JPH05339617A - Converter blowing method - Google Patents

Converter blowing method

Info

Publication number
JPH05339617A
JPH05339617A JP14393792A JP14393792A JPH05339617A JP H05339617 A JPH05339617 A JP H05339617A JP 14393792 A JP14393792 A JP 14393792A JP 14393792 A JP14393792 A JP 14393792A JP H05339617 A JPH05339617 A JP H05339617A
Authority
JP
Japan
Prior art keywords
blowing
decarburization
converter
coefft
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14393792A
Other languages
Japanese (ja)
Inventor
Toshio Hatanaka
聡男 畑中
Yasuaki Tachikawa
泰明 立川
Masato Uchio
政人 内尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14393792A priority Critical patent/JPH05339617A/en
Publication of JPH05339617A publication Critical patent/JPH05339617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To determine a decarburization locus and to improve the hit rate of an end point carbon quantity by inputting operation data to a neural network in which the coefft. of a decarburization reaction equation is learned as teacher data, and determining this coefft. CONSTITUTION:The molten metal 12 in a converter 10 is subjected to decarburization blowing by using a lance 20. The carbon concn. of the molten metal 12 is measured via a sub-lance 21 at the adequate time of the blowing, for example, the end period of blowing and is inputted together with the information on the blowing and others to a coefft. determining computer 50 via a computer 40. The neural network in which the coefft. of the decarburization reaction equation determined from the actual data of the converter operation learned as the teacher data is previously constituted in this computer. The inputted information mentioned above is applied to this neural network and is subjected to computer processing, by which the coefft. is determined. The decarburization locus of the converter 10 is determined by a process computer 40 using this coefft. and the dynamic control thereof is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、転炉吹錬において、
目標とする鋼浴の終点炭素量の的中率を向上させるため
の転炉吹錬方法に関するものである。
BACKGROUND OF THE INVENTION This invention relates to converter blowing
The present invention relates to a converter blowing method for improving the hit rate of the target carbon content of a steel bath.

【0002】[0002]

【従来の技術】転炉吹錬のダイナミック制御において
は、吹錬途中で溶鋼にサブランスを浸漬し、溶鋼をサン
プリングして得られたデ−タから、転炉吹錬の終点にお
ける溶鋼温度及び成分組成が目標値に一致するように、
サブランス計測時点から吹錬終点までの吹錬操作量(吹
き込み酸素量及び冷剤量)等を決定し、爾後この操作量
で吹錬することが行われている。
2. Description of the Related Art In dynamic control of converter blowing, molten steel temperature and composition at the end of converter blowing are determined from data obtained by dipping a sublance into molten steel during blowing and sampling the molten steel. So that the composition matches the target value,
The blowing operation amount (blowing oxygen amount and cooling agent amount) and the like from the time of sublance measurement to the blowing end point are determined, and then blowing is performed with this operation amount.

【0003】近時、転炉炉内耐火物の溶損防止、並びに
取鍋精練及び鋳造工程等との時間的整合性の向上という
見地から、転炉出鋼を迅速にする必要性が高まり、この
ため、転炉のダイナミック制御における制御精度の一層
の向上が要求されている。
Recently, from the viewpoint of preventing melting damage of refractory in the converter furnace and improving the time consistency with the ladle refining and casting processes, the need for speeding up the steel removal from the converter has increased, Therefore, further improvement in control accuracy in dynamic control of the converter is required.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
ダイナミック制御に用いる脱炭軌道を決定する式、即ち
脱炭反応式には、以下に述べるような問題点がある。吹
錬末期の脱炭反応を表現する式として、種々のモデル式
が採用されているが、いずれの場合でも、モデル式中の
係数をうまく決定しないと所望の精度を得ることが出来
ない。
However, the conventional formula for determining the decarburization orbit used for dynamic control, that is, the decarburization reaction formula, has the following problems. Various model formulas are adopted as the formulas for expressing the decarburization reaction in the final stage of blowing, but in any case, the desired accuracy cannot be obtained unless the coefficients in the model formulas are properly determined.

【0005】また、脱炭反応式の係数の決定方法として
特公昭54−32117号公報に開示されているような
重回帰分析による方法がある。この方法は、「酸素転炉
吹錬中に鋼浴から発生する排ガスの流量及び組成より脱
炭速度を推定し、吹錬終点を排ガスシステムにより制御
するに当り、予め転炉吹錬条件の関数として操業デ−タ
の重回帰により定められた排ガス脱炭速度降下時の鋼浴
C濃度Cz と、脱炭が停滞し始める時点の鋼浴C濃度の
経験値C0 を用い、吹錬終点の目標C濃度Cf に応じて
下記(1)式により吹錬終点の脱炭速度Af を算定し、
この脱炭速度Af が達成された時点をもって吹錬終点と
することを特徴とする酸素転炉の吹錬を動的に制御する
方法である。 Af =(Cf −C0 )・Amax /(Cz −C0 )…(1)」 また、「 上記Cz 以降の脱炭速度を鋼浴C濃度の一次
式で精度よく近似し、吹錬末期のサブランス挿入時期す
なわち、下記(2)式で示される鋼浴C濃度の測定およ
び実測値に基づく吹錬パタ−ンの修正に要する或る許容
時間を保障し、かつ鋼浴C濃度が目標C濃度Cf に最も
近づいたと推定される濃度Cx を実現する時期を排ガス
脱炭速度又は推定鋼浴C濃度で判定し、当該所定時期に
サブランスを挿入し、実測C濃度をCslとしてこのCsl
よりCf までの必要残酸素量
As a method of determining the coefficient of the decarburization reaction formula, there is a method by multiple regression analysis as disclosed in Japanese Patent Publication No. 54-32117. This method is based on "estimating the decarburization rate from the flow rate and composition of the exhaust gas generated from the steel bath during oxygen converter blowing, and controlling the blowing end point with the exhaust gas system in advance as a function of the converter blowing conditions. Using the empirical value C0 of the steel bath C concentration at the time of the exhaust gas decarburization rate drop determined by multiple regression of the operating data and the steel bath C concentration at the time when decarburization begins to stall, the target of the end of blowing The decarburization rate Af at the end of blowing is calculated according to the following formula (1) according to the C concentration Cf,
This is a method for dynamically controlling the blowing of an oxygen converter, which is characterized in that the blowing end point is set when the decarburization rate Af is reached. Af = (Cf-C0) .Amax / (Cz-C0) ... (1) "Also," The decarburization rate after Cz above is accurately approximated by a linear expression of the C concentration of the steel bath, and sublance insertion at the end of blowing is performed. That is, a certain allowable time required for the correction of the blowing pattern based on the measurement and actual measurement of the steel bath C concentration represented by the following formula (2) is ensured, and the steel bath C concentration becomes the target C concentration Cf. The timing at which the concentration Cx estimated to come closest is realized is judged by the exhaust gas decarburization rate or the estimated steel bath C concentration, and a sublance is inserted at the predetermined time, and the measured C concentration is set as Csl.
To required Cf up to Cf

【0006】[0006]

【数1】 を下記(3)式の積分法で求め、この残酸素量の吹込み
時点をもって吹錬終点とすることを特徴とする酸素転炉
の吹錬を動的に制御する方法である。
[Equation 1] Is determined by the integration method of the following formula (3), and the blowing end point is set at the time when the residual oxygen amount is blown in, which is a method for dynamically controlling the blowing of the oxygen converter.

【0007】[0007]

【数2】 [Equation 2]

【0008】さらに、特公平1−247526号公報に
は、当ヒ−トの実績を次ヒ−トについてフィ−ドバック
するやり方が開示されている。即ち、この方法は、「脱
りん溶銑を利用した転炉精錬法で、鋼浴の炭素量及び温
度を目標値に合わせるための転炉終点制御方法におい
て、吹錬末期に前記鋼浴の炭素量及び温度を測定し、下
記に示す脱炭モデルの式により、必要吹込酸素量を求
め、さらに吹錬実績デ−タより当ヒ−トの脱炭遷移点を
計算し、次ヒ−トへ前記脱炭遷移点をフィ−ドバックす
ることを特徴とする転炉終点制御方法である。
Further, Japanese Patent Publication No. 1-247526 discloses a method of feeding back the results of this heat to the next heat. That is, this method is a "converter refining method using dephosphorized hot metal, in a converter end point control method for adjusting the carbon content and temperature of a steel bath to a target value, the carbon content of the steel bath at the end of blowing. And the temperature is measured, the required blown oxygen amount is obtained by the formula of the decarburization model shown below, and further, the decarburization transition point of this heat is calculated from the blowing result data, and the above-described heat is transferred to the next heat. A converter end point control method characterized by feeding back a decarburization transition point.

【0009】[0009]

【数3】 但し,C:鋼浴炭素含有率,Q:吹込酸素量,CT :脱
炭遷移点,CL :脱炭限界点,α,β:定数
[Equation 3] However, C: carbon content of steel bath, Q: amount of oxygen blown, CT: transition point of decarburization, CL: critical point of decarburization, α, β: constants
"

【0010】上記の重回帰分析により係数を定式化する
方法では、操業条件が出来る限り、基準化されているこ
とが必要であるため、操業基準が変化する毎にデ−タを
解析し、重回帰分析する必要がある。このため所望の制
度を維持することが困難である場合が多い。また、フィ
−ドバックにより係数を自動調整する方法では、炉齢の
ような設備の緩やかな変動にはうまく追従するが、急激
な変化例えば底吹ノズル本数などの操業条件の変動に対
しては追従できない。このため、実際には、絶えず係数
の監視・調整をせざるを得ない。
In the method of formulating the coefficient by the above multiple regression analysis, it is necessary to standardize the operating conditions as much as possible. Therefore, the data is analyzed every time the operating standard changes, and the It is necessary to perform regression analysis. Therefore, it is often difficult to maintain the desired system. Also, in the method of automatically adjusting the coefficient by feedback, it can follow moderate changes in equipment such as furnace age, but can follow abrupt changes such as changes in operating conditions such as the number of bottom blowing nozzles. Can not. Therefore, in reality, the coefficient must be constantly monitored and adjusted.

【0011】本発明は、この様な問題点を解決するため
になされたもので、操業に対応した脱炭反応式の係数を
適正に決定することにより、転炉吹錬の終点炭素量の的
中率を向上させることが出来る転炉吹錬方法を提供する
ことを目的とする。
The present invention has been made to solve such a problem, and by appropriately determining the coefficient of the decarburization reaction formula corresponding to the operation, the target carbon amount of the converter blowing can be controlled. It is an object of the present invention to provide a converter blowing method capable of improving the medium ratio.

【0012】[0012]

【課題を解決するための手段】上記の本発明の課題を解
決するための手段として、本発明は、転炉吹錬直前の適
当な時期に測定される炭素量から当チヤ−ジにおける脱
炭軌道を決定し、吹錬終点を制御するにあたり、予め操
業実績デ−タから求められる脱炭反応式の係数を教師デ
−タとして学習させたニユ−ラルネットワ−クを構成し
ておき、吹錬の1ヒ−ト毎に操業デ−タを前記ニユ−ラ
ルネットワ−クの入力層に与えることにより脱炭反応式
の係数を決定し前記脱炭軌道を決定することを特徴とす
る転炉吹錬方法である。
As a means for solving the above-mentioned problems of the present invention, the present invention is to decarburize in this charge from the amount of carbon measured at an appropriate time immediately before converter blowing. In determining the trajectory and controlling the blowing end point, a neural network was constructed in which the coefficient of the decarburization reaction formula obtained from the operation record data was learned in advance as teacher data, and blowing was performed. Of the decarburization reaction formula and the decarburization trajectory by determining the coefficient of the decarburization reaction formula by applying the operating data to the input layer of the neural network for each heat Is the way.

【0013】[0013]

【作用】転炉吹錬末期での脱炭反応を表現する方法とし
て、次の(4)式に基づく式の場合について説明する
が、他の表現式を用いても同様の議論が成立する。転炉
吹錬末期では、脱炭酸素効率(dC/dO2 )と炭素濃
度(C)との間に一般に、次の(4)式の関係が成立す
ることが認められている。
OPERATION As a method of expressing the decarburization reaction in the final stage of the blowing of the converter, the case of the formula based on the following formula (4) will be described, but the same argument holds when other formulas are used. It is generally accepted that the following equation (4) holds between the decarbonation efficiency (dC / dO 2 ) and the carbon concentration (C) at the end of the converter blowing.

【0014】[0014]

【数4】 [Equation 4]

【0015】ここでaは、供給酸素が全て脱炭反応に費
やされる場合の脱炭酸素効率dC/dO2 値で理論値
(定数=1.07(kg/Nm3 )で与えられる。CL
は転炉脱炭反応での炭素濃度の下限を意味し、一般的に
は0.025%程度に固定してよい。また、係数bは、
溶湯の攪拌力に依存する係数である。図3にbの値をパ
ラメ−タとして(4)式をプロットした図を示す。図3
は、bの脱炭反応式への影響が強いことを示している。
攪拌力と密接な関係がある操業条件として、例えば、ス
ラグ量,底吹ノズル本数,底吹ガス量,ランス高さ,上
吹酸素流量,炉齢等がある。
Here, a is a decarboxylation efficiency dC / dO 2 value when all of the supplied oxygen is consumed in the decarburization reaction, and is given as a theoretical value (constant = 1.07 (kg / Nm 3 ). CL
Means the lower limit of the carbon concentration in the converter decarburization reaction, and may generally be fixed at about 0.025%. The coefficient b is
It is a coefficient that depends on the stirring power of the molten metal. FIG. 3 shows a diagram in which the equation (4) is plotted with the value of b as a parameter. Figure 3
Indicates that b has a strong influence on the decarburization reaction formula.
Operating conditions that are closely related to the stirring force include, for example, the amount of slag, the number of bottom blowing nozzles, the amount of bottom blowing gas, the lance height, the top blowing oxygen flow rate, and the furnace age.

【0016】例として、スラグ量及び底吹ノズル本数が
変動した場合の脱炭酸素効率の推移の様子を図4並びに
図5に夫々示す。なお、図4並びに図5の脱炭酸素効率
及び炭素濃度は、転炉排ガスの量・成分に基づいて計算
したものである。本発明は、この点に着目して、攪拌力
と密接な関係のある操業デ−タを入力層に与え、教師デ
−タとして、操業実績デ−タと前記(4)式から逆算さ
れた係数bをとり、数多くの事例を学習したニュ−ラル
ネットワ−クを予め構成しておき、この学習したニュ−
ラルネットワ−クを用いて、脱炭反応式を決定するもの
である。吹錬1ヒ−ト毎に与えられる操業条件を前記ニ
ュ−ラルネットワ−クの入力層に与えると、係数bが決
定される。
As an example, FIG. 4 and FIG. 5 show how the decarboxylation efficiency changes when the amount of slag and the number of bottom blowing nozzles change. The decarboxylation efficiency and the carbon concentration in FIGS. 4 and 5 are calculated based on the amount and composition of converter exhaust gas. In the present invention, paying attention to this point, the operation data closely related to the stirring force is given to the input layer, and it is calculated back from the operation result data and the equation (4) as the teacher data. Taking a coefficient b, a neural network in which many cases have been learned is configured in advance, and the learned network is learned.
The decarburization reaction formula is determined using a Lar network. The coefficient b is determined by applying the operating conditions given for each blowing heat to the input layer of the neural network.

【0017】[0017]

【実施例】図1は、本発明の実施例を示す構成図であ
る。図1において、10は転炉,12は溶湯、14は底
吹ノズル、16は管、18は流量計、20はランス、2
1はサブランス、24は流量計、26はフ−ド、28は
ダクトであり、30はシユ−タ、32は秤量器、40は
プロセスコンピュ−タであり、50は係数決定コンピュ
−タ、51は記憶装置を示す。
1 is a block diagram showing an embodiment of the present invention. In FIG. 1, 10 is a converter, 12 is a molten metal, 14 is a bottom blowing nozzle, 16 is a pipe, 18 is a flow meter, 20 is a lance, 2
1 is a sublance, 24 is a flow meter, 26 is a hood, 28 is a duct, 30 is a printer, 32 is a scale, 40 is a process computer, 50 is a coefficient determination computer, 51 Indicates a storage device.

【0018】図1に示す如く、転炉10の吹錬末期にお
いて、炉内の溶湯12の脱炭が進行するとサブランス2
1を降下して炭素濃度を測定し、炭素濃度をプロセスコ
ンピュ−タ40に入力する。上吹酸素流量,メインラン
ス20の高さ,底吹ノズル14の本数,底吹ガス流量,
副原料の成分および投入量をそれぞれ検出し、これらの
検出値もプロセスコンピュ−タ40に入力する。また吹
錬前に、溶銑成分および量,並びに炉齢がプロセスコン
ピュ−タ40に与えられている。サブランス21により
炭素濃度が測定されたタイミングで、これらのデ−タ
が、プロセスコンピュ−タ40から脱炭反応係数決定コ
ンピュ−タ50に与えられる。脱炭反応係数決定コンピ
ュ−タ50は処理を行い、係数bを求めプロセスコンピ
ュ−タ40に与える。次いで、プロセスコンピュ−タ4
0は転炉10の脱炭軌道を決定しダイナミック制御を行
う。本実施例では、攪拌力と密接な関係のある操業デ−
タとして、スラグ量,底吹ノズル本数,底吹ガス流量,
ランス高さ,上吹酸素流量,炉齢の6種類のデ−タを使
った。スラグ量は溶銑成分と副原料投入量,成分から計
算する。
As shown in FIG. 1, when decarburization of the molten metal 12 in the furnace progresses in the final stage of blowing of the converter 10, the sublance 2
1 is dropped to measure the carbon concentration, and the carbon concentration is input to the process computer 40. Top blowing oxygen flow rate, height of main lance 20, number of bottom blowing nozzles 14, bottom blowing gas flow rate,
The components of the auxiliary raw material and the input amount are respectively detected, and these detected values are also input to the process computer 40. Prior to blowing, the hot metal composition and amount, and the furnace age are given to the process computer 40. These data are supplied from the process computer 40 to the decarburization reaction coefficient determination computer 50 at the timing when the carbon concentration is measured by the sublance 21. The decarburization reaction coefficient determination computer 50 performs processing and obtains the coefficient b, which is provided to the process computer 40. Then, the process computer 4
0 determines the decarburization orbit of the converter 10 and performs dynamic control. In this embodiment, the operating data that is closely related to the stirring force is used.
The amount of slag, the number of bottom blowing nozzles, the bottom blowing gas flow rate,
Six types of data were used: lance height, top blowing oxygen flow rate, and furnace age. The slag amount is calculated from the hot metal component, the amount of auxiliary raw material input, and the component.

【0019】図2に本実施例におけるニュ−ラルネット
ワ−クの構成を示す。図において、ニュ−ラルネットワ
−クの入力層は前記6種のデ−タを入力とする6個のニ
ュ−ロンで構成される。中間層としては、1層で3個の
ニュ−ロンで構成される。出力層は係数bを出力とする
1個のニュ−ロンで構成される。全体として、ニュ−ラ
ルネットワ−クは3層構造をなしている。
FIG. 2 shows the structure of the neural network in this embodiment. In the figure, the input layer of the neural network is composed of six neurons each of which inputs the above-mentioned six kinds of data. As the intermediate layer, one layer is composed of three neurons. The output layer is composed of one neuron whose coefficient b is the output. As a whole, the neural network has a three-layer structure.

【0020】一方、学習は次のようにして行なう。転炉
10の吹錬直後に測定される炭素濃度実績値が入力され
た時点で前記(4)式を逆算することにより係数bが算
出される。操業デ−タと逆算された係数bは、係数決定
コンピュ−タ50に転送されて記憶装置51に格納され
る。学習が必要となった時は係数決定コンピュ−タ50
を起動することにより各ニュ−ロンの重みを決め直す。
On the other hand, learning is performed as follows. When the actual carbon concentration value measured immediately after blowing the converter 10 is input, the coefficient b is calculated by back-calculating the equation (4). The coefficient b, which is calculated back from the operation data, is transferred to the coefficient determination computer 50 and stored in the storage device 51. When learning becomes necessary, the coefficient determination computer 50
Reactivate the weight of each neuron by activating.

【0021】次に、本発明を300トン上底吹き転炉に
適用した例を示す。装入溶銑の炭素濃度が4.0〜4.
5%のもので吹止炭素濃度が0.035〜0.150%
の場合、従来の方法による炭素濃度の推定精度がσ=
0.015%であったものが、本発明ではσ=0.00
7%に向上した。さらに操業の変化に対しても、容易に
再学習することができる。
Next, an example in which the present invention is applied to a 300 ton top-bottom blowing converter will be shown. The carbon concentration of the charged hot metal is 4.0 to 4.
5% and blowout carbon concentration is 0.035 to 0.150%
, The accuracy of estimating the carbon concentration by the conventional method is σ =
What was 0.015% was σ = 0.00 in the present invention.
It improved to 7%. Furthermore, it is possible to easily re-learn about changes in operation.

【0022】[0022]

【発明の効果】以上のように、本発明の転炉吹錬方法に
よれば、転炉終点における吹止炭素量の的中率を向上す
ることが出来、その結果として、吹止炭素量の不的中率
による再吹錬比率が3.0%から1.0%に減少する効
果が得られ、転炉操業の生産性を向上させる等の効果を
奏し得た。
As described above, according to the converter blowing method of the present invention, it is possible to improve the hit rate of the blowing carbon amount at the end of the converter, and as a result, the blowing carbon amount of the blowing carbon amount can be improved. It was possible to obtain the effect of reducing the re-blow ratio by 3.0% from 1.0% to 1.0%, and to improve the productivity of the converter operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の本実施例による転炉吹錬装置の構成図
である。
FIG. 1 is a configuration diagram of a converter blowing device according to an embodiment of the present invention.

【図2】本実施例におけるニュ−ラルネットワ−クの構
成図である。
FIG. 2 is a configuration diagram of a neural network in the present embodiment.

【図3】脱炭酸素効率と炭素濃度との関係グラフであ
る。
FIG. 3 is a graph showing the relationship between decarboxylation efficiency and carbon concentration.

【図4】脱炭酸素効率とスラグ量との関係グラフであ
る。
FIG. 4 is a relationship graph between decarbonation efficiency and slag amount.

【図5】脱炭酸素効率と底吹ノズル本数との関係グラフ
である。
FIG. 5 is a graph showing the relationship between decarbonation efficiency and the number of bottom blowing nozzles.

【符号の説明】[Explanation of symbols]

10 転炉 12 溶湯 14 底吹ノズル 16 管 18 流量計 20 ランス 21 サブランス 24 流量計 26 フ−ド 28 ダクト 30 シュ−タ 32 秤量器 40 プロセスコンピュ−タ 50 係数決定コンピュ−タ 51 記憶装置 10 Converter 12 Molten Metal 14 Bottom Blowing Nozzle 16 Tube 18 Flowmeter 20 Lance 21 Sublance 24 Flowmeter 26 Hood 28 Duct 30 Shooter 32 Weigher 40 Process Computer 50 Coefficient Determination Computer 51 Storage Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 転炉吹錬直前の適当な時期に測定される
鋼浴の炭素量から当チヤ−ジにおける脱炭軌道を決定
し、吹錬終点を制御するにあたり、 予め、転炉操業実績デ−タから求められる脱炭反応式の
係数を教師デ−タとして学習させたニユ−ラルネットワ
−クを構成しておき、該ニユ−ラルネットワ−クの入力
層に、吹錬の1ヒ−ト毎に操業デ−タを与えることによ
り脱炭反応式の係数を決定し前記脱炭軌道を決定するこ
とを特徴とする転炉吹錬方法。
1. The converter operation results are previously determined in order to determine the decarburization trajectory in this charge from the carbon content of the steel bath measured at an appropriate time immediately before the converter blowing and to control the blowing end point. A neural network is constructed in which the coefficient of the decarburization reaction formula obtained from the data is learned as teacher data, and one heat of blowing is added to the input layer of the neural network. A converter blowing method characterized in that a coefficient of a decarburization reaction formula is determined by giving operation data for each of them to determine the decarburization orbit.
JP14393792A 1992-06-04 1992-06-04 Converter blowing method Pending JPH05339617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14393792A JPH05339617A (en) 1992-06-04 1992-06-04 Converter blowing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14393792A JPH05339617A (en) 1992-06-04 1992-06-04 Converter blowing method

Publications (1)

Publication Number Publication Date
JPH05339617A true JPH05339617A (en) 1993-12-21

Family

ID=15350540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14393792A Pending JPH05339617A (en) 1992-06-04 1992-06-04 Converter blowing method

Country Status (1)

Country Link
JP (1) JPH05339617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310573A2 (en) * 2001-11-13 2003-05-14 Voest-Alpine Industrieanlagenbau GmbH & Co. Process to produce a metal melt on the basis of a dynamic process model, including a correction model
CN109295279A (en) * 2017-07-24 2019-02-01 株式会社Posco The purifier and its method of steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310573A2 (en) * 2001-11-13 2003-05-14 Voest-Alpine Industrieanlagenbau GmbH & Co. Process to produce a metal melt on the basis of a dynamic process model, including a correction model
EP1310573A3 (en) * 2001-11-13 2008-01-23 Voest-Alpine Industrieanlagenbau GmbH & Co. Process to produce a metal melt on the basis of a dynamic process model, including a correction model
CN109295279A (en) * 2017-07-24 2019-02-01 株式会社Posco The purifier and its method of steel

Similar Documents

Publication Publication Date Title
EP3770279B1 (en) Molten metal component estimation device, molten metal component estimation method, and molten metal production method
JP2017025379A (en) Molten iron pretreating method, and molten iron pretreatment control device
JP6579136B2 (en) Refining process state estimation device, refining process state estimation method, and molten metal manufacturing method
JP6687080B2 (en) Molten metal temperature correction device, molten metal temperature correction method, and molten metal manufacturing method
JP6414045B2 (en) Molten component estimation device and molten component estimation method
JPH05339617A (en) Converter blowing method
JP6825348B2 (en) Hot metal pretreatment method, hot metal pretreatment control device, program and recording medium
JP6516906B1 (en) Wind blow calculation method, blow blow calculation program
JP2019183222A (en) T.Fe ESTIMATION METHOD, T.Fe CONTROL METHOD, STATISTICAL MODEL CREATION METHOD, CONVERTER BLOWING CONTROL DEVICE, STATISTICAL MODEL CREATION DEVICE, AND PROGRAM
TWI627284B (en) Molten pig iron preparation processing method and molten pig iron preparation processing control device
JP2007238982A (en) Method for controlling blowing end-point in converter
JP2001011521A (en) Method for estimating molten steel temperature and carbon concentration at blowing time in converter, and blowing method in converter
JP7156560B2 (en) Refining process control device and refining process control method
JP3235405B2 (en) Hot metal pretreatment method
RU2817694C1 (en) Refining process control device and refining process control method
JP2019014964A (en) Initial component concentration correcting apparatus, initial component concentration correcting method, refining process state estimating method, and converter operating method
JP2520191B2 (en) Blowing control method for oxygen steelmaking furnace
JPH06264129A (en) Method for controlling end point of steelmaking in converter
JPH05195035A (en) Device for controlling blowing converter
JPH0433846B2 (en)
JPH093518A (en) Method for controlling end point of blowing in converter
JPH0219416A (en) Converter blow-refining method
JPH05148526A (en) Blowing method for converter
JP2024005899A (en) Device, method, and program for statistical model construction, and device, method and program for estimating phosphorus concentration in molten steel
JP2021031684A (en) Converter blowing control device, statistic model construction device, converter blowing control method, statistic model construction method and program