the hot metal data on the hot metal blown in the converter with the phosphorus content in the molten steel at the time of the blowing process in the converter, The predicted value of the phosphorus concentration in the molten steel is calculated by adding the first correction term learned based on the first predicted performance data including the predicted value and the actual value of the phosphorus concentration in the molten steel during the past blowing process. A predicted value calculation step to
Correction term calculation for calculating the first correction term by constructing a multivariate state space model expressing the first correction term and the second correction term and applying a Kalman filter to the state space model Including process and
The second correction term is a correction term added to a function relating the molten pig iron data and the auxiliary raw material data to the carbon concentration in molten steel at the time of the blowing treatment in the converter, and the past blowing treatment in the converter. Learned based on the second predicted actual data including the predicted value and the actual value of the carbon concentration in molten steel at the time,
The Kalman filter uses the difference between the predicted value and the actual value of the phosphorus concentration in molten steel included in the first predicted actual data, and the predicted value and the actual value of the carbon concentration in molten steel included in the second predicted actual data. A converter blowing control method in which the difference between the measured values is the observed value.
前記第1の補正項および第2の補正項を表現する多変量の状態空間モデルを構築し、前記状態空間モデルに対してカルマンフィルタを適用することによって前記第1の補正項を算出する補正項算出手段と
を備え、
前記第2の補正項は、前記溶銑データおよび前記副原料データを前記転炉における吹錬処理時の溶鋼中炭素濃度に関連付ける関数に加えられる補正項であり、前記転炉における過去の吹錬処理時の溶鋼中炭素濃度の予測値および実績値を含む第2の予測実績データに基づいて学習され、
前記カルマンフィルタは、前記第1の予測実績データに含まれる溶鋼中りん濃度の予測値と実績値との差分、および前記第2の予測実績データに含まれる溶鋼中炭素濃度の予測値と実績値との差分を観測値とする転炉吹錬制御装置としてコンピュータを機能させるためのプログラム。 The function of associating the hot metal data on the hot metal blown in the converter with the phosphorus content in the molten steel at the time of the blowing process in the converter, The predicted value of the phosphorus concentration in the molten steel is calculated by adding the first correction term learned based on the first predicted performance data including the predicted value and the actual value of the phosphorus concentration in the molten steel during the past blowing process. Predictive value calculating means,
Correction term calculation for calculating the first correction term by constructing a multivariate state space model expressing the first correction term and the second correction term and applying a Kalman filter to the state space model Means and
The second correction term is a correction term added to a function relating the molten pig iron data and the auxiliary raw material data to the carbon concentration in molten steel at the time of the blowing treatment in the converter, and the past blowing treatment in the converter. Learned based on the second predicted actual data including the predicted value and the actual value of the carbon concentration in molten steel at the time,
The Kalman filter uses the difference between the predicted value and the actual value of the phosphorus concentration in molten steel included in the first predicted actual data, and the predicted value and the actual value of the carbon concentration in molten steel included in the second predicted actual data. A program that causes a computer to function as a converter blowing control device that uses the difference between the two as an observed value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018246670A JP7135850B2 (en) | 2018-12-28 | 2018-12-28 | Converter blowing control device, converter blowing control method and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018246670A JP7135850B2 (en) | 2018-12-28 | 2018-12-28 | Converter blowing control device, converter blowing control method and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020105606A true JP2020105606A (en) | 2020-07-09 |
JP7135850B2 JP7135850B2 (en) | 2022-09-13 |
Family
ID=71448359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018246670A Active JP7135850B2 (en) | 2018-12-28 | 2018-12-28 | Converter blowing control device, converter blowing control method and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7135850B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113534661A (en) * | 2021-06-03 | 2021-10-22 | 太原理工大学 | Resistance furnace temperature control method based on Kalman filtering and non-minimum state space |
CN117760920A (en) * | 2024-02-22 | 2024-03-26 | 大连理工大学 | Kalman filtering metal dust concentration detection method based on machine learning assistance |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6230806A (en) * | 1985-07-31 | 1987-02-09 | Kawasaki Steel Corp | Method for controlling desiliconization of molten iron |
JPH06271921A (en) * | 1993-03-23 | 1994-09-27 | Sumitomo Metal Ind Ltd | Method for estimating phosphorus concentration in molten steel |
JP2012167366A (en) * | 2011-01-28 | 2012-09-06 | Jfe Steel Corp | Phosphorus concentration prediction apparatus, and blowing control method |
JP2013023696A (en) * | 2011-07-15 | 2013-02-04 | Nippon Steel & Sumitomo Metal Corp | Converter blowing control method |
JP2014519551A (en) * | 2011-07-18 | 2014-08-14 | エー ビー ビー リサーチ リミテッド | Method and control system for controlling a melting process |
JP2018178200A (en) * | 2017-04-14 | 2018-11-15 | 新日鐵住金株式会社 | Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium |
JP2020097768A (en) * | 2018-12-18 | 2020-06-25 | 日本製鉄株式会社 | Converter blowing control device, converter blowing control method, and program |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6271921B2 (en) | 2013-05-17 | 2018-01-31 | 株式会社スタートトゥデイ | Coordinate information providing system and read information management system |
-
2018
- 2018-12-28 JP JP2018246670A patent/JP7135850B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6230806A (en) * | 1985-07-31 | 1987-02-09 | Kawasaki Steel Corp | Method for controlling desiliconization of molten iron |
JPH06271921A (en) * | 1993-03-23 | 1994-09-27 | Sumitomo Metal Ind Ltd | Method for estimating phosphorus concentration in molten steel |
JP2012167366A (en) * | 2011-01-28 | 2012-09-06 | Jfe Steel Corp | Phosphorus concentration prediction apparatus, and blowing control method |
JP2013023696A (en) * | 2011-07-15 | 2013-02-04 | Nippon Steel & Sumitomo Metal Corp | Converter blowing control method |
JP2014519551A (en) * | 2011-07-18 | 2014-08-14 | エー ビー ビー リサーチ リミテッド | Method and control system for controlling a melting process |
JP2018178200A (en) * | 2017-04-14 | 2018-11-15 | 新日鐵住金株式会社 | Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium |
JP2020097768A (en) * | 2018-12-18 | 2020-06-25 | 日本製鉄株式会社 | Converter blowing control device, converter blowing control method, and program |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113534661A (en) * | 2021-06-03 | 2021-10-22 | 太原理工大学 | Resistance furnace temperature control method based on Kalman filtering and non-minimum state space |
CN117760920A (en) * | 2024-02-22 | 2024-03-26 | 大连理工大学 | Kalman filtering metal dust concentration detection method based on machine learning assistance |
Also Published As
Publication number | Publication date |
---|---|
JP7135850B2 (en) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5582105B2 (en) | Converter blowing control method | |
JP6515385B2 (en) | Hot metal pretreatment method and hot metal pretreatment control device | |
EP3770279B1 (en) | Molten metal component estimation device, molten metal component estimation method, and molten metal production method | |
JP2020105606A (en) | Converter blowing control device, converter blowing control method, and program | |
JP6897261B2 (en) | Phosphorus concentration estimation method in molten steel, converter blowing control device, program and recording medium | |
JP7110969B2 (en) | Converter blowing control device, converter blowing control method and program | |
JP2005036289A (en) | Model parameter decision method and program therefor, and model prediction method and program therefor | |
JP5853723B2 (en) | Phosphorus concentration prediction device and blowing control method | |
TWI488973B (en) | Compensating apparatus, method and method for refining iron | |
JP6825348B2 (en) | Hot metal pretreatment method, hot metal pretreatment control device, program and recording medium | |
JP5821656B2 (en) | Quick lime concentration prediction device and blowing control method | |
KR102232483B1 (en) | Method for estimating phosphorus concentration in molten steel, converter blowing control device, program and recording medium | |
JP6098553B2 (en) | Rejuvenated phosphorus amount prediction device, recovered phosphorus amount prediction method, and converter dephosphorization control method | |
TWI627284B (en) | Molten pig iron preparation processing method and molten pig iron preparation processing control device | |
JP2001294928A (en) | Method for controlling end point of blowing in converter | |
JP2007238982A (en) | Method for controlling blowing end-point in converter | |
JP2008007828A (en) | Method and apparatus for controlling dephosphorization | |
JP2019183222A (en) | T.Fe ESTIMATION METHOD, T.Fe CONTROL METHOD, STATISTICAL MODEL CREATION METHOD, CONVERTER BLOWING CONTROL DEVICE, STATISTICAL MODEL CREATION DEVICE, AND PROGRAM | |
JP2024005899A (en) | Device, method, and program for statistical model construction, and device, method and program for estimating phosphorus concentration in molten steel | |
JP2004059955A (en) | Method for controlling converter blowing | |
JP2021031684A (en) | Converter blowing control device, statistic model construction device, converter blowing control method, statistic model construction method and program | |
RU2652663C2 (en) | Method of controlling purge process of converter melting with use of waste gas information | |
JPH0433846B2 (en) | ||
JP2023114592A (en) | Operational calculation device and operational calculation method | |
JP2009068089A (en) | Method for controlling industrial process and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220815 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7135850 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |