JP6601631B2 - Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal - Google Patents

Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal Download PDF

Info

Publication number
JP6601631B2
JP6601631B2 JP2017012631A JP2017012631A JP6601631B2 JP 6601631 B2 JP6601631 B2 JP 6601631B2 JP 2017012631 A JP2017012631 A JP 2017012631A JP 2017012631 A JP2017012631 A JP 2017012631A JP 6601631 B2 JP6601631 B2 JP 6601631B2
Authority
JP
Japan
Prior art keywords
slag
refining
amount
molten metal
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017012631A
Other languages
Japanese (ja)
Other versions
JP2018119195A (en
Inventor
渉平 三嶋
憲治 中瀬
拓之 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017012631A priority Critical patent/JP6601631B2/en
Publication of JP2018119195A publication Critical patent/JP2018119195A/en
Application granted granted Critical
Publication of JP6601631B2 publication Critical patent/JP6601631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶融金属精錬容器を傾動させて排滓するときの排滓量を推定する方法、およびその方法を利用する溶融金属の精錬方法に関する。   The present invention relates to a method for estimating the amount of waste when a molten metal refining vessel is tilted and discharged, and a molten metal refining method using the method.

溶融金属の精錬、例えば転炉による鋼の精錬において、溶融金属精錬容器である転炉内におけるスラグの状態は、溶融金属(溶鋼)の精錬(冶金反応)に強く影響することが知られている。特に、該転炉内での溶融スラグ(以下、単に「スラグ」という)の量およびこのスラグを炉外へ排出するときの量を知ることは、溶融金属を精錬する場合において極めて重要である。   In the refining of molten metal, for example, the refining of steel by a converter, it is known that the state of slag in the converter, which is a molten metal refining vessel, strongly affects the refining (metallurgical reaction) of molten metal (molten steel). . In particular, knowing the amount of molten slag in the converter (hereinafter simply referred to as “slag”) and the amount of the slag discharged outside the furnace is extremely important in refining molten metal.

例えば、転炉による溶鉄の精錬を例にとると、一般的な技術としては、排出されたスラグを運搬する転滓台車に対してロ−ドセル方式の秤量器を設置し、台車上の転滓鍋の風袋引き等の前処理を行った後、スラグ排出完了時の質量から排出スラグの量を求める方法が知られている。また、転炉内のスラグを排出した後、なおもその転炉内に残留するスラグ量を排出終了時の転炉の傾動角度等から推定する既知の方法もある。(特許文献1参照)   For example, taking the refining of molten iron by a converter as an example, a general technique is to install a load cell type weighing machine on a rolling cart that transports the discharged slag, and to convert the rolling on the cart. A method is known in which the amount of discharged slag is obtained from the mass at the time when slag discharge is completed after pretreatment such as taring the pan. There is also a known method for estimating the amount of slag remaining in the converter after discharging the slag in the converter from the tilt angle of the converter at the end of discharge. (See Patent Document 1)

特開平3―158408号公報Japanese Patent Laid-Open No. 3-158408

ところで、転炉からスラグのみを排出する場合であっても、排出の末期にスラグ中に溶鉄が混入して流出することがある。そのため、転滓台車に設置した秤量器の秤量値というのは、流出した溶鉄の質量をも含んだものとなり、しかも、混入する溶鉄の質量は一定ではない。そのため、従来方法では、転滓台車上の秤量器で測定されるスラグ質量と溶鉄質量とを正確に分けて求めることが困難である。その理由は、溶鉄の密度はスラグよりもよりも大きい(スラグのフォーミングが大きい場合約7倍)ため、少ない量の溶鉄が混入した場合であっても、秤量値への影響は大きいものになるからである。さらに、このような測定方法の場合、秤量器に飛散したスラグ片が秤量器に噛み込むことがあり、測定誤差を生じることがある。   By the way, even when only slag is discharged from the converter, molten iron may be mixed into the slag and flow out at the end of discharge. For this reason, the weighing value of the weighing machine installed on the rolling cart includes the mass of the molten iron that has flowed out, and the mass of the molten iron that is mixed is not constant. Therefore, in the conventional method, it is difficult to accurately determine and obtain the slag mass and the molten iron mass that are measured by the weighing instrument on the rolling cart. The reason is that the density of the molten iron is larger than that of the slag (about 7 times when the slag forming is large), so even if a small amount of molten iron is mixed, the influence on the weighing value is large. Because. Furthermore, in the case of such a measuring method, the slag pieces scattered on the weighing instrument may be caught in the weighing instrument, resulting in a measurement error.

また、排滓終了時の転炉の傾動角度のみを用いて炉内残留スラグ量を推定する前記の方法は、スラグの量に大きなばらつきがある吹錬の場合に、排滓開始時の傾動角度や溶融金属の含有量を考慮しないばかりか、耐火物の経時的な損耗による炉内形状の変化を考慮していないために、排出スラグ量、即ち排滓量の正確な把握ができないという問題があった。   In addition, the above method of estimating the residual slag amount in the furnace using only the tilt angle of the converter at the end of the slag is the tilt angle at the start of the slag in the case of blowing with a large variation in the slag amount. And the amount of molten metal is not taken into account, and because the change in the shape of the furnace due to wear of the refractory over time is not taken into account, there is a problem that the amount of discharged slag, that is, the amount of discharged waste cannot be accurately grasped. there were.

このように、吹錬終了時の排滓量の把握だけ、あるいは溶融金属の含有量を考慮しない排滓量の推定方法や、出湯時の傾動角度のみを用いて排滓量を求める従来の上述した方法では、例えば、溶鉄含有量による誤差や使用回数が多くなることに伴う耐火物の損耗による転炉炉内形状変化などに対して、これらのことを反映した排滓量の推定ができないという問題があった。   Thus, only the grasping of the amount of waste at the end of blowing, the estimation method of the amount of waste without considering the content of molten metal, and the above-mentioned conventional method for obtaining the amount of waste using only the tilt angle at the time of pouring In this method, for example, it is not possible to estimate the amount of waste that reflects these factors for changes in the shape of the converter inside the furnace due to wear of refractories due to errors in the molten iron content and increased usage. There was a problem.

そこで、本発明の目的は、精錬容器から排出するスラグの質量を正確に推定(算出)できる技術を提案すること、および望ましい溶融金属の精錬方法を提案することにある。   Therefore, an object of the present invention is to propose a technique capable of accurately estimating (calculating) the mass of slag discharged from a refining vessel and to propose a desirable method for refining molten metal.

従来技術が抱えている上記課題を解決するために鋭意研究を行なった結果、発明者らは、以下のような要旨構成からなる本発明の開発に成功した。即ち本発明は、金属の精錬工程において、溶融金属および溶融スラグが収容されている精錬容器を傾動させることにより、この精錬容器の炉口から流出させる溶融スラグを他の容器へ排出するに際し、その精錬容器から溶融スラグが流出し始めたときの該精錬容器の傾動角度、スラグの全排出過程における精錬容器の最大傾動角度および該精錬容器内形状に基づき排出スラグの体積を求めることにより、排出スラグの質量の推定を行なうことを特徴とする溶融金属精錬容器からの排滓量の推定方法である。   As a result of intensive studies to solve the above-mentioned problems of the prior art, the inventors have succeeded in developing the present invention having the following gist configuration. That is, according to the present invention, in the metal refining process, by tilting a refining vessel containing molten metal and molten slag, when discharging the molten slag flowing out from the furnace port of this refining vessel to another vessel, By determining the volume of the discharged slag based on the tilt angle of the smelting container when the molten slag begins to flow out of the smelting container, the maximum tilt angle of the smelting container in the entire discharge process of the slag, and the inner shape of the smelted container, This is a method for estimating the amount of waste discharged from a molten metal refining vessel.

なお、上記のように構成される本発明においては、前記精錬容器内の形状については、装入溶融金属量と溶融金属の湯面レベルに基づき、該精錬容器内耐火物の損耗度合いを求めることによって特定することが、より好適な解決手段になるものと考えられる。   In the present invention configured as described above, for the shape in the smelting vessel, the degree of wear of the refractory in the smelting vessel is obtained based on the amount of charged molten metal and the molten metal surface level. It is considered that specifying by means of a more preferable solution.

また、本発明は、前記のようにして得られる、溶融金属精錬容器を傾動させて排滓するときのその排滓量の推定方法を適用して溶融金属を精錬する方法であって、推定されたその排滓量に応じて、溶融金属に添加すべき精錬材の種類と好ましくはその添加量を選択、決定することを特徴とする溶融金属の精錬方法を提案する。   Further, the present invention is a method for refining molten metal obtained by applying the method for estimating the amount of waste when the molten metal refining vessel is tilted and discharged as described above. Further, the present invention proposes a method for refining a molten metal characterized by selecting and determining the type of refining material to be added to the molten metal and preferably the amount of the refining material to be added according to the amount of waste.

本発明は、排滓開始時の精錬容器(以下、「転炉」の例で説明する)の傾動角度およびスラグの全排出過程における該転炉の最大傾動角度および、変化する転炉内の形状を考慮して排出スラグの体積を求めると共に、この体積にスラグの密度を掛けることで排出スラグの全質量を推定するようにしたものであるから、吹錬によってスラグの発生量にばらつきがあっても、排出したスラグ量を正確に推定できるようになる。その結果として、転炉内に残留したスラグ量の正確な把握ができ、ひいては石灰や鉄鉱石などの精錬材の種類、添加量を望ましい範囲内に決定できるようになる。   The present invention relates to a tilting angle of a refining vessel (hereinafter described in the example of “converter”) at the start of slagging, a maximum tilting angle of the converter in the entire discharge process of slag, and a changing shape in the converter. The volume of discharged slag is calculated in consideration of the above, and the total mass of discharged slag is estimated by multiplying this volume by the density of slag. However, the amount of discharged slag can be accurately estimated. As a result, the amount of slag remaining in the converter can be accurately grasped, and as a result, the type and amount of refining material such as lime and iron ore can be determined within a desired range.

また、本発明によれば、装入溶融金属の質量と該溶融金属の湯面レベルから転炉内耐火物の損耗度合いを求め、これにより正確な炉内形状を求めること、即ち、毎回の吹錬時における転炉内耐火物の損耗度合いを、操業ピッチを変えることなく求めることができるので、転炉の使用回数による影響を考慮した適正な排出スラグ量を求めることができる。   Further, according to the present invention, the degree of wear of the refractory in the converter is obtained from the mass of the molten metal charged and the molten metal surface level, thereby obtaining an accurate in-furnace shape. Since the degree of wear of the refractory in the converter at the time of smelting can be obtained without changing the operation pitch, it is possible to obtain an appropriate discharge slag amount in consideration of the influence of the number of times the converter is used.

さらに、本発明は、転炉からの最初に排出する溶融物(スラグ)の実質的な体積を知ることができる方法であるから、少量の溶融金属が該排出スラグ中に混入している場合であっても、体積算出への影響は小さく、しかもスラグの密度はその後に掛ける方法であることから、排出されたスラグ質量算出への影響を、秤量器によって質量を直接求める従来の方法よりも小さくすることができる。   Furthermore, since the present invention is a method capable of knowing the substantial volume of the melt (slag) discharged first from the converter, a small amount of molten metal is mixed in the discharge slag. Even if it is, the influence on volume calculation is small, and the density of slag is a method that is multiplied after that, so the influence on calculation of discharged slag mass is smaller than the conventional method of directly calculating the mass with a weighing instrument. can do.

本発明の実施態様を説明する全体図である。1 is an overall view illustrating an embodiment of the present invention. 転炉からスラグを排出する場合に、傾動した転炉内に残留している溶融物の状態を示す略線図である。It is an approximate line figure showing the state of the melt which remains in the tilted converter when discharging slag from a converter. 傾動している転炉内に収容することのできる溶融物の体積と転炉傾動角度との関係を示す図である。It is a figure which shows the relationship between the volume of the melt which can be accommodated in the converter which is tilting, and a converter tilt angle. 傾動角度を用いた排滓スラグの体積算出方法を説明するための図である。It is a figure for demonstrating the volume calculation method of the waste slag using a tilt angle. 湯面レベルを用いた転炉の損耗度合いを算出する方法の説明図である。It is explanatory drawing of the method of calculating the wear degree of the converter using a hot_water | molten_metal surface level. 本発明法を用いて算出した推定排出スラグ量とスラグ量の実績値(秤量値)との関係を示す図である。It is a figure which shows the relationship between the estimated discharge | emission slag amount computed using this invention method, and the actual value (weighing value) of slag amount. 実施例での炉内残留スラグ中Pと石灰添加量との関係を示す図である。It is a figure which shows the relationship between P in residual slag in a furnace in an Example, and lime addition amount.

一般に、転炉内で生成した溶融スラグの中間排滓を含め、その排出後に転炉内に残留したスラグの量は、吹錬モデルの計算等によって求めたスラグ生成量から排出したスラグの量を引くことなどによって求めることができる。この場合において、もし炉内に残留したスラグの量についての算出値に誤差があると、次チャージの吹錬モデル計算の精度や化学成分値の的中率を悪化させる要因となるため、操業への影響は多大である。従って、転炉内に残留したスラグの量を正確に把握することは斯界においては極めて重要である。   In general, the amount of slag remaining in the converter after its discharge, including the intermediate discharge of molten slag generated in the converter, is the amount of slag discharged from the amount of slag generated by the calculation of the blowing model, etc. It can be obtained by drawing. In this case, if there is an error in the calculated value for the amount of slag remaining in the furnace, it will cause the accuracy of the next charge blowing model calculation and the accuracy of the chemical composition value to deteriorate. The impact of is great. Therefore, it is extremely important in this field to accurately grasp the amount of slag remaining in the converter.

そこで、本発明では、傾動される転炉から溶融スラグが流出し始める排滓開始時の、該転炉の傾動角度と、該溶融スラグの全排出の過程における転炉の最大傾動角度と、そして、転炉の炉内形状を考慮した排出スラグの体積を算出し、さらに算出したそのスラグ体積にスラグの密度を掛けて質量を算出(推定)することにした。このような転炉排出スラグの算出(推定)方法によれば、吹錬時に生じたスラグ体積に大きなばらつきがあったような場合、あるいは操業の継続によって転炉内の耐火物が大きく損耗して炉内形状が大きく変化したような場合においてさえも、排出スラグ量を正確に推定できるようになる。   Therefore, in the present invention, the tilt angle of the converter at the start of the discharge starting that the molten slag begins to flow out of the tilted converter, the maximum tilt angle of the converter in the process of total discharge of the molten slag, and The volume of the discharged slag was calculated in consideration of the in-furnace shape of the converter, and the mass was calculated (estimated) by multiplying the calculated slag volume by the slag density. According to such a method for calculating (estimating) the converter discharge slag, the refractory in the converter is greatly worn out when there is a large variation in the slag volume generated during blowing or when the operation continues. Even when the shape of the furnace changes greatly, the amount of discharged slag can be accurately estimated.

なお、転炉の傾動角度による排出スラグ量の推定に当たっては、転炉から排出されるスラグの体積を転炉の炉内形状と転炉傾動条件に基づき推定する際に、排出スラグの質量は「排滓スラグの体積×スラグ密度」により求める。   In estimating the amount of discharged slag based on the tilt angle of the converter, when estimating the volume of slag discharged from the converter based on the in-furnace shape of the converter and the tilt condition of the converter, the mass of the discharged slag is `` It is obtained by “volume of waste slag × slag density”.

以下、まず、排出スラグの体積を求める方法について、図1〜4に基づき説明する。これらの図に示しているように、転炉1の炉体がθだけ傾動し、溶鉄3上のスラグ2の流出が開始した状態(湯面レベル(溶融スラグ)が炉口1aの淵まで達している状態)において、炉内に残留する溶融金属(溶鉄3)およびスラグ2の体積Vは、図4の斜線で示される部分である。この場合において、転炉の中心軸をz軸とし、z軸に垂直な平面での溶鉄およびスラグの断面積をSとすると、このSは下記の(1)式で表される。下記(2)式は、上記の断面積Sをz軸に沿って高さH分だけ積分することで、傾動角θにおける炉内の残留体積V(θ)を計算できることを示している。そして、下記(3)式は、排出開始の角度θと全排滓中の最大角度(排出終了角度)θから求めた残留体積との差を求めることで、排出された溶鉄およびスラグの体積Vhが求められることを示している。この体積Vhがスラグ排出過程での排出スラグの体積となる。 Hereinafter, first, a method for obtaining the volume of the discharged slag will be described with reference to FIGS. As shown in these figures, the furnace body of the converter 1 is tilted by θ, and the outflow of the slag 2 on the molten iron 3 has started (the molten metal surface level (molten slag) reaches the soot at the furnace port 1a. The volume V of the molten metal (molten iron 3) and the slag 2 remaining in the furnace is the portion indicated by the oblique lines in FIG. In this case, assuming that the central axis of the converter is the z-axis and the cross-sectional area of the molten iron and slag in a plane perpendicular to the z-axis is S, this S is expressed by the following equation (1). The following equation (2) indicates that the residual volume V (θ) in the furnace at the tilt angle θ can be calculated by integrating the cross-sectional area S by the height H along the z-axis. Then, the following equation (3) is obtained by calculating the difference between the discharge start angle θ 1 and the residual volume calculated from the maximum angle (discharge end angle) θ 2 during the total discharge, and thus the discharged molten iron and slag are discharged. It shows that the volume V h is obtained. This volume V h is the volume of the discharged slag in the slag discharging process.

Figure 0006601631
であり、炉内形状因子である。
Figure 0006601631
It is a furnace form factor.

なお、転炉の炉体は、吹錬を繰り返すことで耐火物の損耗が生じ、形状が次第に変化していく。ここで、図5(a)、(b)は、炉内の耐火物の損耗度合いの求め方を説明する図である。一般に、転炉の炉内耐火物の損耗が進行すると、溶鉄装入時の湯面レベルは新炉のときと比べて低くなる。従って、溶鉄の体積を溶鉄の質量から求め、溶鉄装入直後の湯面レベル(初期湯面)と転炉稼動後の損耗時湯面レベルとを測定することで、転炉の損耗度合いが判明する。この点に関し、本発明では、転炉の損耗による形状の変化は、損耗が炉壁に対して垂直に一様に損耗するものとして幾何的に求めるか、プロフィール計による計測データから損耗がどのように進行するかを求めておく。そして、装入溶鉄質量と新炉時からの湯面レベル低下量、損耗量の関係を予め作成しておくことにより、演算の負荷を低減することが可能になる。   In addition, the furnace body of a converter causes wear of a refractory by repeating blowing, and the shape gradually changes. Here, Fig.5 (a), (b) is a figure explaining how to obtain | require the abrasion degree of the refractory in a furnace. In general, when the refractory in the converter is worn out, the level of the molten metal at the time of charging the molten iron becomes lower than that in the new furnace. Therefore, the volume of molten iron is obtained from the mass of the molten iron, and the level of wear of the converter is found by measuring the level of molten metal immediately after the molten iron is charged (initial level) and the level of molten steel at the time of wear after operation of the converter. To do. In this regard, according to the present invention, the change in shape due to the wear of the converter is geometrically determined as the wear is worn uniformly perpendicular to the furnace wall, or how the wear is determined from the measurement data obtained by the profile meter. Ask what to proceed to. And it becomes possible to reduce the calculation load by creating in advance the relationship between the charged molten iron mass, the amount of molten metal level lowering from the time of the new furnace, and the amount of wear.

近年の転炉による鋼の精錬では、中間排滓を含めて炉内残留スラグの量を知ることが極めて重要になってきた。特に、近年のように、溶銑予備処理技術が一般的となり、転炉に装入される溶銑のほとんどが予備処理溶銑が使われるようになると、脱硫処理や脱燐処理の必要がなくなり、脱珪処理と脱炭精錬とを主とする転炉精錬が行なわれるようになると、炉内残留スラグ量を推定することは極めて重要な技術となってきたからである。   In the refining of steel by a converter in recent years, it has become extremely important to know the amount of residual slag in the furnace including intermediate waste. In particular, as in recent years, hot metal pretreatment technology has become common, and when most of the hot metal charged to the converter is used as pretreatment hot metal, desulfurization and dephosphorization are no longer necessary. This is because estimation of residual slag amount in the furnace has become an extremely important technique when converter refining, mainly treatment and decarburization refining, is performed.

例えば、前チャージは溶銑として予備処理されていない普通銑を用いたのに対し、今回は予備処理溶銑を使用するような場合には、炉内に残留するスラグはP汚染の原因となり、予備処理溶銑使用による効果が低減することとなるからである。   For example, in the case of using pre-treated hot metal as the hot metal for the pre-charge, this time, when pre-treated hot metal is used, the slag remaining in the furnace causes P contamination and pre-treatment. This is because the effect of using hot metal is reduced.

そのため、本発明の前述した排滓量の推定技術に従って、炉内残留スラグ量、言い換えると排滓量を正確に把握することで、P、S、Mn等の物質収支の計算が正確にできるようになり、ひいては今回チャージの吹錬終点における化学成分値の的中率を向上させることができるようになる。   Therefore, according to the estimation technique of the amount of waste described above of the present invention, by accurately grasping the amount of residual slag in the furnace, in other words, the amount of waste, it is possible to accurately calculate the material balance of P, S, Mn, etc. As a result, it is possible to improve the hit ratio of the chemical component value at the end of blowing of the current charge.

そこで、本発明ではまた、終点制御のための前述した転炉傾動時の排滓量の正確な推定値に基づき、石灰、鉄鉱石、あるいは合金鉄のような精錬材の種類、その添加量を決定して、的中率の高い終点制御をする溶融金属の精錬方法を提案する。   Therefore, in the present invention, based on the accurate estimated value of the amount of waste during the tilting of the converter for the end point control described above, the type of refining material such as lime, iron ore, or alloyed iron, and the addition amount thereof are determined. We decide and propose a method for refining molten metal with high precision end point control.

例えば、精錬材の添加量を、前述した転炉での傾動排滓量の推定値に基づいて計算することで、添加量の適正化および処理後の成分的中率を向上させることができる。精錬材の添加量を決定する計算は、溶銑、スクラップ、残留スラグに含まれるP、S、Mn等の成分量と、目標の成分値を比較して行う。ここで、残留スラグ量は、吹錬モデルの計算等によって求めたスラグ生産量から排出したスラグの量をひく方法や、排出スラグ量が得られない場合には一定量あるいは一定比率が残留すると仮定する方法などによって求められる。このようにして、排出スラグ量を正確に算出することで、吹錬開始前の各成分量の算出が正確かつ精度よく求められるようになる。従って、上記計算による精錬材の添加量算出が適正化され、ひいては処理後の成分値的中率を向上することができる。   For example, by calculating the addition amount of the refining material based on the estimated value of the amount of tilted waste in the converter described above, it is possible to optimize the addition amount and improve the component median after processing. The calculation for determining the addition amount of the refining material is performed by comparing the amount of components such as P, S, and Mn contained in the hot metal, scrap, and residual slag with the target component value. Here, the amount of residual slag is assumed to be a method of subtracting the amount of slag discharged from the slag production obtained by calculating the blowing model, etc. It is required by the method of Thus, by calculating the amount of discharged slag accurately, the calculation of the amount of each component before the start of blowing is accurately and accurately obtained. Accordingly, the calculation of the amount of addition of the refining material by the above calculation is optimized, and as a result, the component value median after processing can be improved.

以下に説明する実施例は、精錬容器として転炉を用い、その転炉ではまず溶銑の脱珪精錬を行い、その後、炉内残留スラグ量に応じて該転炉を傾動して炉口から溶融スラグ(脱珪スラグ)の一部を排出する中間排滓の処理を行ない、次いで、必要な精錬材を追加して必要なさらなる脱燐―脱炭吹錬を行うための溶銑の精錬処理において、本発明を適用した例について述べる。   In the embodiment described below, a converter is used as a smelting vessel. First, the molten iron is desiliconized and refined, and then the converter is tilted according to the amount of residual slag in the furnace and melted from the furnace port. In the refining process of hot metal to perform intermediate desulfurization to discharge a part of slag (desiliconization slag), and then perform the necessary further dephosphorization-decarburization blowing by adding the necessary refining material, An example to which the present invention is applied will be described.

装入溶銑の質量は秤量器によって得られたものである。なお、その溶銑の装入前に、まずスクラップを装入する場合においては、スクラップと溶銑の密度の比から、同じ体積となる溶銑の質量を求め、秤量器から得た溶銑質量に加える。溶銑装入後の溶銑湯面レベルはマイクロ波レベル計によって求めた。また、装入溶銑質量と新炉時からの湯面レベル低下量、損耗量との関係は、溶銑質量、湯面レベル低下量の代表的な値について、耐火物損耗量を予め幾何学的に計算しておきこれを表1として示した。この表をもとに、線形補間(線形多項式を用いた回帰分析方法)を用いて耐火物損耗を求めることで演算の負荷を低減することにした。   The mass of the molten iron was obtained by a weigher. In addition, before charging the hot metal, when charging the scrap first, the mass of the hot metal having the same volume is obtained from the ratio of the density of the scrap and the hot metal and added to the hot metal mass obtained from the weigher. The hot metal surface level after the hot metal was charged was determined by a microwave level meter. In addition, the relationship between the molten iron mass and the molten metal level lowering amount and the amount of wear from the time of the new furnace, the refractory wear amount is geometrically determined in advance with respect to typical values of the molten iron mass and the molten metal level lowering amount. This was calculated and shown in Table 1. Based on this table, it was decided to reduce the calculation load by obtaining refractory wear using linear interpolation (regression analysis method using linear polynomials).

Figure 0006601631
Figure 0006601631

また、スラグ排出開始時の傾動角度(θ)は、オペレータが排出開始を判断しプッシュボタンを押したときの角度、スラグ全排出過程における転炉の最大傾動角度(θ)は排出終了時の角度とした。各傾動角度と耐火物損耗量における、炉内の溶銑およびスラグの体積を、前記式(1)〜(3)によって算出し、これを表2としてまとめた。この表を基に、線形補間を用いて、排滓開始時と排滓終了時の炉内の溶銑およびスラグの体積を求め、求めた体積の差をとることで排滓されたスラグの体積を算出した。 The tilt angle (θ 1 ) at the start of slag discharge is the angle when the operator determines the start of discharge and presses the push button, and the maximum tilt angle (θ 2 ) of the converter in the slag total discharge process is at the end of discharge. Of the angle. The volume of the hot metal and slag in the furnace at each tilt angle and the amount of refractory wear was calculated according to the above formulas (1) to (3). Based on this table, the volume of molten iron and slag in the furnace at the start and end of waste was calculated using linear interpolation, and the volume of waste slag was calculated by taking the difference between the obtained volumes. Calculated.

Figure 0006601631
Figure 0006601631

例えば、上記表1、上記表2を用いて排出スラグの質量(排滓量)を求めるには、装入溶銑360tのときの湯面レベルが、新炉時よりも0.2m低くなっていた時は、前記表1より損耗量は0.10mとなる。このときの排出開始角度が55°、排出終了角度が80°であれば、表2から、排出開始時の炉内溶銑およびスラグの体積は121.6mであり、排出終了時の体積は37.0mとなる。その体積の減少量、即ち、121.6mと37.0mとの差がスラグの排出体積となる。 For example, in order to obtain the mass of the discharged slag (amount of waste) using Table 1 and Table 2 above, the surface level at the time of the molten iron 360 t was 0.2 m lower than that at the time of the new furnace. In this case, the amount of wear is 0.10 m from Table 1 above. If the discharge start angle at this time is 55 ° and the discharge end angle is 80 °, from Table 2, the volume of hot metal and slag in the furnace at the start of discharge is 121.6 m 3 , and the volume at the end of discharge is 37 the .0m 3. Reduction of its volume, i.e., the difference between 121.6M 3 and 37.0M 3 is discharged volume of slag.

なお、スラグの密度は、吹錬モデルによる計算塩基度、推定温度、推定FeO濃度、リンス時間を用いて、下記式(4)で表わされるものを用いた。
ここで、A〜Dは計算排滓量と実績排滓量の誤差が最小になるように重回帰分析により求めた。

スラグ密度(t/m)=A×計算塩基度+B×リンス時間(分)
+C×脱Si終了時推定温度(℃)+D (4)
In addition, the density of slag used what was represented by following formula (4) using the calculation basicity by a blowing model, estimated temperature, estimated FeO density | concentration, and rinse time.
Here, A to D were obtained by multiple regression analysis so that the error between the calculated waste amount and the actual waste amount was minimized.

Slag density (t / m 3 ) = A × calculated basicity + B × rinse time (min)
+ C x Estimated temperature at the end of Si removal (° C) + D (4)

係数決定の際に使用する実績排滓量は下記条件において求めた場合の値を用いることが望ましい。
(a)溶鉄の混入がないよう排出時の傾動角を通常操業時よりも小さくした場合であること。
(b)秤量器へのスラグ片等の噛み込みがないよう、清掃点検を行った直後であること。
あるいは
(c)スラグを運搬した先の工場・設備に設置されていること。
(d)測定精度の良い秤量器の計測値であること。
It is desirable to use the value obtained under the following conditions as the actual waste amount used when determining the coefficient.
(A) The tilt angle at the time of discharge is made smaller than that during normal operation so that molten iron is not mixed.
(B) Immediately after cleaning and inspection so that no slag pieces or the like are caught in the weighing instrument.
Or (c) It is installed in the factory / equipment where the slag was transported.
(D) The measurement value of the weighing instrument with good measurement accuracy.

本発明法に従い、前記式(1)〜(4)に基づく傾動角度を用いた排出スラグ(質量)の算出例では、図6に示すように、炉内損耗を考慮した計算値のほうが、損耗を考慮しない計算値と比べて大きい値が得られており、なおかつ、秤量器等による実績測定値に近い値となっていた。   According to the method of the present invention, in the calculation example of the discharge slag (mass) using the tilt angle based on the above formulas (1) to (4), as shown in FIG. A large value was obtained compared to a calculated value that did not take into account, and the value was close to the actual measured value by a weigher or the like.

そして、本発明に従う上述した方法によれば、炉内に残留したスラグ量を正確に把握することができるので、炉内に新たに添加する精錬材の量の適正化を図ることが可能となる。その結果として、精錬後の溶銑成分のバラツキの縮小、および精錬材コストの低減が可能となる。   According to the above-described method according to the present invention, it is possible to accurately grasp the amount of slag remaining in the furnace, so that it is possible to optimize the amount of refining material newly added to the furnace. . As a result, it is possible to reduce the variation in the hot metal component after refining and reduce the cost of the refining material.

このことについて、以下に具体例を示す。転炉型脱燐処理時における残留スラグ量を前述した方法によって求め、これを添加すべき石灰添加量の算出に反映させた。即ち、図7は、脱燐吹錬時の残留スラグ中に含まれる(P)mass%と目標の成分量とを比較して、それぞれに合う石灰添加量について、従来法と発明法についてプロットした図である。この図に示すところから明らかなように、従来法の下では、残留スラグ量の推定精度が低いため、添加する石灰量は目標成分値に対して過剰に添加されていた。しかし、本発明法を適用することで、残留スラグ量のばらつきに応じて、添加する石灰量を適正に求めることができるようになり、過剰に添加していた石灰量を削減することができた。これにより、従来と同じ成分目標値と的中率において0.64kg/全装tの石灰添加量の削減効果を確認できた。   A specific example of this will be shown below. The amount of residual slag at the time of converter dephosphorization was determined by the method described above, and this was reflected in the calculation of the amount of lime to be added. That is, FIG. 7 compares (P) mass% contained in the residual slag at the time of dephosphorization blowing and the target component amount, and plotted the conventional method and the invention method for the lime addition amount suitable for each. FIG. As is apparent from the figure, under the conventional method, since the estimation accuracy of the residual slag amount is low, the lime amount to be added is excessively added to the target component value. However, by applying the method of the present invention, the amount of lime to be added can be appropriately determined according to the variation in the amount of residual slag, and the amount of lime that has been added excessively can be reduced. . Thereby, the reduction effect of the lime addition amount of 0.64 kg / all t was confirmed in the same component target value and hit ratio as before.

前述した本発明に係る技術は、溶銑の予備処理に適用した例を記載したが、その他、転炉製鋼、電気炉製鋼、及び銅精錬等の非鉄金属精錬にも適用可能である。   Although the above-described technique according to the present invention has been described as an example applied to the hot metal pretreatment, it can also be applied to nonferrous metal refining such as converter steelmaking, electric furnace steelmaking, and copper refining.

1 転炉
2 スラグ
3 溶鉄
4 転滓鍋
5 転滓台車
6 マイクロ波レベル計
DESCRIPTION OF SYMBOLS 1 Converter 2 Slag 3 Molten iron 4 Rolling pan 5 Rolling cart 6 Microwave level meter

Claims (2)

金属の精錬工程において、溶融金属および溶融スラグが収容されている精錬容器を傾動させることにより、この精錬容器の炉口から流出させる溶融スラグを他の容器へ排出するに際し、装入溶融金属量と溶融金属の湯面レベルに基づき、該精錬容器内耐火物の損耗度合いを求めることによって特定された形状の精錬容器について、この精錬容器から溶融スラグが流出し始めたときの該精錬容器の傾動角度、スラグの全排出過程における精錬容器の最大傾動角度および該精錬容器内形状に基づき排出スラグの体積を求めることにより、排出スラグの質量の推定を行なうことを特徴とする溶融金属精錬容器からの排滓量の推定方法。 In refining process of metal, by tilting the refining vessel the molten metal and molten slag are contained, upon discharging the molten slag to flow out from the furnace port of the refining vessel to another vessel, and charging the molten metal amount based on the melt surface level of the molten metal, the purified wrought for refining vessel shape identified by determining the wear degree of the vessel refractories, the purified wrought tilting of the container when the molten slag from the smelting vessel this began to flow out From the molten metal refining vessel, the mass of the discharged slag is estimated by calculating the volume of the discharged slag based on the angle, the maximum tilting angle of the refining vessel in the whole discharge process of the slag and the shape inside the refining vessel. How to estimate the amount of waste. 請求項1に記載の溶融金属精錬容器からの排滓量を推定する方法を適用して溶融金属を精錬する方法であって、推定された排滓量に基づき、溶融金属に添加すべき精錬材を選択することを特徴とする溶融金属の精錬方法。 A method for refining molten metal by applying the method for estimating the amount of waste from the molten metal refining vessel according to claim 1, wherein the refining material to be added to the molten metal based on the estimated amount of waste A method for refining molten metal, characterized in that:
JP2017012631A 2017-01-27 2017-01-27 Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal Active JP6601631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012631A JP6601631B2 (en) 2017-01-27 2017-01-27 Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012631A JP6601631B2 (en) 2017-01-27 2017-01-27 Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal

Publications (2)

Publication Number Publication Date
JP2018119195A JP2018119195A (en) 2018-08-02
JP6601631B2 true JP6601631B2 (en) 2019-11-06

Family

ID=63044794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012631A Active JP6601631B2 (en) 2017-01-27 2017-01-27 Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal

Country Status (1)

Country Link
JP (1) JP6601631B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117200A1 (en) * 2017-12-15 2019-06-20 Jfeスチール株式会社 Method for refining molten iron
JP6841391B2 (en) * 2018-12-17 2021-03-10 日本製鉄株式会社 Estimating method and estimation device for the amount of residual slag in the furnace
KR102468045B1 (en) * 2021-05-24 2022-11-17 주식회사 포스코 Appartus and method for predicting amount of molten steel in spout type electric furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533293B2 (en) * 2005-09-16 2010-09-01 新日本製鐵株式会社 Converter discharge method
JP2007077483A (en) * 2005-09-16 2007-03-29 Nippon Steel Corp Steelmaking method in converter
KR102136562B1 (en) * 2016-07-27 2020-07-22 닛폰세이테츠 가부시키가이샤 Exhaust weight estimation method and exhaust weight estimation device

Also Published As

Publication number Publication date
JP2018119195A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6601631B2 (en) Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal
JP6841391B2 (en) Estimating method and estimation device for the amount of residual slag in the furnace
JP2016519750A (en) A method for determining the state of the metal outlet in particular of a metallurgical vessel
JP6515385B2 (en) Hot metal pretreatment method and hot metal pretreatment control device
JP5145790B2 (en) Blowing end point temperature target setting method for converter
WO2018020929A1 (en) Slag weight estimation method and slag weight estimation device
JP2012136767A (en) Method for estimating phosphorus concentration in converter
JP4667284B2 (en) Converter operation method
JP6822148B2 (en) Dehydrogenation refining method for molten steel
JP6277991B2 (en) Slag component estimation method, solvent calculation method and hot metal pretreatment method
JP6607333B2 (en) Method for refining molten iron
KR100616137B1 (en) Apparatus for measuring the weight of converter and converter refining method using the same
JP5228402B2 (en) Converter charge determination method
JPH09316514A (en) Method for estimating carbon and chromium contents in molten steel in converter process of chromium-containing steel and device therefor and method for tapping molten steel thereof
JP6720453B2 (en) How to control the tare weight of a ladle
JP7211553B1 (en) Method for operating converter and method for producing molten steel
JP2002167616A (en) Steelmaking method with converter
JP2005206877A (en) Method for estimating carbon concentration at blowing time in converter
KR20240055776A (en) Device for estimating the amount of slag in the furnace, method for estimating the amount of slag in the furnace, and method for manufacturing molten steel
WO2023017674A1 (en) Cold iron source melting rate estimation device, converter-type refining furnace control device, cold iron source melting rate estimation method, and molten iron refining method
JP2024059560A (en) Method for removing slag from converter-type refining furnace and method for operating converter
JP2024059093A (en) Intermediate slag removal method in metal refining
JPH093518A (en) Method for controlling end point of blowing in converter
US3610599A (en) System for controlling phosphorus removal in a basic oxygen furnace
Pesonen et al. In Situ Measurement of Silicon Content in Molten Ferrochrome

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190924

R150 Certificate of patent or registration of utility model

Ref document number: 6601631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250