JPH05156339A - Method for assuming carbon concentration in molten steel in converter refining - Google Patents

Method for assuming carbon concentration in molten steel in converter refining

Info

Publication number
JPH05156339A
JPH05156339A JP32161491A JP32161491A JPH05156339A JP H05156339 A JPH05156339 A JP H05156339A JP 32161491 A JP32161491 A JP 32161491A JP 32161491 A JP32161491 A JP 32161491A JP H05156339 A JPH05156339 A JP H05156339A
Authority
JP
Japan
Prior art keywords
molten steel
concn
temp
carbon concentration
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32161491A
Other languages
Japanese (ja)
Inventor
Toshio Hatanaka
聡男 畑中
Yasuaki Tachikawa
泰明 立川
Masato Uchio
政人 内尾
Masaki Takenaka
正樹 竹中
Chihiro Taki
千尋 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32161491A priority Critical patent/JPH05156339A/en
Publication of JPH05156339A publication Critical patent/JPH05156339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To assume precisely carbon concn. in molten steel and to smoothly execute the converter operation by substituting the molten steel manganese concn. assumed value and the measured value of solidified temp. in the molten steel calculated from the measured values of the molten steel temp. and dissolved oxygen concn. into a specific equation. CONSTITUTION:Into the molten steel 2 incorporated in the converter 1, the oxygen is blown from an oxygen lance 10 to execute the refining. In the above blow-refining of the converter, by a sublance 3 providing a lifting device, the temp. of the molten steel 2, the dissolved oxygen concn. and the solidified temp. are measured and these measured values are inputted into a calculator for process. In an arithmetic device 8 in this calculator, based on the above molten steel temp. and the dissolved oxygen concn. and the operational data from a storing device 7, the manganese concn. in the molten steel 2 is calculated. Successively, the above mol-ten steel solidified temp. and the manganese concn. assumed value are substituted into the equation: Ts= k1[%C]<2>+(k2+k3[%Mn]) [%C]+k4[%Mn]<2>+k5[%Mn]+k6 (wherein, Ts: molten steel solidified temp., [%C]: carbon concn. in the molten steel, [%Mn]: manganese concn. assumed value in the molten steel, k1 to k6: constant).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は転炉精錬における溶鋼炭
素濃度の推定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating molten steel carbon concentration in converter refining.

【0002】[0002]

【従来の技術】上記溶鋼中の炭素濃度推定方法は一般に
サブランスによって測定される溶鋼の凝固温度から検量
線を用いて計算し炭素濃度を推定している。
2. Description of the Related Art In the method of estimating the carbon concentration in molten steel, generally, the carbon concentration is estimated from the solidification temperature of molten steel measured by sublance using a calibration curve.

【0003】しかし、レススラグ精錬等におけるよう
な、溶鋼中のMn濃度が0.2%以上になるとMnによ
る凝固点降下現象のため、単純に凝固温度だけから、溶
鋼中の炭素濃度を求めると、誤差が大きくなり、成分外
れが発生する場合がある。そこで、従来の凝固温度から
の炭素濃度推定方法に対して、溶鋼中Mn濃度にある定
数を乗じて補正することにより、炭素濃度を推定するこ
とが実用化されている。
However, when the Mn concentration in the molten steel becomes 0.2% or more as in the less slag refining, the freezing point is lowered by Mn. Therefore, if the carbon concentration in the molten steel is simply calculated from the solidification temperature, an error occurs. May become large and the components may be out of alignment. Therefore, it has been put into practical use to estimate the carbon concentration by multiplying the Mn concentration in molten steel by a constant and correcting the carbon concentration estimation method from the conventional solidification temperature.

【0004】一例として、特開平2−57629号公報
には「転炉溶鋼炭素推定方法」が記載されている。即
ち、脱燐溶銑を用いた転炉精錬中に、溶鋼の炭素量を推
定する方法において、次の、、を含む転炉溶鋼炭
素推定方法が記載されている。
As an example, Japanese Patent Application Laid-Open No. 2-57629 discloses "a converter molten steel carbon estimation method". That is, in the method for estimating the carbon content of molten steel during converter refining using dephosphorized hot metal, the following converter molten steel carbon estimation method including the following is described.

【0005】 溶鋼を採取してその温度及び凝固温度
を測定すること、 前記凝固温度から溶鋼中の一次推定炭素量を求める
こと、 前記一次推定炭素量及び前記溶鋼温度を用いて、転
炉内のMnの平衡式とマスバランス式から溶鋼中の推定
Mn量を求めること、 前記一次推定炭素量及び前記推定Mn量を用いて炭
素量を求めること、ここでは溶鋼中の炭素[%C]は実
用的な精度でTsと[%Mn]との一次式として、
(1)式で表される。
Collecting molten steel and measuring its temperature and solidification temperature; obtaining a primary estimated carbon amount in the molten steel from the solidification temperature; using the primary estimated carbon amount and the molten steel temperature; Obtaining the estimated Mn amount in molten steel from the Mn equilibrium equation and mass balance equation, obtaining the carbon amount using the primary estimated carbon amount and the estimated Mn amount, where carbon [% C] in the molten steel is practical With linear accuracy as a linear expression of Ts and [% Mn],
It is expressed by equation (1).

【0006】[0006]

【数2】 [Equation 2]

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た方法は溶鋼の凝固温度から検量線を用いて計算される
炭素濃度推定方法に比較して精度が向上しているが、未
だ満足出来る値には至っていない。
However, although the above-mentioned method has improved accuracy as compared with the method for estimating the carbon concentration calculated from the solidification temperature of molten steel by using a calibration curve, the value which is still satisfactory cannot be obtained. I haven't arrived.

【0008】本発明は上記問題点の解決を図ったもので
あり、溶鋼中のMn濃度が高い場合でも、溶鋼中の炭素
濃度を精度良く推定することの出来る溶鋼炭素濃度の推
定方法を提供することを目的とする。
The present invention has been made to solve the above problems, and provides a method for estimating the carbon concentration of molten steel with which the carbon concentration in molten steel can be accurately estimated even when the Mn concentration in the molten steel is high. The purpose is to

【0009】[0009]

【課題を解決するための手段及び作用】上記目的を達成
するために、本発明は転炉精錬における溶鋼の溶鋼温度
と溶存酸素濃度を測定し、それらの測定値から推定され
る溶鋼マンガン濃度推定値と、前記溶鋼の凝固温度測定
値を下記の式に代入して、溶鋼炭素濃度を推定すること
を特徴とする転炉精錬における溶鋼炭素濃度の推定方法
とするものである。
In order to achieve the above object, the present invention measures the molten steel temperature and the dissolved oxygen concentration of molten steel in converter refining, and estimates the molten steel manganese concentration estimated from those measured values. The value and the measured solidification temperature of the molten steel are substituted into the following formula to estimate the molten steel carbon concentration, which is a method for estimating the molten steel carbon concentration in converter smelting.

【0010】[0010]

【数3】 [Equation 3]

【0011】[0011]

【数4】 [Equation 4]

【0012】(3)〜(6)式において、未知数はスラ
グ中MnO濃度%と溶鋼中Mn濃度%、スラグ中FeO
濃度%とスラグ量の4つで、残りは既知量である。即
ち、溶鋼温度と溶存酸素はサブランスによって、直接測
定出来る量である。供給マンガン量は主原料(溶銑)、
装入スクラップ及び副原料のそれぞれに含まれるマンガ
ン量の和として求められる。
In equations (3) to (6), unknowns are MnO concentration% in slag, Mn concentration% in molten steel, and FeO in slag.
The concentration% and the slag amount are four, and the rest are known amounts. That is, the molten steel temperature and the dissolved oxygen are amounts that can be directly measured by the sublance. The amount of manganese supplied is the main raw material (hot metal),
It is calculated as the sum of the amounts of manganese contained in each of the charging scrap and auxiliary raw materials.

【0013】また、溶鋼量は装入量に歩留りを乗じたも
のとして、算出出来る。更にその他スラグ量は具体的に
は、MnO、SiO2 、CaOの量であり、これらは溶
銑量、溶銑成分、及び副原料装入量から算出出来る。
The molten steel amount can be calculated by multiplying the charging amount by the yield. Furthermore, the amount of other slag is specifically the amount of MnO, SiO 2 , and CaO, which can be calculated from the amount of hot metal, the hot metal component, and the amount of auxiliary raw material charged.

【0014】このようにして、求められた[%Mn]、
Tsを(2)式を解いた(7)式に代入することによ
り、[%C]が得られる。
Thus obtained [% Mn],
[% C] is obtained by substituting Ts into the equation (7) obtained by solving the equation (2).

【0015】[0015]

【数5】 [Equation 5]

【0016】[0016]

【実施例】以下に本発明の実施例を図によって説明す
る。図1は本発明に用いる装置の一実施例を示す図であ
る。図において、1は転炉、2は溶鋼、3はサプラン
ス、4はプロセス用計算機、5はサブランス昇降装置、
6は表示装置でCRTディスプレイ等が用いられる。転
炉1の精錬で製造された溶鋼2の温度と溶存酸素濃度が
サブランス3によって測定される。10は酸素ランスで
ある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of an apparatus used in the present invention. In the figure, 1 is a converter, 2 is molten steel, 3 is suprance, 4 is a process computer, 5 is a sublance lifting device,
A display device 6 is a CRT display or the like. The temperature and the dissolved oxygen concentration of the molten steel 2 produced by refining the converter 1 are measured by the sublance 3. 10 is an oxygen lance.

【0017】その結果がプロセス用計算機4に入力され
る。プロセス用計算機4では記憶装置7に溶銑量、成
分、副原料実績の操業データがインプットされている。
その操業データとサブランスからの入力データから演算
装置8で溶鋼中のMn濃度が計算される。同一サブラン
スで測定される凝固温度データが溶鋼温度データより2
0〜30秒遅れて、プロセス用計算機4に入力される
と、演算装置8で溶鋼中炭素濃度が算出される。
The result is input to the process computer 4. In the process computer 4, the storage device 7 is input with operating data such as the amount of hot metal, the components, and the actual results of the auxiliary raw materials.
The Mn concentration in the molten steel is calculated by the arithmetic unit 8 from the operation data and the input data from the sublance. Solidification temperature data measured with the same sublance is 2 from molten steel temperature data.
When input to the process computer 4 with a delay of 0 to 30 seconds, the carbon concentration in molten steel is calculated by the arithmetic unit 8.

【0018】上述した(2)式のk1,2 , 3,4 ,
5 , 6 は定数で数十点のデータをもとに、重回帰分
析により得られた値であり、 k1= 0.80 、k2=-82.86、k3= 5.82 、k4 =4.31 、k
4 =4.31 、k5 =-8.65、k6 = 1537.99としている。算
出結果はCRTディスプレイ6aに表示される。同時に
その結果により、制御装置9に指令が出される。
In the above equation (2), k 1, k 2, k 3, k 4,
k 5 and k 6 are constants and are values obtained by multiple regression analysis based on data of several tens of points, and k 1 = 0.80, k 2 = -82.86, k 3 = 5.82, k 4 = 4.31, k
4 = 4.31, k 5 = -8.65 , is set to k 6 = 1537.99. The calculation result is displayed on the CRT display 6a. At the same time, as a result, a command is issued to the control device 9.

【0019】その一連の流れを図2によって説明する。
プロセス用計算機4の記憶装置8では、操業データベー
スとして溶銑量、溶銑成分、スクラップ量、スクラップ
成分、副原料投入量、副原料成分がインプットされる。
The series of steps will be described with reference to FIG.
In the storage device 8 of the process computer 4, hot metal amount, hot metal component, scrap amount, scrap component, auxiliary raw material input amount, and auxiliary raw material component are input as an operation database.

【0020】演算装置8では、上記記憶装置7からの操
業データと、サブランス3によって測定された溶鋼温
度、溶存酸素濃度とから、溶鋼中マンガン濃度推定値が
演算され、更に同様に同じサブランスによって測定され
た溶鋼の凝固温度の測定値と、前記溶鋼中マンガン濃度
推定値とから、溶鋼の炭素濃度の推定値が演算される。
The arithmetic unit 8 calculates the manganese concentration estimated value in the molten steel from the operation data from the storage unit 7, the molten steel temperature and the dissolved oxygen concentration measured by the sublance 3, and the same sublance is used for the measurement. An estimated value of the carbon concentration of the molten steel is calculated from the measured value of the solidification temperature of the molten steel and the estimated value of the manganese concentration in the molten steel.

【0021】溶鋼の炭素濃度はCRTディスプレ6aに
表示される。同時にその結果により、制御装置9から転
炉操業への指令が出される。上記によれば、溶鋼中炭素
濃度が0.04〜0.5%の範囲で溶鋼中マンガン濃度
が0.1%以上である溶鋼中の炭素濃度を精度良く測定
することが出来る。
The carbon concentration of the molten steel is displayed on the CRT display 6a. At the same time, the controller 9 issues a command to the converter operation based on the result. According to the above, it is possible to accurately measure the carbon concentration in molten steel having a manganese concentration in the molten steel of 0.1% or more in the range of 0.04 to 0.5% in the molten steel.

【0022】溶鋼中炭素濃度が0.04〜0.5%の範
囲は、一般に製鋼法において、溶鋼の炭素濃度として調
整されているものである。溶鋼中マンガン濃度が0.1
%以上は一般に溶鋼の凝固温度による炭素濃度測定に影
響を与える範囲である。上限については特に限定はない
が実用的に1.0%までが多く適用されている。
The range of the carbon concentration in the molten steel of 0.04 to 0.5% is generally adjusted as the carbon concentration of the molten steel in the steelmaking method. Manganese concentration in molten steel is 0.1
% Or more is a range that generally affects the measurement of carbon concentration by the solidification temperature of molten steel. The upper limit is not particularly limited, but practically up to 1.0% is often applied.

【0023】本発明により、溶鋼中の炭素濃度の推定値
の精度を求めた結果を図3に示す。図4は比較として、
従来例を示したものである。図3、図4から明らかなよ
うに、本発明の場合が精度が従来に比較して、非常に精
度が向上している。
FIG. 3 shows the result of obtaining the accuracy of the estimated value of the carbon concentration in the molten steel according to the present invention. Figure 4 shows a comparison
This is a conventional example. As is clear from FIGS. 3 and 4, the accuracy of the present invention is much higher than that of the prior art.

【0024】本発明方法によれば、精度的には推定値
と、化学分析値を比較し、誤差平均で−0.0002
%、標準偏差が0.006%であった。此れに対して炭
素濃度推定に一次式を用いた従来方法では誤差平均で
0.014%、標準偏差が0.035%であった。本発
明により成分外れが0.3%より1.0%に低減され
た。
According to the method of the present invention, the estimated value and the chemical analysis value are compared in accuracy, and the error average is -0.0002.
%, And the standard deviation was 0.006%. On the other hand, in the conventional method using the linear equation for estimating the carbon concentration, the average error was 0.014% and the standard deviation was 0.035%. According to the present invention, the component deviation was reduced from 0.3% to 1.0%.

【0025】[0025]

【発明の効果】本発明によれば、溶鋼中のMn濃度が高
い場合でも、溶鋼中の炭素濃度を精度良く求めることの
出来る。そのため転炉操業を円滑にすることが出来る。
According to the present invention, even if the Mn concentration in the molten steel is high, the carbon concentration in the molten steel can be accurately determined. Therefore, the converter operation can be made smooth.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の状態を示す図である。FIG. 1 is a diagram showing a state of an embodiment of the present invention.

【図2】本発明の一実施例の炭素濃度推定の流れを示す
図である。
FIG. 2 is a diagram showing a flow of carbon concentration estimation according to an embodiment of the present invention.

【図3】本発明の一実施例の推定炭素濃度の精度を示す
図である。
FIG. 3 is a diagram showing the accuracy of the estimated carbon concentration according to the embodiment of the present invention.

【図4】従来の一例の推定炭素濃度の精度を示す図であ
る。
FIG. 4 is a diagram showing the accuracy of an estimated carbon concentration in a conventional example.

【符号の説明】[Explanation of symbols]

1 転炉 2 溶鋼 3 サブランス 4 プロセス用計算機 5 サブランス昇降装置 6 表示装置 6a CRTディスプレイ 7 記憶装置 8 演算装置 9 制御装置 10 酸素ランス 1 Converter 2 Molten Steel 3 Sublance 4 Process Computer 5 Sublance Lifting Device 6 Display Device 6a CRT Display 7 Storage Device 8 Computing Device 9 Control Device 10 Oxygen Lance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹中 正樹 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 滝 千尋 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaki Takenaka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Chihiro Taki 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Inside the steel pipe company

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 転炉精錬における溶鋼の溶鋼温度と溶存
酸素濃度を測定し、それらの測定値から推定される溶鋼
マンガン濃度推定値と、前記溶鋼の凝固温度測定値を下
記の式に代入して、溶鋼炭素濃度を推定することを特徴
とする転炉精錬における溶鋼炭素濃度の推定方法。 【数1】
1. A molten steel temperature and a dissolved oxygen concentration of molten steel in a converter refining are measured, and a molten steel manganese concentration estimated value estimated from the measured values and the solidified temperature measurement value of the molten steel are substituted into the following formula. A method for estimating molten steel carbon concentration in converter refining, which comprises estimating molten steel carbon concentration. [Equation 1]
JP32161491A 1991-12-05 1991-12-05 Method for assuming carbon concentration in molten steel in converter refining Pending JPH05156339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32161491A JPH05156339A (en) 1991-12-05 1991-12-05 Method for assuming carbon concentration in molten steel in converter refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32161491A JPH05156339A (en) 1991-12-05 1991-12-05 Method for assuming carbon concentration in molten steel in converter refining

Publications (1)

Publication Number Publication Date
JPH05156339A true JPH05156339A (en) 1993-06-22

Family

ID=18134493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32161491A Pending JPH05156339A (en) 1991-12-05 1991-12-05 Method for assuming carbon concentration in molten steel in converter refining

Country Status (1)

Country Link
JP (1) JPH05156339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295279A (en) * 2017-07-24 2019-02-01 株式会社Posco The purifier and its method of steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295279A (en) * 2017-07-24 2019-02-01 株式会社Posco The purifier and its method of steel

Similar Documents

Publication Publication Date Title
EP3770279B1 (en) Molten metal component estimation device, molten metal component estimation method, and molten metal production method
JP5527180B2 (en) Converter blowing method and converter blowing system
JP6579136B2 (en) Refining process state estimation device, refining process state estimation method, and molten metal manufacturing method
JP6376200B2 (en) Molten state estimation device, molten state estimation method, and molten metal manufacturing method
JP6414045B2 (en) Molten component estimation device and molten component estimation method
JPH05156339A (en) Method for assuming carbon concentration in molten steel in converter refining
JP6516906B1 (en) Wind blow calculation method, blow blow calculation program
Meyer et al. Static and dynamic control of the basic oxygen process
CA1118212A (en) Method for converter blow control
KR20040014599A (en) Method for decarbonization refining of chromium-containing molten steel
US3607230A (en) Process for controlling the carbon content of a molten metal bath
JPH03180418A (en) Method for controlling carbon in molten steel in converter
JPH09316514A (en) Method for estimating carbon and chromium contents in molten steel in converter process of chromium-containing steel and device therefor and method for tapping molten steel thereof
JPS6246605B2 (en)
JP2687432B2 (en) Converter blowout manganese control method
JPS59200709A (en) Controlling method of blowing in composite blowing in converter
JPS6318015A (en) Method for estimating concentration of manganese in converter blowing
JPH0533029A (en) Method for deciding charging quantity of main raw material in converter operation
JPH036312A (en) Method for controlling blowing in converter
JPH05339617A (en) Converter blowing method
JPS5836644B2 (en) Method for controlling molten steel phosphorus content in converter
JPS6115127B2 (en)
JPS6246606B2 (en)
JPH093518A (en) Method for controlling end point of blowing in converter
JPH0257629A (en) Method for assuming molten steel carbon in converter