JP2005206877A - Method for estimating carbon concentration at blowing time in converter - Google Patents

Method for estimating carbon concentration at blowing time in converter Download PDF

Info

Publication number
JP2005206877A
JP2005206877A JP2004014642A JP2004014642A JP2005206877A JP 2005206877 A JP2005206877 A JP 2005206877A JP 2004014642 A JP2004014642 A JP 2004014642A JP 2004014642 A JP2004014642 A JP 2004014642A JP 2005206877 A JP2005206877 A JP 2005206877A
Authority
JP
Japan
Prior art keywords
carbon concentration
blowing
converter
slag
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004014642A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ueki
俊行 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004014642A priority Critical patent/JP2005206877A/en
Publication of JP2005206877A publication Critical patent/JP2005206877A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for estimating a carbon concentration at blowing time in a converter, concretely, a carbon concentration after tapping molten steel, by which in the case of adjusting the components at the blowing in the converter, the steel tapping into a ladle and further, a secondary refining, etc., the load of this adjustment of composition can be reduced. <P>SOLUTION: When the molten steel held in the converter is tapped into the ladle by tilting into the ladle after blowing by using the converter, at the end stage of the blowing, oxygen partial pressure in slag in the converter is measured, and based on this measured value of this oxygen partial pressure and the operational condition factor at the blowing time, the carbon concentration after tapping the molten steel as the carbon concentration in the molten steel at the completing time of the molten steel tapping into the ladle, is estimated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、転炉吹錬時の炭素濃度の推定方法に関するものであり、具体的には、転炉を用いて吹錬を行った後にこの転炉に収容された溶鋼の取鍋への出鋼を行う際に、転炉から取鍋への出鋼の完了時点における取鍋に収容された溶鋼の炭素濃度(本明細書では「出鋼後炭素濃度」という)を高精度で推定する方法に関する。 The present invention relates to a method for estimating the carbon concentration at the time of converter blowing. Specifically, after performing blowing using the converter, the molten steel accommodated in the converter is discharged to the ladle. A method of accurately estimating the carbon concentration of molten steel stored in the ladle at the time of completion of steel extraction from the converter to the ladle when performing steel (referred to in this specification as `` carbon concentration after steel extraction '') About.

転炉に収容された溶銑に酸素、空気、水蒸気さらには炭酸ガス等の酸化性ガスを吹き込んで鋼に精錬する吹錬では、高品質及び低コストを図るために、吹錬の終了時点における溶鋼の炭素濃度及び温度を高精度で管理することが極めて重要である。   In the blowing process in which oxygen, air, water vapor, or oxidizing gas such as carbon dioxide gas is blown into the hot metal contained in the converter, the steel is refined at the end of the blowing process in order to achieve high quality and low cost. It is extremely important to control the carbon concentration and temperature of the steel with high accuracy.

そのため、終点に近い吹錬の末期には、転炉の内部に配置したサブランスを用いて測定した溶鋼の炭素濃度及び温度とモデル式とから算出された、測定時点から目標の炭素濃度に達するまでの間に供給すべき酸素吹き込み量及び冷却材投入量にしたがって酸素及び冷却材を供給することによって、吹錬の終了時点における溶鋼の炭素濃度及び温度を所望の値に制御しようとするダイナミック制御法が、多数知られている。   Therefore, at the final stage of blowing near the end point, until the target carbon concentration is reached from the time of measurement calculated from the carbon concentration and temperature of the molten steel measured using the sublance placed inside the converter and the model formula. Dynamic control method for controlling the carbon concentration and temperature of molten steel to desired values at the end of blowing by supplying oxygen and coolant according to the amount of oxygen blown and coolant input to be supplied during Many are known.

例えば、特許文献1には、吹錬の操業条件因子(例えばスラグボリューム、上底吹きガス流量さらにはランス湯面間距離等)により脱炭速度定数及び脱炭遷移炭素濃度を算出して吹錬の終了時点における溶鋼の炭素濃度及び温度を推定する発明が開示されている。
特開2001-11521号公報
For example, in Patent Document 1, the decarburization rate constant and the decarburized transition carbon concentration are calculated based on the operating condition factors (for example, the slag volume, the top bottom blowing gas flow rate, and the lance hot water surface distance). An invention for estimating the carbon concentration and temperature of molten steel at the end of the above is disclosed.
JP 2001-11521

しかし、特許文献1等により開示された従来の発明では、スラグに含有される酸素量、すなわちスラグ中の酸素分圧や2次燃焼率等の吹錬過程の変動による脱炭速度の変動を全く考慮していない。このため、従来の発明にしたがって吹錬の終了時点(ランスからの酸素を吹き止めた時点)における溶鋼の炭素濃度及び温度を推定しようとすると、推定値には不可避的に誤差を生じる。   However, in the conventional invention disclosed in Patent Document 1 and the like, the amount of oxygen contained in the slag, that is, the variation in the decarburization speed due to the variation in the blowing process such as the oxygen partial pressure in the slag and the secondary combustion rate is completely eliminated. Not considered. For this reason, if an attempt is made to estimate the carbon concentration and temperature of the molten steel at the end of blowing (at the time when oxygen from the lance is blown off) according to the conventional invention, an error will inevitably occur in the estimated value.

また、これらの発明では、転炉から取鍋への出鋼を開始する時点における溶鋼の炭素濃度である吹錬後炭素濃度が決定されれば一義的に出鋼後炭素濃度が決定されるとの前提にたっており、出鋼中にスラグ中の酸素に起因して生じる溶鋼の脱炭反応が全く考慮されていない。このため、吹錬後炭素濃度は高精度で推定できたとしても出鋼後炭素濃度の推定精度が低下してしまう。   Moreover, in these inventions, if the post-blowing carbon concentration, which is the carbon concentration of the molten steel at the time when the steel starts from the converter to the ladle, is determined, the post-steeling carbon concentration is uniquely determined. Therefore, the decarburization reaction of the molten steel caused by oxygen in the slag is not considered at all. For this reason, even if the carbon concentration after blowing can be estimated with high accuracy, the estimation accuracy of the post-steeling carbon concentration is lowered.

表1には、従来の発明に基づいて、出鋼後炭素量が0.10質量%未満(以下、本明細書においては特にことわりがない限り「%」は「質量%」を意味するものとする)の低炭素鋼、出鋼後炭素量が0.10%以上0.20%未満の中炭素鋼、さらには出鋼後炭素量が0.20%以上の高炭素鋼の吹錬後炭素濃度及び出鋼後炭素濃度を推定した場合の推定値の偏差の一例を百分率で示す。   In Table 1, based on the conventional invention, the post-steeling carbon amount is less than 0.10% by mass (hereinafter, unless otherwise specified, “%” means “% by mass”) Low carbon steel, medium carbon steel with carbon content after steel output of 0.10% or more and less than 0.20%, and high carbon steel with carbon content after steel output of 0.20% or more An example of the deviation of the estimated value when estimated is shown as a percentage.

Figure 2005206877
Figure 2005206877

表1に示すように、低炭素鋼、中炭素鋼さらには高炭素鋼ともに、吹錬後炭素濃度の推定値の偏差は百分率で0.004〜0.010%程度と小さく、推定精度は高い。しかしながら、出鋼後炭素濃度の推定値の偏差は、吹錬後炭素濃度の推定値の偏差よりも大幅に増加し、推定精度が大幅に低下することがわかる。   As shown in Table 1, the deviation of the estimated value of the carbon concentration after blowing is small, about 0.004 to 0.010%, and the estimation accuracy is high for both low carbon steel, medium carbon steel and high carbon steel. However, it can be seen that the deviation in the estimated value of the post-steeling carbon concentration is significantly greater than the deviation in the estimated value of the carbon concentration after blowing and the estimation accuracy is greatly reduced.

このため、従来の発明にしたがって転炉による吹錬を行った後に転炉を傾転させて取鍋への出鋼を行い、その後に例えば2次精錬等の成分調整を行おうとすると、2次精錬等における成分調整の負荷が増加し、この成分調整に必要な合金鉄に要するコストや昇熱量の上昇、さらには炭素濃度の吹き下げ率の増加に起因した品質及び歩留りの低下等は避けられず、操業上の大きな問題であった。   For this reason, after performing blowing by a converter according to the conventional invention, tilting the converter to perform steel removal to the ladle, and then trying to adjust the components such as secondary refining, the secondary The load of component adjustment in refining etc. is increased, and the cost and heat rise required for the alloy iron necessary for this component adjustment, and the decrease in quality and yield due to the increase in the carbon concentration blowing rate can be avoided. It was a big operational problem.

本発明の目的は、転炉による吹錬、取鍋への出鋼さらには2次精錬等の成分調整を行う際に、この成分調整の負荷を低減でき、これにより、この成分調整に必要な合金鉄に要するコストや昇熱量の低下、さらには炭素濃度の吹き下げ率の低下に起因した品質及び歩留りの向上を図ることができる転炉吹錬時の炭素濃度、具体的には出鋼後炭素濃度の推定方法を提供することである。   The object of the present invention is to reduce the load of this component adjustment when performing component adjustment such as blowing by a converter, tapping into a ladle, and secondary refining, and this is necessary for this component adjustment. Carbon concentration at the time of converter blowing that can improve the quality and yield due to the reduction in the cost and heating amount required for the alloyed iron, and also the reduction in the carbon concentration blowing rate, specifically after steel output It is to provide a method for estimating the carbon concentration.

本発明は、転炉を用いて吹錬を行った後にこの転炉を傾転させて転炉に収容された溶鋼を取鍋へ出鋼する際に、吹錬の末期における転炉内のスラグ中の酸素分圧に基づいて溶鋼の炭素濃度、例えば、取鍋への出鋼が完了した時の溶鋼の炭素濃度である出鋼後炭素濃度を推定することを特徴とする転炉吹錬時の炭素濃度の推定方法である。   The present invention relates to the slag in the converter at the end of the blowing, when the converter is tilted and then the converter is tilted to take out the molten steel contained in the converter into the ladle. At the time of converter blowing, the carbon concentration of the molten steel is estimated based on the oxygen partial pressure in the steel, for example, the post-steeling carbon concentration, which is the carbon concentration of the molten steel when the steel is drawn into the ladle It is an estimation method of carbon concentration.

また、本発明は、転炉を用いて吹錬を行った後にこの転炉を傾転させてこの転炉に収容された溶鋼を取鍋へ出鋼する際に、吹錬の末期に転炉内のスラグ中の酸素分圧を測定し、この酸素分圧の測定値と吹錬の際の操業条件因子とに基づいて、取鍋への出鋼が完了した時の溶鋼の炭素濃度である出鋼後炭素濃度を推定することを特徴とする転炉吹錬時の炭素濃度の推定方法である。この場合に、出鋼後炭素濃度は、測定されたスラグ中の酸素分圧と、吹錬の際の操業条件因子とを用いて求められる脱炭速度定数を用いて、推定されることが例示される。   Further, the present invention provides a converter at the final stage of blowing when the converter is tilted after the converter is tilted and the molten steel contained in the converter is taken out into the ladle. Measure the oxygen partial pressure in the slag inside, and based on the measured value of this oxygen partial pressure and the operating condition factor at the time of blowing, it is the carbon concentration of the molten steel when the steel is discharged to the ladle This is a method for estimating the carbon concentration during converter blowing, characterized by estimating the carbon concentration after steelmaking. In this case, it is exemplified that the post-steeling carbon concentration is estimated using a decarburization rate constant determined by using the measured oxygen partial pressure in the slag and the operating condition factor during blowing. Is done.

これらの本発明に係る転炉吹錬時の炭素濃度の推定方法では、スラグ中の酸素分圧は、基準電極と固体電解質からなる参照電極とを備えるとともにこの参照電極が転炉内のスラグに接触することによって酸素濃淡電池の起電力を形成するサブランスを用いて、この起電力に基づいた計算を行うことによって、測定されることが、測定時間の短縮に伴う推定精度向上を図るためには望ましい。   In these methods for estimating the carbon concentration at the time of converter blowing according to the present invention, the oxygen partial pressure in the slag includes a reference electrode and a reference electrode made of a solid electrolyte, and this reference electrode serves as the slag in the converter. In order to improve the estimation accuracy associated with shortening the measurement time, measurement is performed by performing calculation based on this electromotive force using a sublance that forms the electromotive force of the oxygen concentration cell by contact. desirable.

さらに、これらの本発明に係る転炉吹錬時の炭素濃度の推定方法では、出鋼後炭素濃度は、取鍋への出鋼の際に投入される合金鉄により炭素濃度の増加分を加味して、推定されることが例示される。すなわち、出鋼後炭素濃度は、出鋼中に投入された合金鉄により炭素濃度が増加する。このため、出鋼後炭素濃度は、本発明により得られる炭素濃度の推定値に、投入された合金鉄による炭素濃度の増加分を加算して推定すれば、この推定値を、取鍋への出鋼が完了した溶鋼の実際の分析値に略一致させることができる。   Further, in the carbon concentration estimation methods during the converter blowing according to the present invention, the post-steeling carbon concentration takes into account the increase in carbon concentration due to the alloy iron that is introduced when steeling into the ladle. Then, the estimation is exemplified. In other words, the post-steeling carbon concentration increases due to the alloy iron introduced into the steeling. For this reason, if the post-steeling carbon concentration is estimated by adding an increase in the carbon concentration due to the alloyed iron added to the estimated carbon concentration obtained by the present invention, this estimated value is added to the ladle. The actual analytical value of the molten steel that has been steeled out can be substantially matched.

本発明によれば、転炉を用いて吹錬を行った後にこの転炉を傾転させて転炉に収容された溶鋼を取鍋へ出鋼する際に、吹錬の末期における転炉内のスラグ中の酸素分圧に基づいて、具体的にはこの酸素分圧と転炉吹錬時の操業条件とから求められる脱炭速度定数を用いて、取鍋への出鋼が完了した時の溶鋼の炭素濃度である出鋼後炭素濃度を推定するため、この出鋼後炭素濃度の推定精度を著しく高めることができる。   According to the present invention, when the converter is tilted after being blown using the converter, the molten steel contained in the converter is taken out into the ladle. When the steel removal to the ladle is completed based on the partial pressure of oxygen in the slag, specifically using the decarburization rate constant determined from this partial pressure of oxygen and the operating conditions during converter blowing. Since the post-steeling carbon concentration, which is the carbon concentration of the molten steel, is estimated, the estimation accuracy of the post-steeling carbon concentration can be significantly increased.

このため、取鍋への出鋼後に行われる、例えば2次精錬等の成分調整に必要な合金鉄コストの低減、昇熱量の低減、さらには炭素濃度の吹き下げ率の減少による品質及び歩留の向上等によるコスト削減を図ることができる。   For this reason, quality and yield are reduced by reducing the iron alloy cost required for adjusting the components, such as secondary refining, etc., reducing the amount of heat rise, and further reducing the carbon concentration blowing rate, which is performed after steel is extracted to the ladle. Cost reduction can be achieved by improving the cost.

本発明に係る転炉吹錬時の炭素濃度の推定方法を実施するための最良の形態を、以下に詳細に説明する。
まず、はじめに本発明の背景及び原理について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the carbon concentration estimation method during converter blowing according to the present invention will be described in detail below.
First, the background and principle of the present invention will be described.

出鋼後炭素濃度が吹錬後炭素濃度からは不規則に変化すること、例えば吹錬後炭素濃度が0.40%である溶鋼の出鋼後炭素濃度が0.40〜0.30%と変動することのメカニズムを説明する。   The mechanism by which the post-steel carbon concentration varies irregularly from the carbon concentration after blowing, for example, the mechanism that the post-steel carbon concentration fluctuates from 0.40 to 0.30% for molten steel with a blown carbon concentration of 0.40%. explain.

転炉による吹錬時にランスから吹き付けられる酸素はその全てが転炉内での脱炭反応に用い尽くされるわけではなく、吹き付けられた酸素の一部は、下記(1)式及び(2)式により示される反応によって転炉内のスラグ中に蓄積される。なお、蓄積される酸素量は、各吹錬毎に吹錬条件に応じて変化する。   Not all of the oxygen blown from the lance during blowing by the converter is used up for the decarburization reaction in the converter, and some of the blown oxygen is expressed by the following formulas (1) and (2) Is accumulated in the slag in the converter by the reaction indicated by. Note that the amount of oxygen accumulated varies depending on the blowing conditions for each blowing.

Fe+O=FeO …………(1)
Mn+O=MnO …………(2)
このようにしてスラグ中に蓄積された酸素は、転炉から取鍋への出鋼が完了するまでの間に、例えば転炉の傾転や転炉からの排出等によってスラグと溶鋼との攪拌が盛んになる際に、下記(3)式及び(4)式により示される反応により溶鋼中の炭素と反応して、溶鋼の炭素量を低下させる。
Fe + O = FeO ………… (1)
Mn + O = MnO ………… (2)
The oxygen accumulated in the slag in this way is agitated between the slag and the molten steel, for example, by tilting the converter or discharging it from the converter before the steel output from the converter to the ladle is completed. When it becomes active, it reacts with the carbon in the molten steel by the reaction shown by the following formulas (3) and (4) to reduce the carbon content of the molten steel.

FeO+C=Fe+CO …………(3)
MnO+C=MnO …………(4)
このため、出鋼後炭素濃度は、吹錬後炭素濃度から不可避的にずれてしまうのであり、出鋼後炭素濃度を推定する際に(1)〜(4)式により示されるスラグ中に蓄積された酸素による溶鋼の脱炭反応を考慮しないと、仮に高精度で吹錬後炭素濃度を推定することができたとしても、出鋼後炭素濃度の推定精度は不芳なものとなる。したがって、吹錬後炭素濃度の推定精度を向上させるためには、転炉内のスラグ中の酸素分圧を推定因子として用いることが不可欠である。
FeO + C = Fe + CO ………… (3)
MnO + C = MnO ………… (4)
For this reason, the post-steeling carbon concentration inevitably deviates from the post-blowing carbon concentration, and it accumulates in the slag shown by the equations (1) to (4) when estimating the post-steeling carbon concentration. If the decarburization reaction of the molten steel due to the released oxygen is not taken into account, even if the post-blowing carbon concentration can be estimated with high accuracy, the post-steeling carbon concentration estimation accuracy is unsatisfactory. Therefore, in order to improve the estimation accuracy of the carbon concentration after blowing, it is essential to use the oxygen partial pressure in the slag in the converter as an estimation factor.

ところで、これまでにも、例えば溶鋼中の成分(P、Mn)の推定のために吹錬時にスラグの酸素分圧を推定する発明として、特開平5-239524号公報には排ガス成分の分析値とスラグレベルの測定値とからスラグ中の酸素分圧を推定する発明が、特開平6-256832号公報には排ガス成分の分析値から残留酸素量を求め、この値により吹錬操作を行って溶鋼の成分を目標に近付ける発明が、それぞれ開示されている。   By the way, as an invention for estimating the oxygen partial pressure of slag at the time of blowing for estimating components (P, Mn) in molten steel, for example, Japanese Patent Laid-Open No. 5-239524 discloses analysis values of exhaust gas components. In which the partial pressure of oxygen in the slag is estimated from the measured value of the slag and the measured value of the slag level. Inventions for bringing the components of the molten steel closer to the target are disclosed.

しかしながら、これらの発明では、排ガス成分の分析に相応の時間を要するため、排ガス成分のサンプリング時と分析完了時との間の時間差によりスラグ中の酸素分圧を正確に推定することは困難である。   However, in these inventions, it takes time to analyze the exhaust gas components, so it is difficult to accurately estimate the partial pressure of oxygen in the slag from the time difference between when the exhaust gas components are sampled and when the analysis is completed. .

そこで、本実施の形態では、例えば、基準電極と固体電解質からなる参照電極とを備えるとともに参照電極が転炉内のスラグに接触することによって酸素濃淡電池の起電力を形成するサブランスを用いて、この起電力に基づいた計算を行うことによって、スラグ中の酸素分圧を吹錬末期に短時間で殆どリアルタイムで測定し、吹錬の末期における転炉内のスラグ中の酸素分圧のこの測定値に基づいて、取鍋への出鋼が完了した時の溶鋼の炭素濃度である出鋼後炭素濃度を推定する。このため、本実施の形態によれば、出鋼後炭素濃度の推定精度を極めて高めることができる。   Therefore, in the present embodiment, for example, using a sub lance that includes a reference electrode and a reference electrode made of a solid electrolyte, and forms an electromotive force of the oxygen concentration cell by contacting the reference electrode with the slag in the converter, By calculating based on this electromotive force, the partial pressure of oxygen in the slag is measured almost in real time in the short term at the end of blowing, and this partial pressure of oxygen in the slag in the converter at the end of blowing is measured. Based on the value, the post-steeling carbon concentration, which is the carbon concentration of the molten steel when steeling to the ladle is completed, is estimated. For this reason, according to this Embodiment, the estimation precision of post-steeling carbon concentration can be raised extremely.

次に、本発明を添付図面を参照しながらさらに詳細に説明する。
本実施の形態に係る転炉吹錬時の炭素濃度の推定方法では、転炉吹錬時において、吹錬末期までにスラグ゛中に蓄積された酸素がそれ以降の脱炭反応、すなわち、サブランスを用いたスラグ中の酸素分圧の測定〜転炉から取鍋への出鋼完了の間における脱炭反応に大きく影響を及ぼすことから、吹錬末期にスラグ中の酸素分圧を測定し、この測定値を出鋼後炭素濃度の推定因子として用いるというものである。
Next, the present invention will be described in more detail with reference to the accompanying drawings.
In the method for estimating the carbon concentration at the time of converter blowing according to the present embodiment, at the time of converter blowing, oxygen accumulated in the slag by the end of the blowing is decarburization reaction thereafter, that is, sublance. Measurement of oxygen partial pressure in slag using slag-Since it greatly affects the decarburization reaction during the completion of steel extraction from the converter to the ladle, the oxygen partial pressure in slag is measured at the end of blowing, This measured value is used as an estimation factor of the post-steeling carbon concentration.

図1は、吹錬末期であってサブランスにより溶鋼の炭素濃度及び温度を測定された際に同時に採取したスラグ中のT.Fe+MnOの分析濃度(%)と、このサブランスによる測定以降の吹錬終了時までの脱炭酸素効率(%/Nm3/T)との関係の一例を示すグラフである。なお、脱炭酸素効率(%/Nm3/T)=(サブランスによる測定時の炭素濃度−吹き止め時の炭素濃度;%)/(供給酸素量; Nm3/T )である。本例では、サブランスによる測定時の炭素濃度は0.30%であり、吹き止め時の炭素濃度は0.18%であった。 Figure 1 shows the analytical concentration (%) of T.Fe + MnO in the slag sampled at the end of blowing and when the carbon concentration and temperature of the molten steel were measured by the sublance, and the blowing after the measurement by this sublance. 6 is a graph showing an example of a relationship with decarbonation efficiency (% / Nm 3 / T) until the end of smelting. Decarbonation efficiency (% / Nm 3 / T) = (carbon concentration at the time of measurement by sublance−carbon concentration at the time of blowing;%) / (supplied oxygen amount; Nm 3 / T). In this example, the carbon concentration at the time of measurement by the sublance was 0.30%, and the carbon concentration at the time of blowing was 0.18%.

図1にグラフで示すように、スラグ中のT.Fe+MnO(%)が高いほど脱炭酸素効率が若干大きくなっており、スラグ中の酸素が吹き止め時の炭素濃度の推定精度に影響を及ぼすことがわかる。これは吹錬末期において、スラグ中の酸素が若干脱炭反応に寄与しているためである。   As shown in the graph of Fig. 1, the higher the T.Fe + MnO (%) in the slag, the greater the decarbonation efficiency, and the oxygen in the slag affects the estimation accuracy of the carbon concentration at the time of blowing. It can be seen that This is because oxygen in the slag slightly contributes to the decarburization reaction at the end of blowing.

また、図2は、同様にして採取した動浴スラグ中のT.Fe+MnOの濃度と、吹錬後炭素濃度及び出鋼後炭素濃度の偏差ΔC(%)との関係の一例を示すグラフである。
図2にグラフで示すように、スラグ中のT.Fe+MnOの濃度が高いほど、また吹錬終了時の炭素濃度が高いほど、吹錬後炭素濃度及び出鋼後炭素濃度の偏差ΔC(%)が増加することがわかる。
FIG. 2 is a graph showing an example of the relationship between the concentration of T.Fe + MnO in the moving bath slag collected in the same manner and the deviation ΔC (%) of the carbon concentration after blowing and the carbon concentration after steelmaking It is.
As shown in the graph of FIG. 2, the higher the T.Fe + MnO concentration in the slag and the higher the carbon concentration at the end of blowing, the deviation ΔC ( %) Increases.

この理由は、出鋼中には、例えば転炉の傾転や転炉からの排出等によってスラグと溶鋼との攪拌が盛んになり、これにより、スラグ中の酸素と溶鋼中の炭素との反応量が増加するからである。このため、上述した表1に示すように、吹錬後炭素濃度の推定精度が高くとも、出鋼後炭素濃度の推定精度は芳しくなくなる。   The reason for this is that during the steel output, for example, the slag and molten steel are vigorously stirred due to the tilting of the converter, the discharge from the converter, etc., so that the reaction between oxygen in the slag and carbon in the molten steel. This is because the amount increases. For this reason, as shown in Table 1 above, even if the estimation accuracy of the carbon concentration after blowing is high, the estimation accuracy of the post-steeling carbon concentration is not good.

したがって、吹錬の末期におけるスラグ中のT.Fe及びMnOを把握することは、出鋼後炭素濃度の推定精度を向上させるためには極めて有効である。しかしながら、吹錬時にスラグを採取して分析を行うことは、かなりの時間を要するため、出鋼後炭素濃度を推定するダイナミック制御には用いることができない。そこで、本実施の形態では、以下に説明するサブランスを用いて、溶鋼中の酸素分圧を直接測定する。   Therefore, grasping T.Fe and MnO in the slag at the end of the blow smelting is extremely effective in improving the estimation accuracy of the post-steel carbon concentration. However, collecting and analyzing slag during blowing requires a considerable amount of time, and thus cannot be used for dynamic control for estimating the post-steel carbon concentration. Therefore, in the present embodiment, the oxygen partial pressure in the molten steel is directly measured using a sublance described below.

図3は、本実施の形態で用いるサブランス1を概念的に示す説明図である。本実施の形態で用いるサブランス1は、公知のサブランスと同様に溶鋼の炭素濃度及び温度を測定するためのプローブを有するとともに、スラグ酸素測定用の固体電解質からなる参照電極を追加して設けてある。   FIG. 3 is an explanatory diagram conceptually showing the sublance 1 used in the present embodiment. The sublance 1 used in the present embodiment has a probe for measuring the carbon concentration and temperature of molten steel as well as the known sublance, and is additionally provided with a reference electrode made of a solid electrolyte for measuring slag oxygen. .

すなわち、基準電極としてMo製電極2を有するとともに、参照電極としてZrO2製電極3を有する。このサブランス1は、フ゜ローフ゛を溶鋼に浸漬した時点で溶鋼の炭素濃度及び温度を測定することができ、引き上げ時にスラグ層を通過する際にジルコニア製の固体電解質からなる参照電極3を介して酸素濃淡電池が形成される。この起電力Eを測定し、その起電力Eに基づいて下記式(5)及び(6)に基づいて酸素分圧を計算する。 That is, it has the Mo electrode 2 as the reference electrode and the ZrO 2 electrode 3 as the reference electrode. The sublance 1 can measure the carbon concentration and temperature of the molten steel when the probe is immersed in the molten steel, and the oxygen concentration can be measured through the reference electrode 3 made of a zirconia solid electrolyte when passing through the slag layer when it is pulled up. A battery is formed. This electromotive force E is measured, and based on the electromotive force E, the oxygen partial pressure is calculated based on the following equations (5) and (6).

Figure 2005206877
Figure 2005206877

PO2 :溶鋼 又はスラグ中の酸素分圧(atm)
T :溶鋼 又はスラグ温度(K)
E :測定起電力(mV)
F :ファラテ゛ィ定数 23.066(cal/mol・mV)
R :カ゛ス定数 1.987 (cal/mol・K)
Po2(ref):基準極(Cr/Cr2O3)の酸素分圧[Elliott & Gleiser (1963)]
10(8.936-39416/T)
PO 2 : Partial pressure of oxygen in molten steel or slag (atm)
T: Molten steel or slag temperature (K)
E: Measurement electromotive force (mV)
F: Faraday constant 23.066 (cal / mol · mV)
R: Gas constant 1.987 (cal / mol · K)
Po 2 (ref): oxygen partial pressure of the reference electrode (Cr / Cr 2 O 3 ) [Elliott & Gleiser (1963)]
10 (8.936-39416 / T)

Figure 2005206877
Figure 2005206877

図4は、測定したスラグ中の酸素分圧logPo2と、そのときのスラグ中のT.Fe+MnO(%)の分析値との関係を示すグラフである。酸素分圧logPo2とT.Fe+MnO(%)との間には良い相関関係がある。このため、スラグ中の酸素分圧logPo2の測定値を考慮することにより、吹錬後炭素濃度及び出鋼後炭素濃度の推定精度を向上することができる。 FIG. 4 is a graph showing the relationship between the measured oxygen partial pressure logPo 2 in the slag and the analysis value of T.Fe + MnO (%) in the slag at that time. There is a good correlation between oxygen partial pressure logPo 2 and T.Fe + MnO (%). For this reason, the estimation accuracy of the carbon concentration after blowing and the carbon concentration after steelmaking can be improved by considering the measured value of the oxygen partial pressure logPo 2 in the slag.

図5は、吹錬の末期に測定したスラグ中の酸素分圧logPo2と、溶鋼の炭素濃度[C]との関係を示すグラフである。
図5にグラフで示すように、吹錬時に溶鋼中のFe、Mn等が酸化されるため、酸素分圧logPo2が極めて高いスラグが形成されており、点線で示したC-O平衡から上方へ大きくオフセットしている。また、酸素分圧logPo2は、同一の炭素濃度[C] においてばらついており、吹錬条件等により変動している。
FIG. 5 is a graph showing the relationship between the oxygen partial pressure logPo 2 in the slag measured at the end of blowing and the carbon concentration [C] of the molten steel.
As shown in the graph of FIG. 5, since Fe, Mn, etc. in the molten steel are oxidized during blowing, a slag with an extremely high oxygen partial pressure logPo 2 is formed, and the CO equilibrium indicated by the dotted line is greatly increased upward. It is offset. Further, the oxygen partial pressure logPo 2 varies at the same carbon concentration [C] and varies depending on the blowing conditions and the like.

次に、このスラグ中の酸素分圧logPo2を考慮したモデルロジックの考え方を以下に説明する
図6は、図5に示すグラフと同様に、スラグ中の酸素分圧logPo2と、溶鋼の炭素濃度[C]との関係を示すグラフである。
Next, the concept of model logic considering the oxygen partial pressure logPo 2 in the slag will be described below. FIG. 6 shows the oxygen partial pressure logPo 2 in the slag and the carbon of the molten steel, as in the graph shown in FIG. It is a graph which shows the relationship with density | concentration [C].

図6にグラフで示すように、吹錬の末期におけるスラグ中の酸素量は、平衡よりも高い値を示しており(図6における黒丸印参照)、過剰である。この過剰な酸素源が吹錬終了時までに若干C-O平衡へ近づき(白四角印参照)、そして出鋼完了までにさらにC-O平衡に近づこうとする(白丸印参照)ため、脱炭反応にスラグ中の酸素が使用される。本実施の形態におけるスラグ中の酸素分圧logPo2を考慮したモデルロジックは、この反応を考慮した酸素濃度[C]を推定するロジックである。 As shown in the graph of FIG. 6, the amount of oxygen in the slag at the end of blowing is higher than the equilibrium (see the black circles in FIG. 6) and is excessive. This excess oxygen source approaches CO equilibrium slightly by the end of blowing (see white squares), and further approaches CO equilibrium by the end of steelmaking (see white circles). Of oxygen is used. The model logic in consideration of the oxygen partial pressure logPo 2 in the slag in the present embodiment is logic for estimating the oxygen concentration [C] in consideration of this reaction.

まず、このスラグ中の過剰な酸素量指数を、Oslag=(logPO2SL − logPo2eq)×Vslagと表わす。ここで、logPO2SLはサブランス測定値のスラグ中の酸素分圧を示し、logPo2eqはサブランス測定時の[C]値における平衡酸素分圧を示し、さらに、Vslagはスラグボリュームを示す。 First, an excess oxygen amount index in the slag is expressed as Oslag = (logPO 2SL −logPo 2eq ) × V slag . Here, logPO 2SL indicates the oxygen partial pressure in the slag of the sublance measurement value, logPo 2eq indicates the equilibrium oxygen partial pressure in the [C] value at the time of the sublance measurement, and Vslag indicates the slag volume.

この過剰な酸素が吹錬終了後、あるいは出鋼完了後までにどの程度脱炭反応に供給されるかの寄与率を目標[C]の関数とすると、脱炭反応に使用されるスラグ中の酸素指数は、Oslag(DC)=a×[C]aim×Oslagと表せる。そして、これを脱炭速度定数の推定式に考慮した
K1=Σαi× Xi + b×Oslag(DC)(吹錬終了時の推定)、あるいは
K1=Σαi× Xi + C×Oslag(DC)(出鋼完了時の推定)
により表した。
If the contribution ratio of how much excess oxygen is supplied to the decarburization reaction after the end of blowing or after completion of steelmaking is a function of the target [C], the amount of oxygen in the slag used for the decarburization reaction The oxygen index can be expressed as Oslag (DC) = a × [C] aim × Oslag. And this was taken into account in the decarburization rate constant estimation formula
K1 = Σαi x Xi + b x Oslag (DC) (estimated at the end of blowing), or
K1 = Σαi x Xi + C x Oslag (DC) (estimated when steelmaking is completed)
It was expressed by

上記式において、Xiは操業条件因子(例えばスラグボリューム、上底吹きガス流量、ランス湯面間距離等)を示し、符号αは係数である。また、符号bは吹錬終了時の炭素濃度[C]を推定するために用いる係数を示し、符号Cは出鋼完了時の炭素濃度[C]を推定するために用いる係数を示す。   In the above equation, Xi represents an operating condition factor (for example, slag volume, upper bottom blowing gas flow rate, lance hot water surface distance, etc.), and symbol α is a coefficient. The symbol b indicates a coefficient used for estimating the carbon concentration [C] at the end of blowing, and the symbol C indicates a coefficient used for estimating the carbon concentration [C] at the completion of steelmaking.

次に、推定した脱炭速度定数K1を用いて下記の酸素バランス式から目標炭素濃度を推定する。   Next, the target carbon concentration is estimated from the following oxygen balance equation using the estimated decarburization rate constant K1.

Figure 2005206877
Figure 2005206877

なお、上記の酸素バランス式では、CSLは動浴[C]値 (%)を示し、Caimは出鋼目標[C]値(%)を示し、Fo2は 動浴から設定[C]値になるまでに吹き込まれた酸素原単位 (Nm3/Ton)を示し、ηは副原料持ち込み酸素効率を示し、Wsub,jは動浴から吹止までの副原料jの実績投入量(Ton)を示し、O2,jは副原料jの酸素含有率 (Nm3/Ton)を示し、WSTは炉内総重量(溶銑重量+主原料重量) (Ton)を示し、κ1は 脱炭速度定数 (%/(Nm3/Ton))を示し、CBは臨界[C]濃度(%)を示し、CRは脱炭限界[C]濃度 (%;定数=0.02)を示し、FBCはフィードバック補正項(前回FB計算値)を示し、ξは酸素バランス式指数項の次数(定数)を示し、さらに、ηは副原料持ち込み酸素効率(定数)を示す。
このようにして出鋼完了後の目標[C]までの送酸量を決定する。
In the above oxygen balance equation, C SL indicates the dynamic bath [C] value (%), C aim indicates the steel output target [C] value (%), and Fo 2 is set from the dynamic bath [C]. Indicates the oxygen intensity (Nm 3 / Ton) blown up to the value, η indicates the oxygen efficiency brought in by the auxiliary material, and W sub, j indicates the actual input amount of the auxiliary material j from the moving bath to the blowing ( Ton), O 2, j indicates the oxygen content (Nm 3 / Ton) of the auxiliary raw material j, W ST indicates the total weight in the furnace (hot metal weight + main raw material weight) (Ton), and κ 1 is decarburization rate constant (% / (Nm 3 / Ton)) indicates, C B represents the critical [C] concentration (%), C R is decarburization limit [C] concentration; indicates (% constant = 0.02) , FB C represents the feedback correction term (previous FB calculation value), xi] represents the degree of oxygen balance equation exponential term (constant), and further, eta denotes the auxiliary materials carry oxygen efficiency (constant).
In this way, the amount of acid delivered to the target [C] after completion of steel production is determined.

本実施の形態における、スラグ中の酸素分圧logPo2を考慮したモデルロジックは、以上のように構成される。
次に、本実施の形態における、吹錬状況等の情報の授受について説明する。
The model logic in consideration of the oxygen partial pressure logPo 2 in the slag in the present embodiment is configured as described above.
Next, transmission / reception of information such as blowing status in the present embodiment will be described.

図7は、本発明を実施するための吹錬時の転炉11の構成例を模式的に示す説明図である。
同図に示すように、転炉11には溶銑12が収容されて、吹錬が行なわれている。転炉11の上部には、メインランス13とサブランス14とが設けられている。また、転炉11の低部には底吹きノズル15が設けられており、メインランス13及び底吹きノズル15には、ともに、流量計16、17が装着されている。図7において、符号18は副原量のシュータを示し、符号19は秤量器を示す。
FIG. 7 is an explanatory view schematically showing a configuration example of the converter 11 at the time of blowing for carrying out the present invention.
As shown in the figure, the converter 11 contains hot metal 12 and is blown. A main lance 13 and a sub lance 14 are provided above the converter 11. Further, a bottom blowing nozzle 15 is provided in the lower part of the converter 11, and both the main lance 13 and the bottom blowing nozzle 15 are equipped with flow meters 16 and 17, respectively. In FIG. 7, reference numeral 18 denotes a secondary raw material shooter, and reference numeral 19 denotes a weigher.

この転炉11では、吹錬状態はサブランス14による測定時にこれらの計器から送信される。また、サブランスによる測定時の測定波形処理は、波形演算機20によりなされ、溶鋼12の炭素濃度[C]、溶鋼12の温度、及びスラグ中酸素分圧の測定値は、いずれも、プロセスコンピュータ21に入力される。   In the converter 11, the blown state is transmitted from these instruments when measured by the sublance 14. In addition, the measurement waveform processing at the time of measurement by the sublance is performed by the waveform calculator 20, and the measured values of the carbon concentration [C] of the molten steel 12, the temperature of the molten steel 12, and the oxygen partial pressure in the slag are all processed by the process computer 21. Is input.

本実施の形態では、この図7に示す転炉11を用いるため、転炉11を用いて吹錬を行った後にこの転炉11を傾転させて転炉11に収容された溶鋼12を取鍋(図示しない)へ出鋼する際に、吹錬の末期における転炉11内のスラグ10中の酸素分圧に基づいて、取鍋への出鋼が完了した時の溶鋼の炭素濃度である出鋼後炭素濃度を推定することができる。   In the present embodiment, since the converter 11 shown in FIG. 7 is used, after the blowing using the converter 11, the converter 11 is tilted to remove the molten steel 12 accommodated in the converter 11. It is the carbon concentration of the molten steel when the steel output to the ladle is completed based on the partial pressure of oxygen in the slag 10 in the converter 11 at the end of the blowing process when steel is output to the pan (not shown) The carbon concentration after steel can be estimated.

図7に示すように構成された、210トン上底吹き転炉11を用いて、炭素濃度が3.5%から4.0%の溶銑12を用い、スラグボリューム25〜35kg/T、底吹きカ゛ス流量0.1〜0.17Nm3/min/T、上吹き送酸速度5.0〜3.5Nm3/min/Tの条件により転炉吹錬を行った。 Using a 210-ton top-bottom blowing converter 11 configured as shown in Fig. 7, using hot metal 12 with a carbon concentration of 3.5% to 4.0%, a slag volume of 25 to 35 kg / T, and a bottom blowing gas flow rate of 0.1 to Blast furnace blowing was performed under the conditions of 0.17 Nm 3 / min / T and top blowing acid rate of 5.0 to 3.5 Nm 3 / min / T.

そして、サブランス14により溶鋼12の炭素濃度及び温度を測定するときに、同時にサブランス14によりスラグ10中の酸素分圧を測定し、スラグ10中の酸素分圧を考慮して、吹錬後炭素濃度を推定する条件のものを発明例1〜3とし、また出鋼後炭素濃度を推定する条件のものは発明例4〜6とした。   Then, when measuring the carbon concentration and temperature of the molten steel 12 with the sublance 14, simultaneously measure the oxygen partial pressure in the slag 10 with the sublance 14, and consider the oxygen partial pressure in the slag 10, Inventive Examples 1 to 3 were used for estimating the carbon concentration, and Inventive Examples 4 to 6 were used for estimating the post-steeling carbon concentration.

これに対し、スラグ中の酸素分圧を考慮せずに吹錬後炭素濃度を推定するものを従来例1〜3とし、また出鋼後炭素濃度を推定するものを従来例4〜6とした。
結果を、表2、3にまとめて示す。なお、表2、3における推定[C]レンシ゛とは、出鋼時の炭素の目標範囲を示す。
On the other hand, what estimated the carbon concentration after blowing without considering the oxygen partial pressure in the slag was regarded as Conventional Examples 1 to 3, and what estimated the carbon concentration after steelmaking was regarded as Conventional Examples 4 to 6. .
The results are summarized in Tables 2 and 3. The estimated [C] range in Tables 2 and 3 indicates the target range of carbon at the time of steel production.

Figure 2005206877
Figure 2005206877

Figure 2005206877
Figure 2005206877

表2、3に示すように、全ての[C]レンシ゛において炭素濃度の推定精度が向上したことがわかる。   As shown in Tables 2 and 3, it can be seen that the estimation accuracy of carbon concentration was improved in all [C] ranges.

このため、本実施例によれば、[C]適中精度が向上したことにより、2次精錬における成分調整に必要な合金鉄コストの低減、昇熱量の低減、[C]の吹き下げ率の減少による品質及び、歩留の向上等によるコスト削減を図ることができた。   For this reason, according to the present embodiment, [C] suitable medium accuracy has been improved, thereby reducing the cost of alloy iron necessary for adjusting the components in secondary refining, reducing the amount of heat rise, and reducing the downflow rate of [C]. We were able to reduce costs by improving quality and yield.

吹錬末期であってサブランスにより溶鋼の炭素濃度及び温度を測定された際に同時に採取したスラグ中のT.Fe+MnOの分析濃度(%)と、このサブランスによる測定以降の吹錬終了時までの脱炭酸素効率(%/Nm3/T)との関係の一例を示すグラフである。Analytical concentration (%) of T.Fe + MnO in the slag collected at the end of blowing and when carbon concentration and temperature of molten steel were measured by sublance, and until the end of blowing after measurement with this sublance 2 is a graph showing an example of the relationship with decarbonation efficiency (% / Nm 3 / T). 動浴スラグ中のT.Fe+MnOの濃度と、吹錬後炭素濃度及び出鋼後炭素濃度の偏差ΔC(%)との関係の一例を示すグラフである。It is a graph which shows an example of the density | concentration (DELTA) C (%) of the density | concentration of T.Fe + MnO in dynamic bath slag, the carbon concentration after blowing, and the carbon concentration after steelmaking. 本実施の形態で用いるサブランスを概念的に示す説明図である。It is explanatory drawing which shows notionally the sublance used by this Embodiment. 測定したスラグ中の酸素分圧logPo2と、そのときのスラグ中のT.Fe+MnO(%)の分析値との関係を示すグラフである。3 is a graph showing the relationship between the measured oxygen partial pressure logPo 2 in slag and the analytical value of T.Fe + MnO (%) in the slag at that time. 吹錬の末期に測定したスラグ中の酸素分圧logPo2と、溶鋼の炭素濃度[C]との関係を示すグラフである。An oxygen partial pressure LogPo 2 in the slag measured at the end of the blowing is a graph showing the relationship between the carbon concentration of the molten steel [C]. スラグ中の酸素分圧logPo2と、溶鋼の炭素濃度[C]との関係を示すグラフである。An oxygen partial pressure LogPo 2 in the slag is a graph showing the relationship between the carbon concentration of the molten steel [C]. 本発明を実施するための吹錬時の転炉の構成例を模式的に示す説明図である。It is explanatory drawing which shows typically the structural example of the converter at the time of blowing for implementing this invention.

符号の説明Explanation of symbols

11 転炉
12 溶銑
13 メインランス
14 サブランス
15 底吹きノズル
16 流量計
17 流量計
18 副原量のシュータ
19 秤量器
20 波形演算器
21 プロセスコンピュータ
11 Converter
12 Hot metal
13 Main lance
14 Sublance
15 Bottom blowing nozzle
16 Flow meter
17 Flow meter
18 Bye quantity shooter
19 Weighing scale
20 Waveform calculator
21 Process computer

Claims (5)

転炉を用いて吹錬を行った後に該転炉を傾転させて該転炉に収容された溶鋼を取鍋へ出鋼する際に、前記吹錬の末期における前記転炉内のスラグ中の酸素分圧に基づいて溶鋼の炭素濃度を推定することを特徴とする転炉吹錬時の炭素濃度の推定方法。 In the slag in the converter at the final stage of the blowing, when the molten steel accommodated in the converter is tilted and discharged into the ladle after performing the blowing using the converter An estimation method of carbon concentration at the time of converter blowing, characterized by estimating the carbon concentration of molten steel based on the oxygen partial pressure of the steel. 転炉を用いて吹錬を行った後に該転炉を傾転させて該転炉に収容された溶鋼を取鍋へ出鋼する際に、前記吹錬の末期に前記転炉内のスラグ中の酸素分圧を測定し、該酸素分圧の測定値と前記吹錬の際の操業条件因子とに基づいて、前記取鍋への出鋼が完了した時の溶鋼の炭素濃度である出鋼後炭素濃度を推定することを特徴とする転炉吹錬時の炭素濃度の推定方法。 In the slag in the converter at the end of the blowing, when the molten steel accommodated in the converter is tilted and discharged into the ladle after performing the blowing using the converter The measured partial pressure of oxygen, and based on the measured value of the partial pressure of oxygen and the operating condition factors during the blowing, the steel concentration is the carbon concentration of the molten steel when the steel is discharged to the ladle A method for estimating carbon concentration during converter blowing, characterized by estimating post-carbon concentration. 前記出鋼後炭素濃度は、前記測定されたスラグ中の酸素分圧と、前記吹錬の際の操業条件因子とを用いて求められる脱炭速度定数を用いて、推定される請求項2に記載された転炉吹錬時の炭素濃度の推定方法。 The post-steeling carbon concentration is estimated using a decarburization rate constant determined by using the measured oxygen partial pressure in the slag and an operating condition factor during the blowing. The estimation method of the carbon concentration at the time of the converter blowing described. 前記スラグ中の酸素分圧は、基準電極と固体電解質からなる参照電極とを備えるとともに該参照電極が前記転炉内のスラグに接触することによって酸素濃淡電池の起電力を形成するサブランスを用いて、該起電力に基づいた計算を行うことによって、測定される請求項1から請求項3までのいずれか1項に記載された転炉吹錬時の炭素濃度の推定方法。 The oxygen partial pressure in the slag includes a reference electrode and a reference electrode made of a solid electrolyte, and uses a sub lance that forms an electromotive force of the oxygen concentration cell when the reference electrode contacts the slag in the converter. The method for estimating a carbon concentration during converter blowing according to any one of claims 1 to 3, which is measured by performing a calculation based on the electromotive force. 前記出鋼後炭素濃度は、前記取鍋への出鋼の際に投入される合金鉄による炭素濃度の増加分を加味して、推定される請求項1から請求項4までのいずれか1項に記載された転炉吹錬時の炭素濃度の推定方法。 5. The post-steeling carbon concentration is estimated by taking into account the increase in carbon concentration due to the alloyed iron that is introduced when the steel is tapped into the ladle. The estimation method of the carbon concentration at the time of converter blowing described in 1.
JP2004014642A 2004-01-22 2004-01-22 Method for estimating carbon concentration at blowing time in converter Pending JP2005206877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014642A JP2005206877A (en) 2004-01-22 2004-01-22 Method for estimating carbon concentration at blowing time in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014642A JP2005206877A (en) 2004-01-22 2004-01-22 Method for estimating carbon concentration at blowing time in converter

Publications (1)

Publication Number Publication Date
JP2005206877A true JP2005206877A (en) 2005-08-04

Family

ID=34900373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014642A Pending JP2005206877A (en) 2004-01-22 2004-01-22 Method for estimating carbon concentration at blowing time in converter

Country Status (1)

Country Link
JP (1) JP2005206877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223047A (en) * 2007-03-08 2008-09-25 Sumitomo Metal Ind Ltd Method for presuming molten steel component
JP2013249523A (en) * 2012-06-01 2013-12-12 Nippon Steel & Sumitomo Metal Corp Method for operating converter
KR101400041B1 (en) * 2012-04-26 2014-05-30 현대제철 주식회사 Device for estimating carbon-increasing of molten steel and method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101618A (en) * 1976-02-24 1977-08-25 Nippon Steel Corp Control of temp. and carbon content of molten steel in oxygen converte r
JPS52101617A (en) * 1976-02-24 1977-08-25 Nippon Steel Corp Presumption of carbon content and temp. of molten steel in oxygen conv erter
JPS5729519A (en) * 1980-07-30 1982-02-17 Nippon Steel Corp Oxygen converter
JPS59136652A (en) * 1983-01-25 1984-08-06 Kawasaki Steel Corp Method for estimating molten steel constituent
JPH02115314A (en) * 1988-10-25 1990-04-27 Kawasaki Steel Corp Method for controlling molten steel temperature in top and bottom-blown converter
JPH05239524A (en) * 1992-02-28 1993-09-17 Sumitomo Metal Ind Ltd Method for controlling blowing of converter
JPH06256832A (en) * 1993-03-02 1994-09-13 Nippon Steel Corp Blowing method of converter
JP2001011521A (en) * 1999-06-25 2001-01-16 Sumitomo Metal Ind Ltd Method for estimating molten steel temperature and carbon concentration at blowing time in converter, and blowing method in converter
JP2002131272A (en) * 2000-10-25 2002-05-09 Nippon Steel Corp Probe and method for measuring activity of oxygen in slag

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101618A (en) * 1976-02-24 1977-08-25 Nippon Steel Corp Control of temp. and carbon content of molten steel in oxygen converte r
JPS52101617A (en) * 1976-02-24 1977-08-25 Nippon Steel Corp Presumption of carbon content and temp. of molten steel in oxygen conv erter
JPS5729519A (en) * 1980-07-30 1982-02-17 Nippon Steel Corp Oxygen converter
JPS59136652A (en) * 1983-01-25 1984-08-06 Kawasaki Steel Corp Method for estimating molten steel constituent
JPH02115314A (en) * 1988-10-25 1990-04-27 Kawasaki Steel Corp Method for controlling molten steel temperature in top and bottom-blown converter
JPH05239524A (en) * 1992-02-28 1993-09-17 Sumitomo Metal Ind Ltd Method for controlling blowing of converter
JPH06256832A (en) * 1993-03-02 1994-09-13 Nippon Steel Corp Blowing method of converter
JP2001011521A (en) * 1999-06-25 2001-01-16 Sumitomo Metal Ind Ltd Method for estimating molten steel temperature and carbon concentration at blowing time in converter, and blowing method in converter
JP2002131272A (en) * 2000-10-25 2002-05-09 Nippon Steel Corp Probe and method for measuring activity of oxygen in slag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223047A (en) * 2007-03-08 2008-09-25 Sumitomo Metal Ind Ltd Method for presuming molten steel component
KR101400041B1 (en) * 2012-04-26 2014-05-30 현대제철 주식회사 Device for estimating carbon-increasing of molten steel and method thereof
JP2013249523A (en) * 2012-06-01 2013-12-12 Nippon Steel & Sumitomo Metal Corp Method for operating converter

Similar Documents

Publication Publication Date Title
JP6573035B2 (en) Method for estimating phosphorus concentration in molten steel and converter blowing control device
JP5300860B2 (en) Method for producing ultra-low carbon ferritic stainless steel
JP6314484B2 (en) Hot metal dephosphorization method
JP6601631B2 (en) Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal
JP2010242128A (en) Method for recovering molten metal
JP2013060659A (en) Method for decarburizing and refining molten iron in converter
JP5630324B2 (en) Method of decarburizing and refining hot metal in converter
JP2012136767A (en) Method for estimating phosphorus concentration in converter
JP2005206877A (en) Method for estimating carbon concentration at blowing time in converter
JP5678718B2 (en) Method of decarburizing and refining hot metal in converter
JP4816513B2 (en) Molten steel component estimation method
KR20040014599A (en) Method for decarbonization refining of chromium-containing molten steel
JP3659070B2 (en) Estimating molten steel temperature and carbon concentration during converter blowing, and converter blowing process
JP2003027128A (en) Method for producing molten steel in vacuum degassing facility
JP6822148B2 (en) Dehydrogenation refining method for molten steel
JP2006283089A (en) Aluminum addition method for production of electromagnetic steel
JP6277991B2 (en) Slag component estimation method, solvent calculation method and hot metal pretreatment method
WO2021200496A1 (en) Method for conducting decarburization refining of molten steel under reduced pressure
JPH0925507A (en) Method for refining molten steel
JPH07118723A (en) Converter refining method
JP2013040359A (en) Method for secondary refining of molten steel and manufacturing method therefor
JP2013057120A (en) Method for desulfurizing molten steel and method for manufacturing molten steel
KR102534954B1 (en) Blowing control method and blowing control device of converter type dephosphorization refining furnace
JP3634046B2 (en) Reduction and recovery method for valuable metals in slag with improved accuracy of molten steel components
JP4357082B2 (en) Method for decarburizing and refining chromium-containing molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218