JPS6230806A - Method for controlling desiliconization of molten iron - Google Patents

Method for controlling desiliconization of molten iron

Info

Publication number
JPS6230806A
JPS6230806A JP16762585A JP16762585A JPS6230806A JP S6230806 A JPS6230806 A JP S6230806A JP 16762585 A JP16762585 A JP 16762585A JP 16762585 A JP16762585 A JP 16762585A JP S6230806 A JPS6230806 A JP S6230806A
Authority
JP
Japan
Prior art keywords
desiliconization
hot metal
molten iron
amount
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16762585A
Other languages
Japanese (ja)
Inventor
Kazuya Asano
一哉 浅野
Mikio Kondo
幹夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16762585A priority Critical patent/JPS6230806A/en
Publication of JPS6230806A publication Critical patent/JPS6230806A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To match the content of Si in a molten iron after a desiliconization treatment with a target grade with good accuracy in the stage of subjecting the molten iron tapped from a blast furnace to the desiliconization treatment in a molten iron spout by measuring the content of Si and the flow rate of the molten iron before and after the desiliconization, determining the necessary amt. of a desiliconizing agent from the final target content of Si and adding the desiliconizing agent at the determined amt. to the molten iron. CONSTITUTION:The desiliconizing agent consisting of a main agent 9 and auxiliary agent 9a is added to the molten iron 3 tapped from the blast furnace to desiliconize the molten iron in the stage when the molten iron flows down in the molten iron spout 6. The molten irons before the after the addition of the desiliconizing agent are respectively sampled by sampling devices 22, 23 and the contents of Si in the respective molten irons are measured; at the same time, the flow rate of the molten iron is actually measured with a measuring instrument 24. The measured values and the amt. of the added desiliconizing agent are inputted to an electronic computer 14 which calculates the necessary amt. of the desiliconizing agent from the target content of Si set in a setter 20 and controls the rotating speeds of rotary valves 11, 11a of desiliconizing agent hoppers 10, 10a via control devices 17, 18 so that the necessary amt. of the desiliconizing agent is added to the molten iron.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高炉から出銑される溶銑を連続的に脱珪処理す
る溶銑の連続脱珪処理プロセスにおいて脱珪処理後の溶
銑珪素量を目標値に一致させるための制御方法に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention aims to reduce the amount of silicon in hot metal after desiliconization in a continuous desiliconization process of hot metal that continuously desiliconizes hot metal tapped from a blast furnace. This relates to a control method for matching the values.

〔従来の技術〕[Conventional technology]

溶銑の予備脱珪においては、脱珪処理後の溶銑珪素量を
小さくすることだけでなく、下流工程の製鋼段階におい
て下記1)〜3)のようなメリットを達成するために、
同時に所望の目標値に途中させ、ばらつきを小さくする
ことが要求される。
In the preliminary desiliconization of hot metal, in addition to reducing the amount of silicon in the hot metal after desiliconization, in order to achieve the following benefits 1) to 3) in the downstream steelmaking stage,
At the same time, it is required to reach a desired target value halfway and to reduce variations.

1)転炉吹錬制御の精度向上 2)転炉吹錬における生石灰等処理剤使用量の低減と発
生スラグ廣の低減 3)転炉装入溶銑の珪素量を−・定植化するための混銑
車組合せと受銑など溶銑ハンドリング作業の省略 第2図に溶銑の予備脱珪の実施態様を示す。
1) Improving the accuracy of converter blowing control 2) Reducing the amount of processing agents such as quicklime used in converter blowing and reducing the width of generated slag 3) Increasing the amount of silicon in hot metal charged into the converter - Mixed pig iron for planting Omission of hot metal handling operations such as car assembly and pig iron receiving Figure 2 shows an embodiment of preliminary desiliconization of hot metal.

lは高炉、2は出銑口で、3は溶銑を示す。4は大樋で
あり、ここで溶銑とスラグが分離され、スラグはスラグ
排出口5から排出され、一方の溶銑は溶銑樋6、溶銑傾
注樋7を経て混銑車8へと導かれる。9と9aは脱珪剤
で10と10aはその貯蔵ホッパ、11とllaは切出
し用ロータリーバルブ、12は装入コンベア、13は脱
珪剤添加口である。溶銑3は高炉の出銑口2から排出さ
れその後大樋4でスラグと分離され、溶銑樋6へ流出す
る。この溶銑3に対して溶銑樋6または溶銑傾注樋7の
適当な位nにおいて脱珪剤を添加し添加時の強制的な混
合及びその後流れていく間の混合を利用して溶銑中の含
有珪素を除去するものである。
1 is the blast furnace, 2 is the tap hole, and 3 is the hot metal. Numeral 4 is a large gutter, where hot metal and slag are separated, and the slag is discharged from a slag discharge port 5, while one of the hot metals is guided to a mixer wheel 8 via a hot metal gutter 6 and a hot metal tilting gutter 7. 9 and 9a are desiliconizing agents, 10 and 10a are storage hoppers thereof, 11 and lla are rotary valves for cutting, 12 is a charging conveyor, and 13 is a desiliconizing agent addition port. Hot metal 3 is discharged from the tap hole 2 of the blast furnace, is separated from slag in a large gutter 4, and flows into a hot metal gutter 6. A desiliconizing agent is added to the hot metal 3 at an appropriate point in the hot metal sluice 6 or the hot metal tilting sluice 7, and the silicon contained in the hot metal is removed by forcible mixing at the time of addition and by mixing during the subsequent flow. It is intended to remove.

脱珪剤としては溶銑中の珪素を酸化除去するための固体
酸素源になるミルスケール、焼結鉱粉、含鉄ダストなど
の主剤9と、脱珪スラグ性状調整と脱珪反応を優先的に
行わせるために添加する生石灰などの副剤9aを用いる
。主剤9については脱珪後の溶銑珪素濃度目標値(以下
珪素量目標値という)が満足されるように除去すべき珪
素C度(以下脱珪呈という)と出銑速度とから添加、′
11を定め、副剤9aの添加量は主剤9のそれに比例し
て定めるのが一般的であり1両者先混合して脱珪剤添加
口13から連続的に添加する。
As a desiliconizing agent, the main agent 9 such as mill scale, sintered ore powder, and iron-containing dust, which is a solid oxygen source for oxidizing and removing silicon in hot metal, is used to preferentially adjust the properties of desiliconizing slag and perform desiliconizing reactions. An adjuvant 9a, such as quicklime, is used to make the mixture stand out. The base material 9 is added based on the degree of silicon C (hereinafter referred to as desiliconization) to be removed so that the target value of silicon concentration in the hot metal after desiliconization (hereinafter referred to as the target value of silicon content) and the tapping rate are determined.
11, and the amount of the auxiliary agent 9a to be added is generally determined in proportion to that of the main agent 9, and the two are mixed first and added continuously from the desiliconizing agent addition port 13.

上記の連続脱珪処理において重要なのは脱珪後珪素敬目
標イ1を低く設定するとともに、この目標値に途中させ
てばらつきを小さくすることであり、そのためには脱珪
剤添加量の制御方法に考慮を払うことを要する。
What is important in the continuous desiliconization process described above is to set the post-desiliconization target value (1) low and to reduce the variation by reaching this target value midway through. requires consideration.

従来行なわれている脱珪剤添加量制御方法としては特開
昭56−217に開示された方法が−・般的であり、以
下の構成裳件から成っている。
As a conventional method for controlling the amount of desiliconizing agent added, the method disclosed in Japanese Patent Application Laid-Open No. 56-217 is generally known and consists of the following components.

(1)  高炉から出銑される溶銑中の珪素:御゛を予
測推定などの手段によって求め、一方あらかじめ定めら
れた脱珪後の珪素量目標値と比較して、逐次適当な間隔
で、必要な脱珪峻を計算して添加すべき脱珪剤原単位を
定めること。
(1) Silicon in the hot metal tapped from the blast furnace: The amount of silicon in the hot metal tapped from the blast furnace is determined by means such as prediction and estimation, and compared with a predetermined target value for the amount of silicon after desiliconization, the amount of silicon is determined at appropriate intervals. Calculate the desiliconization stiffness and determine the basic unit of the desiliconization agent to be added.

■ この達成すべき脱珪剤原単位を実現するために、出
銑速度[t/min]を計測し、それに応じて脱珪剤添
加速度[kg/m1nlを算出して脱珪剤切出し用ロー
タリーバルブに回転速度指示をゲえること。
■ In order to achieve the desired desiliconizing agent consumption rate, measure the tapping rate [t/min], calculate the desiliconizing agent addition rate [kg/ml/nl], and set the desiliconizing agent cutting rotary. Be able to give the rotation speed instruction to the valve.

第3図はL記従来法を実現するための脱珪剤添加社自動
制御系の構成図である。電子計算機14には脱珪前溶銑
珪素量の推定モデルA、出銑速度算出用演算ロジックB
、脱珪量算出用演算ロジックC,添加量算出用演算ロジ
ックDが組込まれている。15は混銑車内溶銑重量測定
用ロードセルで、16は溶銑重量検出器である。
FIG. 3 is a block diagram of an automatic control system for adding a silica additive to realize the conventional method described in L. The electronic computer 14 includes a model A for estimating the amount of silicon in hot metal before desiliconization, and an arithmetic logic B for calculating the tapping speed.
, an arithmetic logic C for calculating the amount of silicon removed, and an arithmetic logic D for calculating the addition amount. 15 is a load cell for measuring the weight of hot metal in the car, and 16 is a hot metal weight detector.

計装制御装a17には添加量設定指示値の信号変換を行
うパルス設定器E、主剤及び副剤添加量秤量器Fが組込
まれ、電気制御装置1Bには添加量設定指示をモーター
回転数指示に変換する演算器Gが組込まれている。
The instrumentation control device a17 incorporates a pulse setting device E for signal conversion of the addition amount setting instruction value, and a main agent and adjuvant addition amount weigher F, and the electric control device 1B incorporates the addition amount setting instruction and the motor rotation speed instruction. An arithmetic unit G is built in to convert the data into .

19及び19aはそれぞれ主剤、副剤の実際添加量を検
出するロードセルである。20は各制御定数の表示、設
定器、21はロギング用のタイプライタ−である。
Reference numerals 19 and 19a are load cells for detecting the actual addition amounts of the main agent and the auxiliary agent, respectively. 20 is a display and setting device for each control constant, and 21 is a typewriter for logging.

第3図の各種検出端と制御系を用いて操業するに当り、
まず、推定モデルAで脱珪前溶銑珪素量を推定する。一
方表示設定雰20から、あらかじめ脱珪後溶銑珪素量目
標値などの定数を電子計算機に与えておき、この両者か
ら逐次、必要脱珪量をロジックCで算出する。他方、溶
銑重量検出器16からの信号を用いてロジ−・りBで出
銑速度を算出する。
When operating using the various detection terminals and control system shown in Figure 3,
First, the amount of silicon in hot metal before desiliconization is estimated using estimation model A. On the other hand, constants such as a target value for the amount of silicon in the hot metal after desiliconization are given to the computer in advance from the display settings 20, and the required amount of desiliconization is sequentially calculated from both of them using logic C. On the other hand, using the signal from the hot metal weight detector 16, the tapping speed is calculated by logic relay B.

ロジックDにはあらかじめ脱珪琶と脱珪剤添加原単位の
関係式を組込んでおく、ロジックCからの必要脱珪量に
応じて必要脱珪剤[中位が求まり、ロジックBにて得て
いる出銑速度を介して脱珪剤の添加速度が算出される。
Logic D incorporates the relational expression between desiliconization and desiliconization agent addition unit in advance.The required desiliconization agent [median value is determined according to the required amount of desiliconization from logic C, and the amount obtained in logic B is calculated in advance. The addition rate of the desiliconizing agent is calculated based on the tapping rate.

これを計装制御装置17で信号変換した後電気制御装W
118で回転速度指令に変換しロータリーバルブに伝え
、ロータリーバルブがこれに対応して駆動し、脱珪剤が
切り出される。
After converting this into a signal in the instrumentation control device 17, the electrical control device W
At step 118, it is converted into a rotation speed command and transmitted to the rotary valve, and the rotary valve is driven accordingly, and the desiliconizing agent is cut out.

上記従来法の特徴は脱珪前珪素量と出銑速度をシステム
への入力とし、その変動を測定あるいは推定して、オー
ブンルーズの制御により脱珪後珪素量目標値を実現する
ことを目的としているところにある。
The characteristics of the conventional method described above are that the amount of silicon before desiliconization and the tapping speed are input to the system, and their fluctuations are measured or estimated, and the target value of silicon amount after desiliconization is achieved by controlling the oven looseness. It's where you are.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来法は次の問題点を有する。 The conventional method has the following problems.

イ)従来法では脱珪後珪素t:の実績値[5i)fを測
定していないので、それが目標値(Si)本に一致する
ことが保証されない。
b) Since the conventional method does not measure the actual value [5i) f of silicon t: after desiliconization, it is not guaranteed that it matches the target value (Si).

口) 溶銑の脱珪処理において進行する化学反応、いわ
ゆる脱珪反応には固体脱珪剤の滓化と反応生成物とによ
り形成されるスラグと溶銑との間のスラグ−メタル反応
とが混在しており、脱珪反応全体の反応速度は各種の条
件に支配され、とても脱珪前珪素量推定値(Si)ip
と出銑速度だけの情報で実Dim (S i ) rを
目標値(Si)本に一致させることは保証できない。
The chemical reaction that progresses during the desiliconization treatment of hot metal, the so-called desiliconization reaction, involves a mixture of slag formation from the solid desiliconizing agent and a slag-metal reaction between the slag formed by the reaction product and the hot metal. Therefore, the reaction rate of the entire desiliconization reaction is controlled by various conditions, and the estimated amount of silicon before desiliconization (Si)ip
It is not possible to guarantee that the actual Dim (S i ) r matches the target value (Si) with only the information on the and tapping speed.

固液反応は(Si)i及びその他の溶銑成分、溶銑温度
、固液混合状態、固液反応界面積、脱珪剤組成などの条
件に支配され、スラブメタル反応でもこれらの固液をス
ラグメタルと名称を変えて規定できる条件がその主なも
のである。そのうちいくつかの例を挙げると次の通りで
ある。
Solid-liquid reactions are controlled by conditions such as (Si)i and other hot metal components, hot metal temperature, solid-liquid mixing state, solid-liquid reaction interface area, and desiliconization agent composition. The main conditions are those that can be defined under different names. Some examples are as follows.

a) 溶銑温度: 同一の出銑11を使用するのは通常lタップおきである
ので、溶銑樋の温度は出銑中具外のときに低下し、溶銑
温度には炉内での温度変動に加えて、溶銑樋の温度上昇
に起因する変動が加わる。
a) Hot metal temperature: Since the same tap iron 11 is normally used every 1 tap, the temperature of the hot metal trough drops when it is outside the tap, and the hot metal temperature is affected by temperature fluctuations in the furnace. In addition, fluctuations due to temperature rise in the hot metal sluice are added.

b) 脱珪剤の粒度と成分: 脱珪剤は一種類とは限らず、複数種類が混合されて使用
されるのが一般的であり、各種類ごとに粒度構成、化学
組成及びその他の性状が異なる。
b) Particle size and components of the desiliconizing agent: Generally, the desiliconizing agent is not limited to one type, but a mixture of multiple types is used, and each type has its particle size composition, chemical composition, and other properties. are different.

こうした粉粒体を同一のホー2パで使うとポー、パ内の
粒度偏析により切り出されてくる脱珪剤の粒度と組成は
時間的にかなり変化する。従って上記の条件のうち、混
合状!S、反応界面積も経時的に変化する。
When these powders and granules are used in the same powder and powder, the particle size and composition of the desiliconizing agent cut out will vary considerably over time due to particle size segregation within the powder and powder. Therefore, among the above conditions, it is a mixture! S, the reaction interfacial area also changes over time.

C) 出銑速度と溶銑樋の損耗状態: 従来法では脱珪剤添加量指令値決定に出銑速度が用いら
れているが、これは物質収支を満足するための役割しか
期待していない、出銑速度の変動は溶銑の流動状態を変
化させ固液混合状態に影響−J−る。樋の損耗も同様に
溶銑の流動状態に影響する。
C) Tapping speed and wear condition of the hot metal runner: In the conventional method, the tapping speed is used to determine the command value for the addition amount of desiliconizing agent, but this is only expected to play a role in satisfying the material balance. Fluctuations in the tapping speed change the flow state of hot metal and affect the solid-liquid mixing state. Gutter wear also affects hot metal flow conditions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は以上の問題点を解決するために開発されたもの
でその技術手段は、 (1)脱珪前珪素量(Si)iの測定および予測(予測
した場合は(Si)ipと表す)および脱珪後珪素1(
Si)fの測定を行う、一定時間間隔で脱珪処理の前後
で、対応する溶銑をサンプリングし、それぞれの溶銑珪
素量を分析する。
The present invention was developed to solve the above problems, and its technical means are as follows: (1) Measurement and prediction of silicon content (Si)i before desiliconization (when predicted, it is expressed as (Si)ip) and silicon 1 after desiliconization (
Measurement of Si)f is carried out by sampling the corresponding hot metal before and after the desiliconization treatment at regular time intervals, and analyzing the amount of silicon in each hot metal.

(Si)iは脱珪剤投入口の上筐側、(Si)fは脱珪
剤投入口の下流の点1例えば溶銑樋終端部、溶銑傾注樋
あるいは混銑車で測定する。
(Si)i is measured on the upper casing side of the desiliconizing agent inlet, and (Si)f is measured at a point 1 downstream of the desiliconizing agent inlet, for example, at the end of a hot metal trough, a hot metal tilting trough, or a mixing wheel.

(2)出銑速度の計測を行う。脱珪処理前後の溶銑の対
応をとるため、また脱珪剤添加微演算に用いるため、脱
珪剤投入口より上流において、相関法、空間フィルタ法
など′のオンライン測定により、出銑速度の計測を行う
(2) Measure the tapping speed. In order to measure the hot metal before and after desiliconization treatment, and for use in fine calculations of desiliconization agent addition, the tapping speed is measured using online measurements such as the correlation method and spatial filter method upstream of the desiliconization agent inlet. I do.

(3)脱珪反応の反応速度の最尤推定値を求め、脱珪剤
添加へ1演算に用いる。従来法のような(Si)i 、
(Si)本と出銑速度から物質収支的な演算によって脱
珪剤添加微演算値を求める方法を排し、脱珪反応の反応
速度定数に関する最尤推定値kを(S i) i * 
(S i) ip。
(3) Find the maximum likelihood estimate of the reaction rate of the desiliconization reaction and use it in one calculation for adding the desiliconization agent. (Si)i like the conventional method,
(Si) Eliminating the method of calculating the microcalculation value of the desiliconization agent addition by material balance calculation from the iron tap rate and the iron tapping rate, the maximum likelihood estimate k regarding the reaction rate constant of the desiliconization reaction is calculated as (S i) i *
(S i) ip.

(Si)f、出銑速度および脱珪剤添加量の実績値を用
いたカルマンフィルタで求め・k・C3i)i 、[S
i)本、出銑速度から脱珪剤添加微演算値を求める。
(Si)f, determined by a Kalman filter using the actual values of the tapping rate and the amount of desiliconizing agent added・k・C3i)i, [S
i) Calculate the microcalculation value of desiliconizing agent addition from the iron tapping speed.

〔作用〕[Effect]

本発明方法の実施に用いる制御装置構成図を第1図に示
す0機能により3つの部分に分れる。
The configuration diagram of the control device used to implement the method of the present invention is divided into three parts according to the zero function shown in FIG.

(D 検出部 脱珪処理前後の溶銑のサンプリング装2?22゜23と
、出銑速度の測定装置24と溶銑中珪素量の分析装置2
5と脱珪剤添加微演算用のロードセル19および19a
とから成り、それぞれの出力信号は’、’Tf子計算機
14に伝達される。
(D detection unit Sampling device 2-22゜23 for hot metal before and after desiliconization treatment, device 24 for measuring the tapping rate, and device 2 for analyzing the amount of silicon in hot metal
5 and load cells 19 and 19a for fine calculation of desiliconizing agent addition.
The respective output signals are transmitted to the Tf child computer 14.

(2)  演算部 電子計算機14にMlみ込まれており、上記検出部から
の信号から、脱珪反応速度定数にの最尤推定イit *
を算出し2、さらに脱珪剤添加に指令値を算出する部分
である。
(2) Ml is included in the calculation section electronic computer 14, and maximum likelihood estimation is made for the desiliconization reaction rate constant from the signal from the detection section.
2, and further calculates the command value for adding the desiliconizing agent.

■ 制御部 演算結果に基づいて脱珪剤添加量を制御する部分である
(2) Control section This is the section that controls the amount of desiliconizing agent added based on the calculation results.

ます脱珪反応速度定数の最尤推定値を求める方法につい
て説明する。操業実績を統計的に解析して、次回の脱珪
反応速度定数の最尤推定値を効率的に求める方法として
カルマンフィルタがある。
A method for determining the maximum likelihood estimate of the desiliconization reaction rate constant will be explained. The Kalman filter is a method for statistically analyzing operating results to efficiently obtain the maximum likelihood estimate of the next desiliconization reaction rate constant.

溶銑脱珪処理では溶鉄に添加された脱珪剤は溶銑中珪素
と連続的に反応するが、このとき溶銑中珪素の拡散過程
に律速され次の(1)式が成り立つ。
In hot metal desiliconization treatment, a desiliconizing agent added to molten iron continuously reacts with silicon in the hot metal, but at this time, the rate is determined by the diffusion process of silicon in the hot metal, and the following equation (1) holds true.

un((Si)f/(Si)i) =に−W           ・・・ (1)ここに
、 (Si)i  ・脱珪前溶銑中珪、も星〔%〕(Si)
f:脱珪後溶銑中珪素j^〔%〕W:説珪剤原φ位 C
k g/ t −pig )K:脱珪反応速度定数 脱珪反応速度定数にはL記のように・各種の要因に影響
され1時間的に変化する未知パラメータである。そこで
脱珪反応速度定数Kを効率的に推定するためにカルマン
フィルタを用いる。
un((Si)f/(Si)i) = -W... (1) Here, (Si)i - Silicon in hot metal before desiliconization, also star [%] (Si)
f: Silicon in hot metal after desiliconization j^ [%] W: Silica base φ position C
kg/t-pig) K: Desiliconization reaction rate constant As shown in L, the desiliconization reaction rate constant is an unknown parameter that is influenced by various factors and changes over time. Therefore, a Kalman filter is used to efficiently estimate the desiliconization reaction rate constant K.

現在時刻をkで表し現在のデータを例えば、(S i)
 i  (k) 、−回前にサンプリングしたデータを
(S i) i  (k −1)などと表わす、そうす
ると(1)式は、 立n((Si)f  (k)) 一文n ((Si)i  (k)) =−K (k)W (k)     ・・・(2)ここ
で、 −K (k)をK(k)と置き直し、y (k) −文n((Si)f  (k)) −文n ((Si)i  (k)) +e(k)         ・・・(3)とおくと、
(2)式は次の(4)式となる。
The current time is represented by k and the current data is, for example, (S i)
The data sampled i (k), − times before is expressed as (S i) i (k −1), etc. Then, equation (1) becomes )i (k)) = -K (k)W (k) ... (2) Here, -K (k) is replaced with K(k), and y (k) - sentence n((Si) f (k)) - sentence n ((Si)i (k)) +e(k) ...(3), then
Equation (2) becomes the following equation (4).

y(k)=K (k)W (k)+e (k)・・・(
4) ここに、 e (k)  +  (S i)の分析誤差によって生
ずる交H(〔5i)f  (k)) −見n ((Si)i  (k))の誤差である。
y(k)=K (k)W (k)+e (k)...(
4) Here is the error of the intersection H([5i)f(k))−sn((Si)i(k))] caused by the analysis error of e(k)+(Si).

また未知のパラメータKが種々の要因によって変動する
確率過程を、 K (k+ 1)=K (k)+v (k)−(5)と
表わす。
Further, a stochastic process in which the unknown parameter K varies depending on various factors is expressed as K (k+1)=K (k)+v (k)-(5).

(4)(5)式に対するカルマンフィルタは1? (k
)=R(k−1)+P (k)X (V (k) −W
 (k) R(k−1) )・・・(6) P (k)=m (k)W (k) / (m (k)→・σe)・・・(7)m (k) 
= (1−P (k−1) W (k−1) )Xm(
k−1)+σY・・・(8) で榮えられる。
(4) Is the Kalman filter for equation (5) 1? (k
)=R(k-1)+P(k)X(V(k)-W
(k) R(k-1) )...(6) P(k)=m(k)W(k)/(m(k)→・σe)...(7)m(k)
= (1-P (k-1) W (k-1) )Xm(
k-1)+σY...(8)

ここに、 σe : e (k)の分散 σv:v(k)の分散 P(k):フィルタの重み係数 m (k): Y (k−1)が既知である時の未知パ
ラメータK(k)の最尤 推定値E (K (k) /y (k −1))とその実現値K(k) の差の2乗平均値、すなわち誤 差の分散 である。
Here, σe: variance of e(k) σv: variance of v(k) P(k): filter weighting coefficient m(k): unknown parameter K(k) when Y(k-1) is known. ) is the root mean square value of the difference between the maximum likelihood estimated value E (K (k) /y (k −1)) and its actual value K (k), that is, the variance of the error.

式(6)〜式(8)で表わされるカルマンフィルタは第
4図のように実現することができる。
The Kalman filter expressed by equations (6) to (8) can be realized as shown in FIG.

次にこのカルマンフィルタを用いて、最適な脱珪剤添加
量を算出する方法を第1図を用いて説明する。
Next, a method for calculating the optimum amount of desiliconizing agent to be added using this Kalman filter will be explained with reference to FIG.

測定装置i!122.23で測定された脱珪前後の珪素
量(Si)i(k)および(Si)f(k)は電子計算
機14に入力され(3)式によりy(k)に変換される
Measuring device i! The silicon amounts (Si)i(k) and (Si)f(k) before and after desiliconization measured at 122.23 are input to the electronic computer 14 and converted to y(k) using equation (3).

測定装置24.25で測定された出銑速度vp  (t
)(t/mi n)および脱珪剤添加品尤積値w (t
)(kg/mi n)は1暁珪剤添加F6oの制御周期
でサンプリングされ、電子計算機14に取り込まれ、(
Si)の測定時刻(・・・、に−1゜k、に+1.・・
・)におけるそれぞれの値Vp(k)、w (k)より
、(4)式のW(k)を、 W (k)=  W (k)/Vp  (k)・・・(
9) より求める。設定器20により、カルマンフィルタの演
算に心安なm(0)、σe・σVを′jえておき、新た
なyおよびWの値が′電子計算機14に入る毎に第4図
に示した演算ループを1同郷して現在のKの最尤推定値
1’e(k)を求める。
Tapping speed vp (t
) (t/min) and the mean product value of the desiliconizing agent additive w (t
) (kg/min.
Si) measurement time (..., -1°k, +1...
・) From the respective values Vp(k) and w(k), W(k) in equation (4) can be calculated as
9) Ask for more. The setter 20 is used to set m(0), σe and σV that are safe for Kalman filter calculations, and the calculation loop shown in FIG. 1. Find the maximum likelihood estimate 1'e(k) of the current K.

R(k)、(S i)i  (k)、vp (t)およ
び設定機20により設定する脱珪後珪票埴目標値(Si
)末から最適な脱珪剤添加;w(t)を(10)式によ
り算出する。
R(k), (S i)i (k), vp (t) and the desiliconized silicon target value (Si
) The optimum desiliconizing agent addition; w(t) is calculated from the formula (10).

w (t)= ((Vp  (t))/R(k))XJ
ln ((Si)i  (k)/ (Si)木)・・・
(10) こ乙に、 (kに相当する時刻)≦t<((k+1)に相当する時
刻) である。
w (t) = ((Vp (t))/R(k))XJ
ln ((Si)i (k)/ (Si) tree)...
(10) Here, (time corresponding to k)≦t<(time corresponding to (k+1)).

連続した2回の出銑における上記の演算のタイミングを
第5図に例示した。
FIG. 5 illustrates the timing of the above-mentioned calculations in two consecutive times of tapping.

1回の出銑において、出銑開始から1回目の溶銑のサン
プリングまでに時間がある場合、または分析に時間を要
する場合は、測定値(Si)iが電子計算機14に入力
されるまでは(10)戊によるw (Hの算出を行うこ
とができない、そのような場合には測定値(Si)iの
代りにその推定値(Si)ipを用いればよい。これは
例えば自己回帰モデルのような統計的手法を用いた炉熱
モデルを適用することによって求められる。
In one tapping, if there is some time between the start of tapping and the first sampling of hot metal, or if analysis requires time, until the measured value (Si)i is input into the computer 14, 10) In cases where it is not possible to calculate w (H), the estimated value (Si)ip can be used instead of the measured value (Si)i. It is determined by applying a furnace thermal model using statistical methods.

また、−回の出銑中で、鼓初のkが算出される時刻以前
のKの値としては、便宜」二、前回の同一・出銑口にお
ける終了時の値または前回の同一出銑口における出銑中
の平均値を用いれば十分である。
In addition, during the -th tapping, the value of K before the time when k at the beginning of the drum is calculated is, for convenience, the value at the end of the previous same tap or the previous same tap. It is sufficient to use the average value during tapping at .

このようにして、出銑中、脱珪剤添加酸の制御周期ごど
に、電子計算fi14から脱珪剤添加賃指令値w (t
)が計装制御装置17へ送られ、ここで、信号変換され
た後、電気制8装置18で回転速度指令に変換され、ロ
ータリーバルブの回転速度を制御することにより、脱珪
剤の添加量を制御する。また、脱珪剤添加針の実績値に
ついてはホッパロードセル19,19aの出力より、計
装制御装ff117を経て′電子計算fi14に送られ
る。
In this way, during tapping, at every control period of the desiliconizing agent addition acid, the electronic calculation fi14 is used to calculate the desiliconizing agent addition rate command value w (t
) is sent to the instrumentation control device 17, where it is converted into a signal, and then converted into a rotational speed command by the electric control device 18. By controlling the rotational speed of the rotary valve, the addition amount of the desiliconizing agent is determined. control. Further, the actual value of the desiliconizing agent addition needle is sent from the output of the hopper load cells 19, 19a to the electronic calculation fi14 via the instrumentation control device ff117.

このようにして、出銑中、実績データに基づいて、脱珪
反応速度定数の最尤推定値を求め、それを用いて最適な
脱珪剤添加量を求めて脱珪剤添加の制御を行うことがで
きる。
In this way, during tapping, the maximum likelihood estimate of the desiliconization reaction rate constant is determined based on the actual data, and this is used to determine the optimal amount of desiliconization agent addition and control of desiliconization agent addition. be able to.

〔発明の効果〕〔Effect of the invention〕

本発明により鋳床脱珪処理における処理後の珪素e度を
目標値に結度よく合致させることができる。
According to the present invention, the silicon e degree after the treatment in the cast bed desiliconization treatment can be made to closely match the target value.

本発明は溶銑の鋳床脱珪にとどまることなく、固体処理
剤を用いるに11続溶銑予備処理、連続製鋼などにおい
て、反応器の形式の如何にかかわらず広く応用すること
ができる。また鉄鋼業だけでなく、処理剤添加の前後で
成分を測定し、処理後の成分を制御するために最適な処
理剤添加量を求めるような場合に非常に広い適用技術を
もつ技術である。
The present invention is not limited to casting bed desiliconization of hot metal, but can be widely applied to 11-continuous hot metal pretreatment using a solid treatment agent, continuous steel manufacturing, etc., regardless of the type of reactor. In addition, this technology has a wide range of applications, not only in the steel industry, but also in cases where components are measured before and after adding a treatment agent, and the optimum amount of treatment agent to be added is determined to control the components after treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図、第2図は溶銑脱珪処
理の実施態様を示すフロー図、第3図は従来法による脱
珪剤添加量制御系の構成図、第4図はカルマン拳フィル
タによる脱珪反応速度定数推定方法のフローチャート、
第5図は2回の出銑における各種の測定および演算のタ
イミングを示すタイムチャートである。 l・・・高炉       2・・・出銑口3・・・溶
銑       4・・・大樋5・・・スラグ排出口 
  6・・・溶銑樋7・・・溶銑傾注樋    8・・
・混洗車9・・・主脱珪剤(主剤) 9a・・・副脱珪剤(副剤) 10、lOa・・・貯蔵ホッパ 11.lla・・・ロータリーバルブ 12・・・装入コンベア  13・・・脱珪剤添加口1
4・・・′、[子計算機 15・・・溶銑車1−1測定用ロードセル16・・・溶
銑型↑4検出器 17・・・計装制御装置18・・・電
気制御装置 20・・・各制御定数表示設定器 22・・・脱珪前溶銑サンプリング装置23・・・脱珪
後溶銑サンプリング装置24・・・出銑速度測定装置 25・・・溶銑中珪素針分析装置 A・・・脱珪前症銑中珪素量推定モデル   B・・・
出銑速度算出用演算ロジック C・・・脱珪量算出用演算ロジック  。 D・・・添加量算出用演算ロジック E・・・パルス設定器 F・・・主剤、副剤添加量秤量器 G・・・演算器 第2図
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a flow diagram showing an embodiment of hot metal desiliconization treatment, Fig. 3 is a block diagram of a conventional desiliconization agent addition amount control system, and Fig. 4 is a flowchart of the method for estimating the desiliconization reaction rate constant using the Kalman Fist filter,
FIG. 5 is a time chart showing the timing of various measurements and calculations during two rounds of tapping. l...Blast furnace 2...Tapping port 3...Hot metal 4...Gutter 5...Slag discharge port
6...Hot metal trough 7...Hot metal tilting trough 8...
- Mixed car wash 9... Main desiliconizing agent (main agent) 9a... Sub-silicifying agent (adjunct agent) 10, lOa... Storage hopper 11. lla... Rotary valve 12... Charging conveyor 13... Desiliconizing agent addition port 1
4...', [Sub computer 15...Hot metal car 1-1 measurement load cell 16...Hot metal type ↑4 detector 17...Instrumentation control device 18...Electric control device 20... Each control constant display setting device 22...Hot metal sampling device before desiliconization 23...Hot metal sampling device after desiliconization 24...Tapping rate measuring device 25...Silicon needle analyzer A in hot metal...Desiliconization Presiliconism silicon content estimation model B...
Arithmetic logic C for calculating the tapping speed...Arithmetic logic for calculating the amount of silicon removed. D...Arithmetic logic for calculating addition amount E...Pulse setter F...Main ingredient and adjuvant addition amount weigher G...Arithmetic unit Fig. 2

Claims (1)

【特許請求の範囲】 1 高炉から出銑される溶銑に脱珪剤を添加して脱珪処
理後の溶銑珪素量が所定の目標値になるように制御する
溶銑の脱珪処理方法において、 脱珪処理前後の対応する溶銑を一定間隔で サンプリングして溶銑中珪素量を測定すると共に、出銑
速度を連続的に測定し、脱珪処理前の溶銑中珪素量の前
記測定値または推定 値、脱珪処理後の溶銑中珪素量の前記測定 値、出銑速度および脱珪剤添加量の実績値を用いて、脱
珪反応速度定数の最尤推定値を求め、該最尤推定値、脱
珪処理前溶銑中珪素 量、脱珪処理後の目標珪素量および出銑速度から脱珪剤
添加量を定め、該脱珪剤添加量を溶銑に添加することに
より脱珪処理後の溶銑中珪素量を一定に保つよう制御す
ることを特徴とする溶銑脱珪制御方法。
[Scope of Claims] 1. A method for desiliconizing hot metal, which adds a desiliconizing agent to hot metal tapped from a blast furnace so that the amount of silicon in the hot metal after desiliconization is controlled to a predetermined target value. The amount of silicon in the hot metal is measured by sampling the corresponding hot metal before and after the silica treatment at regular intervals, and the tapping rate is continuously measured, and the measured value or estimated value of the amount of silicon in the hot metal before the desiliconization treatment; The maximum likelihood estimated value of the desiliconization reaction rate constant is calculated using the measured value of the amount of silicon in the hot metal after desiliconization treatment, the actual values of the tapping rate and the amount of desiliconization agent added, and the maximum likelihood estimated value, The amount of silicon removal agent added is determined from the amount of silicon in the hot metal before silicon treatment, the target amount of silicon after desiliconization treatment, and the tapping speed, and by adding the amount of desiliconization agent to the hot metal, silicon in the hot metal after desiliconization treatment is determined. A hot metal desiliconization control method characterized by controlling the amount to be kept constant.
JP16762585A 1985-07-31 1985-07-31 Method for controlling desiliconization of molten iron Pending JPS6230806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16762585A JPS6230806A (en) 1985-07-31 1985-07-31 Method for controlling desiliconization of molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16762585A JPS6230806A (en) 1985-07-31 1985-07-31 Method for controlling desiliconization of molten iron

Publications (1)

Publication Number Publication Date
JPS6230806A true JPS6230806A (en) 1987-02-09

Family

ID=15853257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16762585A Pending JPS6230806A (en) 1985-07-31 1985-07-31 Method for controlling desiliconization of molten iron

Country Status (1)

Country Link
JP (1) JPS6230806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049419A (en) * 1990-04-26 1992-01-14 Nkk Corp Method for controlling silicon content in molten iron
US7979943B2 (en) 2004-12-24 2011-07-19 Olympus Corporation Cleaning brush
JP2020105606A (en) * 2018-12-28 2020-07-09 日本製鉄株式会社 Converter blowing control device, converter blowing control method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049419A (en) * 1990-04-26 1992-01-14 Nkk Corp Method for controlling silicon content in molten iron
US7979943B2 (en) 2004-12-24 2011-07-19 Olympus Corporation Cleaning brush
JP2020105606A (en) * 2018-12-28 2020-07-09 日本製鉄株式会社 Converter blowing control device, converter blowing control method, and program

Similar Documents

Publication Publication Date Title
EP3770279B1 (en) Molten metal component estimation device, molten metal component estimation method, and molten metal production method
JP2017025379A (en) Molten iron pretreating method, and molten iron pretreatment control device
JPS6230806A (en) Method for controlling desiliconization of molten iron
JPS61276911A (en) Control device for desiliconizing molten iron
CN111479935B (en) Method for refining molten iron
JP7043949B2 (en) T. Fe estimation method, T.I. Fe control method, converter blow control device, and program
JPS61149413A (en) Device for controlling impurity in molten iron
CA1045823A (en) Static method of controlling the refining reactions of pig iron for steel making purposes in an oxygen top blowing converter
JPH03229813A (en) Blowing method for converter
JPH093518A (en) Method for controlling end point of blowing in converter
JPH036312A (en) Method for controlling blowing in converter
Bergh et al. Improving copper matte grade control in a concentrate flash furnace
JPS6318012A (en) Method for controlling flow rate of oxygen for refining for metallurgical refining furnace
JP2024005899A (en) Device, method, and program for statistical model construction, and device, method and program for estimating phosphorus concentration in molten steel
JPH0219415A (en) Converter blow-refining method
JPS61149412A (en) Method for estimating si value in molten iron
Dumont-Fillon et al. Continuous carbon determination in the basic oxygen processes
Cheng et al. Application of Offgas Analysis on Predicting Carbon Content at End Point During Steelmaking Process
RU2026521C1 (en) Method of control of smelting process of ferrosilicochromium in ore-smelting furnace furnace of system for its realization
JPH11269530A (en) Operation of converter
JPH0219413A (en) Converter blow-refining method
JPH05156339A (en) Method for assuming carbon concentration in molten steel in converter refining
JPH0219412A (en) Converter blow-refining method
RU1786111C (en) Method of making steel for pipe manufacture
JPH05339617A (en) Converter blowing method