JPH0441611A - Method for controlling end point of blowing in top and bottom-blown converter - Google Patents

Method for controlling end point of blowing in top and bottom-blown converter

Info

Publication number
JPH0441611A
JPH0441611A JP14934490A JP14934490A JPH0441611A JP H0441611 A JPH0441611 A JP H0441611A JP 14934490 A JP14934490 A JP 14934490A JP 14934490 A JP14934490 A JP 14934490A JP H0441611 A JPH0441611 A JP H0441611A
Authority
JP
Japan
Prior art keywords
blowing
end point
oxygen
carbon content
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14934490A
Other languages
Japanese (ja)
Inventor
Junichi Tani
潤一 谷
Naohito Nagasawa
長澤 尚人
Tomoyuki Obana
尾花 友之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14934490A priority Critical patent/JPH0441611A/en
Publication of JPH0441611A publication Critical patent/JPH0441611A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively control the carbon content, phosphorus content and temp. at the end point with high precision by measuring the carbon content and temp. of steel at the end point of blowing by a sublance in a top and bottom-blown converter and calculating the requisite amts. of the oxygen and cold charge to be blown to obtain the target carbon content, phosphorus content and temp. from a specified relational expression. CONSTITUTION:The oxygen consuming rate and heating rate are previously expressed by the polynominal of the carbon concn. in steel based on the actual results in consideration of variable blowing factors in the operation of a top and bottom-blown converter, and a relational expression between the carbon content at the end point through the oxygen content at the end point from the actual blowing results in the past is prepared. The requisite amts. of the oxygen and cold charge to be blown from the measurement by a sublance to the end point of blowing are calculated from the carbon content Cs and temp. Ts of molten steel measured by the sublance at the end of blowing, polynominal and relational expression, and the operation is carried out based on the calculation results.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、転炉のダイナミック制御における吹錬終点制
御法、特に上下吹転炉による精錬終点における炭素含有
量、燐含有量および溶銅温度を酸素吹き込み量および冷
材量吹き込み量を調整することにより制御する吹錬制御
法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for controlling the end point of blowing in the dynamic control of a converter, particularly for controlling the carbon content, phosphorus content, and molten copper temperature at the end point of refining using a top-bottom blowing converter. This invention relates to a blowing control method for controlling the amount of oxygen and coolant by adjusting the amount of oxygen and coolant.

(従来の技術) 従来の上吹き転炉吹錬においても終点溶鋼炭素量、燐量
、温度を目標値に連中させるのが最大課題である。従っ
て吹錬途中にて転炉の排ガスの流量計測および成分分析
またはサブランスによる溶銅温度、鋼中炭素含有量の計
測を行ってそれを基に吹錬条件を修正するグイナミノク
終点制御が開発されている。例えば次のような方法があ
る。
(Prior Art) Even in conventional top-blown converter blowing, the biggest challenge is to make the end point molten steel carbon content, phosphorus content, and temperature consistent with target values. Therefore, Guinaminok end-point control was developed to measure the flow rate and component analysis of the converter exhaust gas during blowing, or to measure the molten copper temperature and carbon content in the steel by sublance, and modify the blowing conditions based on the measurements. There is. For example, there are the following methods.

(1)吹錬末期における鋼中炭素含存置計測時点から終
点までに吹込むべき酸素量と前記実測鋼中炭素含有量と
を対応づける数式を導き、該数式に基づき終点を制御す
る方法(特開昭61−54842号)。
(1) A method (specially (No. 54842, 1983).

(2)吹錬中任意の時点での溶銅温度と炭素量の測定値
を起点とし、時々刻々測定される排ガス流量および排ガ
ス分析値と送酸量、炉内副原料の発生ガスから溶鋼温度
変化、炭素量変化、スラグ中酸素量変化を求めて、一方
予め求めていたそれぞれの変化に対する方程代から推定
した軌跡と比較して、両者の差値を少なくするように制
御を行い、終点目標温度と炭素量に必要な吹込酸素量、
冷材投大量を推定し、ランス操作を行う方法(特開昭5
8−56002号)。
(2) Starting from the measured values of the molten copper temperature and carbon content at any point during blowing, the flue gas flow rate and flue gas analysis values measured from time to time, the oxygen supply amount, and the molten steel temperature from the gas generated from the auxiliary raw materials in the furnace The change in carbon content, the change in the amount of oxygen in the slag, and the change in the amount of oxygen in the slag are determined, and compared with the locus estimated from the equation for each change that has been determined in advance, control is performed to reduce the difference between the two, and the end point target is determined. The amount of blown oxygen required for the temperature and carbon content,
A method for estimating the amount of cold material thrown and performing lance operation (Unexamined Japanese Patent Publication No. 5
No. 8-56002).

(3)転炉吹錬時における排ガス中のco、 co□お
よびN2の各濃度を測定し、該測定値を基に転炉内にお
けるCOの2次燃焼効率を算出して得られる2次燃焼効
率をあらかじめ求めておいた基準2次燃焼効率と比較し
て偏差に応じて冷材量および送酸量を調整する方法(特
開昭62−224623号)。
(3) Secondary combustion obtained by measuring the concentrations of co, co□, and N2 in the exhaust gas during converter blowing, and calculating the secondary combustion efficiency of CO in the converter based on the measured values. A method of comparing the efficiency with a standard secondary combustion efficiency determined in advance and adjusting the amount of refrigerant and the amount of oxygen supplied according to the deviation (Japanese Patent Laid-Open No. 62-224623).

(4)吹錬期間中溶鋼炭素濃度が0.1%以上である時
にサブランスで溶鋼炭素を測定し、その値から酸素濃度
を推定し、吹錬終了まで吹込まれる酸素量より溶鋼の酸
素濃度増分Δ〔0)から吹錬終点の溶鋼の酸素濃度を推
定する転炉吹錬制御方法(特開昭62−56511号)
(4) During the blowing period, when the molten steel carbon concentration is 0.1% or more, measure the molten steel carbon with a sublance, estimate the oxygen concentration from that value, and calculate the oxygen concentration of the molten steel from the amount of oxygen blown until the end of the blowing. Converter blowing control method for estimating the oxygen concentration of molten steel at the end point of blowing from the increment Δ[0] (Japanese Patent Application Laid-Open No. 62-56511)
.

(発明が解決しようとする課題) しかしながら、これらの従来の方法では制御精度に問題
があったり、制御に要する設備が高価であるという欠点
があった。特に上下吹耘炉に適用した場合、その精度が
問題であった。
(Problems to be Solved by the Invention) However, these conventional methods have drawbacks such as problems in control accuracy and expensive equipment required for control. Especially when applied to upper and lower blowing furnaces, accuracy was a problem.

すなわち、前項の(1)、(4)の方法においては吹錬
末期における底吹流量、ランスアクションの変動などが
考慮さていないので、制御精度が低くなる恐れがある。
That is, in the methods (1) and (4) in the previous section, the control accuracy may be lowered because the bottom blowing amount and the fluctuations in the lance action at the end of blowing are not taken into consideration.

同しく(2)、(3)の方法ムこおいては制御精度はよ
いが、排ガスの成分分析をするため設備投資額が高くな
る。
Similarly, methods (2) and (3) provide good control accuracy, but require high equipment investment due to component analysis of the exhaust gas.

かくして、本発明の目的は、上下吹転炉における終点制
御法であって、安価で高精度に終点炭素含有量、燐含有
量および温度を制御する方法を提供することである。
Thus, an object of the present invention is to provide a method for controlling the end point in a top-bottom blowing converter, which is inexpensive and highly accurate in controlling the end point carbon content, phosphorus content, and temperature.

(課題を解決するための手段) 本発明者は上記の目的達成のため種々検討を重ねたとこ
ろ、先の(1)の方法に着目し、昇温速度式をさらに導
入し、しかも終点酸素量と終点炭素濃度との関係式さら
に終点酸素量と終点fia度との関係式を相関させるこ
とにより、溶W4温度と炭素含有量との計測データにも
とづいて酸素供給量および6材投入量を制御することが
効平的であることを知り、本発明を完成した。
(Means for Solving the Problems) The inventors of the present invention have conducted various studies to achieve the above object, and have focused on the method (1) above, further introduced a temperature increase rate equation, and further introduced an end-point oxygen amount. By correlating the relational expression between and the end point carbon concentration and the end point oxygen amount and the end point fia degree, the oxygen supply amount and the amount of six materials input are controlled based on the measured data of the melt W4 temperature and carbon content. He realized that it was effective to do so, and completed the present invention.

ここに、本発明の要旨とするところは、上下吹転炉にお
いて吹錬末期にサブランスによって鋼中の炭素含有量(
Cs)および鋼中温度(Ts)を測定し、あらかじめ吹
錬変動要因を考慮し操業実績に基づいて立てた酸素消費
速度式および昇温速度式より、並びに終点酸素蓋と終点
炭素濃度との関係式および終点酸素量と終点燐濃度との
関係式より、吹錬終了目標炭素含有量、燐含有量および
温度に到るための所要吹込酸素量および所要冷材量を算
出し、この算出結果に基づいて転炉操業を行うことを特
徴とする上下吹転炉における吹錬終点制御法である。
Here, the gist of the present invention is to reduce the carbon content (
Cs) and steel temperature (Ts), and based on the oxygen consumption rate formula and temperature increase rate formula, which were established based on operating results and taking into account blowing fluctuation factors, and the relationship between the end point oxygen cap and the end point carbon concentration. The required amount of blown oxygen and amount of coolant to reach the target carbon content, phosphorus content, and temperature at the end of blowing are calculated from the equation and the relational expression between the end point oxygen amount and end point phosphorus concentration, and based on this calculation result. This is a method for controlling the end point of blowing in a top-bottom blowing converter, which is characterized by operating the converter based on this method.

なお、上述の吹錬末期とは、特にIQ限はないが一般に
は吹錬終了までのは\5分間の時期をいう。
Note that the above-mentioned final stage of blowing does not have a particular IQ limit, but generally refers to the period of \5 minutes until the end of blowing.

本発明の制御法は、その具体的B様によれば、上下吹転
炉操業において、吹錬末期の酸素消費速度および昇温速
度を鋼中の炭素濃度の多重式で表わすこと、その多項式
並びに吹錬終点前の適宜時点にてサブランス計測によっ
て得た鋼中炭素含有量C3、溶鋼温度T、より、前記時
点から吹錬終点に至る間の吹込酸素量Δo2および4温
値Δ丁並びに該期間に溶鋼中に投入される冷却材量〜゛
6L、吹錬終点鋼中炭素含有量C4を含み、スクラ、ブ
配合率、吹錬末期のサブランス計測温度、底吹ガス流量
、ランス湯面間距離、投入媒溶剤量を因子とし、これら
の変数の相関を表わす式を得て、吹錬の都度予測吹錬終
点前の適宜時点じごてサブランス計測によって得た綱中
炭素鼠、溶鋼温度より[]標炭素含有IC4と目+!温
度′I′、を与えて、上記相関式よりサブランス計測時
より吹錬終点まてに到るまでの必要吹込み酸素蓋および
必要塗材蓋を算出してこの算出結果に基づき操業を行う
のである。
According to Mr. B, the control method of the present invention is that, in the operation of a top-bottom blowing converter, the oxygen consumption rate and temperature increase rate at the end of blowing are expressed by a multiple expression of the carbon concentration in the steel, and the polynomial and Based on the carbon content C3 in the steel and the molten steel temperature T obtained by sublance measurement at an appropriate time before the end point of blowing, the amount of oxygen blown in Δo2 and the temperature value Δd2 and the period from that point to the end point of blowing. Including the amount of coolant injected into the molten steel ~ 6L, the carbon content in the steel at the end of blowing C4, scrubbing, blowing mixture ratio, sublance measurement temperature at the end of blowing, bottom blowing gas flow rate, lance surface distance. , an equation expressing the correlation between these variables using the amount of the input solvent as a factor was obtained, and the temperature of the carbon in the wire and the molten steel obtained by sub-lancing measurements at an appropriate point before the end of predicted blowing for each blowing was calculated. ] Marked carbon-containing IC4 and eyes +! Given the temperature 'I', the required blown oxygen cap and the required coating material cap from the time of sublance measurement to the blowing end point are calculated from the above correlation formula, and the operation is performed based on the calculation results. be.

また過去の吹錬実績より終点酸素含有量を介して終点炭
素含有量と終点燐含有量との相関式を作成しておき、目
標終点炭素含有量を目標終点燐含有量より補正し、終点
燐含有量をも制御するようにしてもよい。
In addition, a correlation formula between the end point carbon content and the end point phosphorus content is created using the end point oxygen content based on past blowing results, and the target end point carbon content is corrected from the target end point phosphorus content. The content may also be controlled.

(作用) 次に、本発明を添付図面を参照してさらに具体的に説明
する。
(Operation) Next, the present invention will be described in more detail with reference to the accompanying drawings.

最初に本発明の吹錬制御法を第1図にフローチャートで
示す。
First, the blowing control method of the present invention is shown in a flowchart in FIG.

これからも明らかなようGこ、本発明によれば予めダイ
ナミック制御式(酸素消費速度式および昇温速度式を定
め、一方過去の操業実績から終点酸素と終点炭素濃度の
関係式および終点酸素と終点燐濃度との関係式をそれぞ
れ求めておく。
As will be clear from this, according to the present invention, a dynamic control formula (oxygen consumption rate formula and temperature increase rate formula) is determined in advance, and on the other hand, a relational formula between end point oxygen and end point carbon concentration, end point oxygen and end point Find the relational expression for each with the phosphorus concentration.

dO□/IAit 吹錬末期の酸素消費速度     を次式のよdC うにおく。dO□/IAit The oxygen consumption rate at the end of blowing is expressed as dC in the following formula: Sea urchin.

LL    dCに こで C:鋼中炭素含有W(重量%)、 1t:溶鋼重量(1) サブランス計測時の鋼中炭素含有量Csに)より吹錬終
点での鋼中炭素含有量C4(イ)まで積分すると脱炭に
必要な原単位F11(N−2/T)は、Fe(Cs,C
I) ”’ an(Cs −Ci)+a+log(Cs/CE) ”
 ’ (2)である0式(2)より過去の吹錬実績デー
タFo、Cs、C1を代入し、ao、a、の最適値を決
める。次に操業要因との関係式を下式のように定量化す
る(要因変化の1次式で近似)。
LL dC Nikode C: Carbon content in steel W (wt%), 1t: Weight of molten steel (1) From carbon content Cs in steel at the time of sublance measurement), carbon content in steel C4 (I) at the end of blowing. ), the basic unit F11 (N-2/T) required for decarburization is Fe(Cs,C
I) ”' an(Cs −Ci)+a+log(Cs/CE)”
' (2) From equation (2), past blowing performance data Fo, Cs, and C1 are substituted to determine the optimal values of ao and a. Next, the relational expression with the operational factors is quantified as shown below (approximated by a linear expression of factor change).

Fe(Cs、Ct) −Fo’ (C5,CI) +Σ
 hot(xi  xtm)+Fmo ・・・(3)こ
こでF・:サランス計測後の酸素消費量(ここで桧材な
どによる酸素供給量 を加えたもの) X3:吹錬要因変数 Xrk:吹錬要因変数基準値 Pa’ (Cs、Ct) : 式(2)の右辺に80、a、を代入して求めた値である
Fe (Cs, Ct) -Fo' (C5, CI) +Σ
hot (xi xtm) + Fmo ... (3) where F.: Oxygen consumption after Sarans measurement (here, the amount of oxygen supplied by cypress wood etc. is added) X3: Blowing factor variable Xrk: Blowing factor Variable reference value Pa' (Cs, Ct): This is the value obtained by substituting 80, a, into the right side of equation (2).

Fsoは直近40チヤージの実績に基づく定数である。Fso is a constant based on the past 40 charges.

吹錬要因変数はここでランス湯面間距離、サブランス計
測時の溶鋼温度、吹錬前および吹錬中に投入した換算C
aO量、底吹ガス流量、冷銑重子冷鉄比率を採用した。
The blowing factor variables here are the distance between the lance hot water surfaces, the molten steel temperature at the time of sub-lance measurement, and the converted C input before and during blowing.
The aO amount, bottom blowing gas flow rate, and cold pig heavy cold iron ratio were adopted.

弐(3)に実績データを代入して、影響係数11ofの
最適値を求める。
By substituting the actual data into 2(3), the optimum value of the influence coefficient 11of is determined.

T 同様に昇温速度□を次式のようにおく、dC dCに こでT:溶銑温度〜である。T Similarly, set the temperature increase rate □ as in the following equation, dC to dC Here, T: hot metal temperature ~.

サブランス計測時の鋼中炭素量C5(ト)より吹錬終点
での鋼中炭素含有量C4(ト)まで積分すると昇温量Δ
Tは hT = (Tt  Ts) =bo(Cs  Ci)
 十b+log(Cs/ c、)  HH+ (5)と
なる。式(5)に吹錬実績データΔT、C,、C。
Integrating from the carbon content in steel C5 (g) at the time of sublancing measurement to the carbon content in steel C4 (g) at the end of blowing, the temperature increase Δ
T is hT = (Tt Ts) = bo(Cs Ci)
10b+log(Cs/c,) HH+ (5). Equation (5) contains blowing performance data ΔT, C,,C.

を代入し、bo、b、の最適値を決める。次に操業要因
との関係式を下式のように定量化する(式(3)と同し
近イ以)。
, and determine the optimal values of bo and b. Next, the relational expression with the operational factors is quantified as shown below (same as Equation (3)).

hT(TETs)−ΔT’ (Cs,CE)  +Σ 
hyi (x、   x;k) +FB?  ・ ・ 
・ (b)ΔT:サブランス計測後の昇温量■ (桧材投入による温度陳下を加えた もの) 八T“;式(5)の右辺にbo、blを代入して求めた
値である。
hT (TETs) - ΔT' (Cs, CE) +Σ
hyi (x, x;k) +FB?・ ・
・(b) ΔT: Amount of temperature increase after sublance measurement■ (Adding the temperature decrease due to the addition of cypress wood) 8T"; This is the value obtained by substituting bo and bl into the right side of equation (5). .

FITは直近40チヤージの実績に基づく定数である。FIT is a constant based on the past 40 charges.

hT、・影響係数である。hT, is the influence coefficient.

吹錬要因変数はランス湯面間距離、サブランス計測時の
溶鋼温度、吹錬前および吹錬中に投入した換算CaO量
、底吹ガス流量、冷銑+冷鉄比率を採用した。
The blowing factor variables used were the lance surface distance, the molten steel temperature at the time of sublance measurement, the equivalent amount of CaO introduced before and during blowing, the bottom blowing gas flow rate, and the cold pig iron + cold iron ratio.

式(6)に実績データを代入して影響係数hTiの最適
値を求める。
The optimum value of the influence coefficient hTi is determined by substituting the actual data into equation (6).

ところで、吹錬鋼種毎に終点目標炭素含有量(CTり 
、終点目標燐含有量(P’rt) 、終点目標温度(T
Tりが定っている。そこで本発明にかかる制御法におい
ては終点目標燐含有量を終点酸素濃度を介して終点炭素
含有量に換算する。
By the way, the end point target carbon content (CT R
, end point target phosphorus content (P'rt), end point target temperature (T
T is fixed. Therefore, in the control method according to the present invention, the end point target phosphorus content is converted into the end point carbon content via the end point oxygen concentration.

すなわち、終点燐濃度PEおよび終点炭素含をit C
Eは終点温度TIおよび終点酸素濃度OEとの間に の関係がある。
That is, the end point phosphorus concentration PE and the end point carbon content are
E has a relationship between the end point temperature TI and the end point oxygen concentration OE.

log CP t) =d+ (混銑率) 十dz (
1/(TE+273))d3 log (Of) +d
4(Input 5iOz(K/T))+ds (In
put Ca0(X/T)) +da ClnputM
gO(K/T)) +dq [Input P(K/T
)) +d@ (Input Mn(K/T)) +d
q (InputTi(K/T) ) +d+o  ・
 ・ ・(8)ここで混銑率−(熔銑量十冷銑量)/(
溶銑量十冷銑量+冷鉄材) Input Sing:吹錬中に投入された副原料の5
in2原単位士溶銑〔Si〕 x60/28 X混銑率 Input Cab:  吹錬中に投入された副原料の
CaO原単位 Input MgO:  吹錬中に投入された副原料の
MgO原単位 Input P:   溶銑中[P)量X混銑率Inp
ut Mn:  吹錬中に投入された副原料の門n原単
位十溶銑中〔−〇〕 X混銑率 Input Ti:  溶銑中(Ti)量X混銑率であ
る。またC0〜C6およびd、〜d、。は直近の吹錬実
績100チヤージのデータに基づき多重回帰して求めた
値で毎チャージ再計算する。従って吹錬末期サブランス
測定時期に上記式(7)、(8)によって目標燐量(P
yt)より必要終点炭素含有量C11,を演算する。
log CP t) = d+ (mixed pig iron ratio) 10 dz (
1/(TE+273))d3 log (Of) +d
4(Input 5iOz(K/T))+ds(In
put Ca0(X/T)) +da ClnputM
gO(K/T)) +dq [Input P(K/T)
)) +d@(Input Mn(K/T)) +d
q (InputTi(K/T)) +d+o ・
・ ・(8) Here, the mixed pig iron ratio - (molten pig iron amount, cold pig iron amount) / (
Input Sing: 5 of the auxiliary raw materials input during blowing
in2 consumption rate Hot metal [Si] x60/28 Medium [P) amount x mixed pig iron ratio Inp
ut Mn: Input n unit of auxiliary raw material input during blowing 10 in hot metal [-〇] X mixed pig iron ratio Input Ti: Amount of (Ti) in hot metal Also C0 to C6 and d, to d,. is recalculated every charge using the value obtained through multiple regression based on the data of the most recent 100 charge blowing results. Therefore, at the time of sublance measurement at the end of blowing, the target phosphorus amount (P
yt) to calculate the required end point carbon content C11.

ここでC!TF≦CUTの場合ら7−GETPとして最
終目標炭素含有量を修正する。
C here! If TF≦CUT, modify the final target carbon content as 7-GETP.

次にサブランスにより測定された溶鋼含有炭素量C3お
よび溶鋼濃度T、に基づき、まず式(6)に基づきTs
 、C−、Ctrを与え、TEを求める。
Next, based on the molten steel carbon content C3 and the molten steel concentration T measured by the sublance, first Ts
, C-, Ctr, and find TE.

ここで■ T E > T E T  の場合スケール
または鉄鉱石などの塗材を投入する指示をだす。
Here, ■ If T E > T E T, an instruction is given to add coating material such as scale or iron ore.

例えば、スケール投入量(Wnysc)= (TE  
To) Xo、250  ・ ・ (9)鉄鉱石投入量
(Lyr。) = (TE  Ttt) X O,167・ ・ ・0
0)とする。
For example, scale input amount (Wnysc) = (TE
To) Xo, 250 ・ ・ (9) Iron ore input amount (Lyr.) = (TE Ttt) X O, 167 ・ ・ 0
0).

ここでスケール投入量が10kg/を以上となった場合
残りを鉄鉱石投入とする。次に式(3)に上記スケール
鉄鉱石中の酸素量を差し引いた必要上吹酸素量F 6V
を計算する。
If the amount of scale input is 10 kg/or more, the remaining amount is input as iron ore. Next, the required top-blowing oxygen amount F 6V is obtained by subtracting the oxygen amount in the scale iron ore from equation (3).
Calculate.

F 6v=FO(Cm、GET)  16yicX0.
15−ゎア、。Xo、20  ・・・・・θ0また■T
E=Ttrの場合、電材投入指示は出さず上記と同様に
式(3)より必要上吹酸素量Fovを計算する。
F 6v=FO(Cm, GET) 16yicX0.
15-a. Xo, 20 ... θ0 also ■T
In the case of E=Ttr, the required top-blowing oxygen amount Fov is calculated from equation (3) in the same manner as above without issuing an instruction to insert the electrical material.

Fov= Fo(Cs 、C1t)    ・・・・0
2)また■T E < T ITの場合式(6)にTE
T、T3、C3を代入して最終目標炭素濃度CUTを再
修正する。
Fov= Fo(Cs, C1t)...0
2) Also, if TE < T IT, then TE in equation (6)
Substituting T, T3, and C3, the final target carbon concentration CUT is revised again.

次に求められたGETを用いて、必要上吹酸素量Fov
を式(3)によって計算する。
Next, using the obtained GET, the required top blowing oxygen amount Fov
is calculated using equation (3).

Fov−Fo(Cs 、C,、)    ・・・03)
こうして得られた投入合材量および必要上吹酸素量に基
づき、吹錬を終了させる。
Fov-Fo(Cs,C,,)...03)
Based on the amount of mixed material input and the required amount of top-blowing oxygen thus obtained, the blowing is completed.

吹錬終了と同時にサブランスにより終点温度と終点炭素
含有量を測定し、式(3)、式(6)のF No、FI
Tを更新し、次回の吹錬を行う。
At the same time as blowing ends, the end point temperature and end point carbon content are measured using a sublance, and the F No. and FI of formulas (3) and (6) are measured.
Update T and perform the next blowing training.

(実施例) 次に本発明にかかる制御法による250トン上下吹転炉
での実施例を示す。
(Example) Next, an example of a 250-ton vertical blowing converter furnace using the control method according to the present invention will be shown.

まず、酸素消費速度および昇温速度式(2)、(3)、
(5)、(6)のそれぞれの係数は150チヤージの実
績結果を基に最適値を求めたところ、第1表のようにな
った。
First, oxygen consumption rate and temperature increase rate equations (2), (3),
The optimum values for each of the coefficients (5) and (6) were determined based on the actual results of 150 charges, and the results were as shown in Table 1.

第1表 ダイナミック制御影響係数 log [PE] = d + (χ混銑率]+dz 
[1/ (T÷273) ] +d:+log[oE(
ppm)]+d411nput SiO□] ′k”+
d5[rnput Cab) +k”+da[Inpu
t Mg01 ””+d、1lnput Pi ””+
d、[Input Mn] ””’+dq[Input
 Til””+d+o   ’  ・” (8)’上記
係数に基づくオフラインでの吹錬計算結果は、第2図(
a)、(b)にそれぞれ示す通り酸素原単位連中±1.
ONイ/T以内に9.38%、温度連中±12°C以内
に85.7%で同時連中率は83.6%であった。
Table 1 Dynamic control influence coefficient log [PE] = d + (χ mixed pig iron ratio] + dz
[1/ (T÷273)] +d:+log[oE(
ppm)]+d411nput SiO□] ′k”+
d5[rnput Cab) +k”+da[Input
t Mg01 ””+d, 1lnput Pi ””+
d, [Input Mn] ””'+dq[Input
Til""+d+o'・"(8)'The offline blowing calculation results based on the above coefficients are shown in Figure 2 (
As shown in a) and (b), the oxygen consumption rate is ±1.
The simultaneous success rate was 83.6%, with 9.38% within ONI/T and 85.7% within ±12°C of temperature.

また終点炭素含有量、終点燐含有量と終点酸素濃度の関
係は、 および であった、〔CIおよびCP)の連中率は第3図(a)
、(b)にそれぞれ示す通りである。また、これらの係
数をもとに吹錬制御したときの[C)および溶鋼温度の
連中精度を第4図(a)、(b)にそれぞれ示す。終点
rcI 連中は±0.02%以内に88.2%、温度連
中は±12°C以内に83.6%で同時連中は80.2
%であった。
In addition, the relationship between the end point carbon content, end point phosphorus content, and end point oxygen concentration was as follows.
, (b), respectively. Furthermore, the continuous accuracy of [C] and molten steel temperature when blowing is controlled based on these coefficients are shown in FIGS. 4(a) and 4(b), respectively. End point rcI series 88.2% within ±0.02%, temperature series 83.6% within ±12°C, simultaneous series 80.2
%Met.

以上からも明らかなように、本発明にかかる吹錬制御法
により安価で高精度の吹錬連中が達成でき、出鋼時の追
加的処理の必要性は大幅に減少した。
As is clear from the above, the blowing control method according to the present invention makes it possible to achieve an inexpensive and highly accurate blowing process, and the need for additional processing during tapping is greatly reduced.

(発明の効果) 本発明方法は、吹錬終点、炭素含有量、燐含有量および
温度を安値で高精度で制御でき、成分外れ防止、再吹錬
さらには追加的冷却作業等の必要がほとんどなくなり生
産能率の改善、品質向上、耐火物原単位の削減に大きく
寄与するものである。
(Effects of the invention) The method of the present invention can control the blowing end point, carbon content, phosphorus content, and temperature at low cost and with high precision, and there is little need for prevention of component separation, reblowing, and additional cooling work. This greatly contributes to improving production efficiency, improving quality, and reducing the unit consumption of refractories.

なお本発明方法における各種演算はプロセス制御コンピ
ュータに行わせ、さらに自動合材投入、自動送酸停止機
能をこのコンピュータにもたせることによって自動的に
行わせうることも可能である。
The various calculations in the method of the present invention can be performed automatically by having a process control computer perform them, and by providing this computer with functions for automatically adding a mixture material and automatically stopping oxygen supply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の吹錬制御法のフロチャートである。 第2図(a)、(blは、サブランス計測時より終点ま
での酸素量原単位および温度上昇のそれぞれ実績値と本
発明法による推定値とを示すグラフである。 第3図(a)、0))は、終点におけるそれぞれ[CI
 および[Pi の分析値と本発明法による推定値とを
示すグラフである。 第4図(a)、(b)は、終点におけるそれぞれ[CI
 および?8鋼温度の実測値(サブランス)およびグイ
ナミノク終点目標値を示すグラフである。
FIG. 1 is a flowchart of the blowing control method of the present invention. FIGS. 2(a) and (bl) are graphs showing actual values and estimated values based on the method of the present invention for the oxygen consumption unit and temperature rise from the time of sublance measurement to the end point, respectively. FIG. 3(a), 0)) are respectively [CI
and [Pi] is a graph showing the analytical values and the estimated values according to the method of the present invention. FIGS. 4(a) and (b) show the [CI
and? 8 is a graph showing the measured value (sublance) of the steel temperature and the Guinaminoku end point target value.

Claims (1)

【特許請求の範囲】[Claims]  上下吹転炉において吹錬末期にサブランスによって鋼
中の炭素含有量(C_s)および鋼中温度(T_s)を
測定し、あらかじめ吹錬変動要因を考慮し操業実績に基
づいて立てた酸素消費速度式および昇温速度式より、並
びに終点酸素量と終点炭素濃度との関係式および終点酸
素量と終点燐濃度との関係式より、吹錬終了目標炭素含
有量、燐含有量および温度に到るための所要吹込酸素量
および所要冷材量を算出し、この算出結果に基づいて転
炉操業を行うことを特徴とする上下吹転炉における吹錬
終点制御法。
The carbon content (C_s) and temperature (T_s) in the steel are measured by a sub-lance at the end of blowing in a top-bottom blowing converter, and the oxygen consumption rate formula is established based on operating results, taking into account blowing fluctuation factors. The target carbon content, phosphorus content, and temperature at the end of blowing can be arrived at from the equation of temperature increase rate, the relation between the end point oxygen amount and the end point carbon concentration, and the relation between the end point oxygen amount and end point phosphorus concentration. A blowing end point control method in a top-bottom blowing converter, characterized in that the required amount of blown oxygen and the required amount of coolant are calculated, and the converter is operated based on the calculation results.
JP14934490A 1990-06-07 1990-06-07 Method for controlling end point of blowing in top and bottom-blown converter Pending JPH0441611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14934490A JPH0441611A (en) 1990-06-07 1990-06-07 Method for controlling end point of blowing in top and bottom-blown converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14934490A JPH0441611A (en) 1990-06-07 1990-06-07 Method for controlling end point of blowing in top and bottom-blown converter

Publications (1)

Publication Number Publication Date
JPH0441611A true JPH0441611A (en) 1992-02-12

Family

ID=15473068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14934490A Pending JPH0441611A (en) 1990-06-07 1990-06-07 Method for controlling end point of blowing in top and bottom-blown converter

Country Status (1)

Country Link
JP (1) JPH0441611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362364A (en) * 2001-06-11 2002-12-18 East Japan Railway Co Railroad gage
JP2007017201A (en) * 2005-07-05 2007-01-25 East Japan Railway Co Track measuring instrument and track measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362364A (en) * 2001-06-11 2002-12-18 East Japan Railway Co Railroad gage
JP2007017201A (en) * 2005-07-05 2007-01-25 East Japan Railway Co Track measuring instrument and track measuring method

Similar Documents

Publication Publication Date Title
CN102344986B (en) Method, device and system for controlling steel-making endpoint of converter
US3377158A (en) Converter control systems and methods
KR102348892B1 (en) Molten metal component estimation apparatus, molten metal component estimation method, and molten metal manufacturing method
CN202401090U (en) System for controlling finishing point of converter steelmaking
JP2013023696A (en) Converter blowing control method
JPH0441611A (en) Method for controlling end point of blowing in top and bottom-blown converter
JPH05263120A (en) Method for controlling blowing in converter
JPS6317887B2 (en)
KR100275100B1 (en) Process for decarbonising a high chromium steel melt
US3551140A (en) Controlled refining of pig iron
CA1118212A (en) Method for converter blow control
US3619174A (en) Method for controlling the carbon content in and/or the temperature of the steel
JP2004035986A (en) Converter operation guidance model
CN110570911A (en) Compilation method of AOD static calculation model
JP2002285223A (en) Method for dephosphorizing molten iron
JPH04346611A (en) Method for refining stainless steel
US4416691A (en) Method for converter blow control
JPH04103706A (en) Method for controlling end-point carbon concentration in top and bottom-blown converter
JP2921970B2 (en) Converter end point control method
RU2026360C1 (en) Device for determining the instant of metal discharge from converter
JP4048010B2 (en) Method for estimating phosphorus equilibrium in converters and hot metal pretreatment vessels.
TW201734214A (en) Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
US4619694A (en) Method of refining steel and apparatus
JPH036312A (en) Method for controlling blowing in converter
JPS5836644B2 (en) Method for controlling molten steel phosphorus content in converter