JP4533293B2 - Converter discharge method - Google Patents
Converter discharge method Download PDFInfo
- Publication number
- JP4533293B2 JP4533293B2 JP2005270250A JP2005270250A JP4533293B2 JP 4533293 B2 JP4533293 B2 JP 4533293B2 JP 2005270250 A JP2005270250 A JP 2005270250A JP 2005270250 A JP2005270250 A JP 2005270250A JP 4533293 B2 JP4533293 B2 JP 4533293B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- molten iron
- converter
- speed
- tilt angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
本発明は転炉の排滓方法に関する。 The present invention relates to a converter discharge method.
鉄鋼精錬において、脱りん処理と脱炭処理を分割し、脱炭前の溶鉄に脱りん処理を施す溶銑予備処理が広く行われている。溶銑予備処理の方式は、トーピードカー、鍋などの輸送容器を使用する方式と、転炉を使用する方式に大別されるが、転炉を使用する方式は、処理速度、熱裕度、その他諸々の面で優位性が高いことから、近年は、溶銑予備処理の主流を占めるようになっている。 In steel refining, hot metal preliminary treatment is widely performed in which dephosphorization treatment and decarburization treatment are divided and dephosphorization treatment is performed on molten iron before decarburization. Hot metal pretreatment methods are broadly divided into methods that use transport containers such as torpedo cars and pans, and methods that use converters. Methods that use converters are different in terms of processing speed, heat tolerance, etc. In recent years, the hot metal pretreatment has become the mainstream in recent years.
溶銑予備処理後のスラグの分離除去、すなわち、排滓は、脱炭工程における復りん防止や、副原料削減の面から重要な工程であるが、転炉型溶銑予備処理後の排滓方法としては、1)溶鉄を転炉内に残したまま、転炉を横転させて、上層のスラグのみを排滓する方法(例えば、特許文献1、参照)、2)転炉の出鋼口から溶鉄を一旦別の容器に出湯した後に、排滓する方法(例えば、特許文献2、参照)がある。 Separation and removal of slag after hot metal pretreatment, that is, waste, is an important step in terms of preventing dephosphorization and reducing secondary materials in the decarburization process. 1) A method in which the converter is rolled over while leaving the molten iron in the converter, and only the upper slag is discharged (for example, see Patent Document 1). 2) Molten iron from the outlet of the converter. There is a method (for example, refer to Patent Document 2) in which the hot water is discharged into another container and then discharged.
転炉の基数に余裕がなく、同一の転炉で脱りん処理と脱炭処理を連続で実施する場合、前者の方法(=上層のスラグのみを排滓する方法)は、後者の方法(=溶鉄を一旦出湯する方法)に比べ、出湯や再装入の必要がなく、排滓作業の煩雑さが少ないため転炉の生産性を低下させない、出湯等の容器の移し替えによる放熱ロスがないため熱裕度が高い、等の利点があるが、一方、溶鉄の流出を抑制しつつスラグのみを効率良く排滓することが難しく、排滓されずに炉内に残留するスラグの量が多い、すなわち、排滓率が低い等の問題がある。 When there is no surplus in the number of converters and dephosphorization and decarburization are carried out continuously in the same converter, the former method (= the method of eliminating only the upper slag) is the latter method (= Compared with the method of draining molten iron once), there is no need for draining or recharging, and there is less complexity of the draining work, so the productivity of the converter is not reduced, and there is no heat dissipation loss due to transfer of containers such as tapping hot water Therefore, there is an advantage such as high heat tolerance, but on the other hand, it is difficult to efficiently discharge only slag while suppressing the outflow of molten iron, and there is a large amount of slag remaining in the furnace without being discharged That is, there is a problem that the rejection rate is low.
なお、ここで、排滓率とは、予備脱りん処理時に生成したスラグのうち排滓されたスラグの重量割合である。 Here, the waste rate is the weight ratio of waste slag out of the slag generated during the preliminary dephosphorization process.
そこで、上層のスラグのみを排滓する方法における効率的な排滓法として、種々の提案がなされており、例えば、炉腹および炉底に設けた複数個の羽口からガスを吹き込んでスラグを炉口側に移動させて排滓する方法(例えば、特許文献1、参照)、酸化性ガスを吹き込んでスラグフォーミング(=スラグの泡立ち)を促進して排滓する方法(例えば、特許文献3、参照)等が提案されている。
Therefore, various proposals have been made as an efficient method for exhausting only the upper slag. For example, gas is blown from a plurality of tuyere provided on the furnace belly and the bottom of the furnace to remove the slag. A method of moving to the furnace port side to exhaust (for example, see Patent Document 1), a method of blowing in oxidizing gas to promote slag foaming (= slag foaming) (for example,
しかし、これらの方法では、炉腹に羽口を設置するため転炉の改造が必要であること、耐火物溶損が進行した転炉では内容積の変化によりスラグ位置が変化し、羽口の位置が最適な位置から外れてくること、吹錬中の羽口閉塞を防止するために常時ガスを吹き込む必要があり、不要なガスコストが増大する等の問題がある。 However, in these methods, it is necessary to modify the converter to install tuyere in the furnace, and in the converter where refractory erosion has progressed, the slag position changes due to the change in the internal volume, and the tuyere There are problems that the position deviates from the optimum position, and that it is necessary to constantly inject gas in order to prevent the tuyere clogging during blowing, which increases unnecessary gas costs.
また、電磁力を利用してスラグのみを選択的に排滓する方法(例えば、特許文献4、参照)が提案されているが、設備投資コストがかかること、また、高温かつ振動の激しい劣悪な環境下で整備コストが増大する等の問題がある。 Moreover, although the method (for example, refer patent document 4) which selectively eliminates only slag using an electromagnetic force is proposed, it is a capital investment cost, and is inferior at high temperature and intense vibration. There are problems such as increased maintenance costs in the environment.
その他、トーピードカーや鍋からの排滓方法として利用されている、ドラッガーと呼ばれる掻き出し板をつけた排滓装置により溶鉄上層のスラグを掻き出す方法(例えば、特許文献5、参照)等を転炉に適用することも考えられるが、転炉の容量を考えると、設備が大きくなりすぎ、現実的とは言えない。 In addition, a method of scraping the molten iron upper layer slag with a scraper equipped with a scraper plate called dragger (for example, see Patent Document 5), which is used as a method for draining from torpedo cars and pans, is applied to the converter. However, considering the capacity of the converter, the facility becomes too large and it is not realistic.
以上のように、溶鉄を転炉内に残したまま上層のスラグのみを排滓する方式は、一旦出湯した後に排滓する方式に比べて、作業の容易さ、生産性、熱裕度の面で有利である一方、溶鉄とスラグの分離性、すなわち、排滓率の面で難がある。 As described above, the method of discharging only the upper slag while leaving the molten iron in the converter is easier to work, more productive, and more heat-resistant than the method of discharging after hot water is discharged. On the other hand, it is difficult to separate molten iron and slag, that is, in terms of the rejection rate.
さらに、一旦出湯した後に排滓する方式に比べれば、生産性が高いとはいえ、排滓には、通常数分を要しており、特に高い排滓率を狙う場合は、排滓時間が長くなる傾向がある。そこで、さらなる生産性の向上を図る上でも、迅速な排滓が可能な効率の良い方法が求められている。 Furthermore, although it is more productive than the method of draining once the hot water has been drained, it usually takes several minutes to drain, especially when aiming for a high drainage rate. Tend to be longer. Thus, there is a need for an efficient method capable of rapid waste removal in order to further improve productivity.
本発明は、溶鉄を転炉に残したまま、転炉を横転させて、溶鉄の上層のスラグを排滓する方法において、排滓率が高く、また、迅速な排滓が可能な効率的な排滓方法を提供することを目的とする。 The present invention is a method in which the converter is turned over while the molten iron remains in the converter, and the slag in the upper layer of the molten iron is discharged. The purpose is to provide an exclusion method.
本発明は溶鉄を転炉に残したまま、転炉を横転させて、溶鉄の上層のスラグを排滓する方法において、転炉の傾動速度を適正な範囲とすることを特徴とするものである。さらに、適正な範囲の傾動速度で排滓するに際に、適正な有効容量を有する排滓鍋に排滓することを特徴とするものである。 The present invention is characterized in that the tilting speed of the converter is set within an appropriate range in a method of rolling over the converter while leaving the molten iron in the converter and discharging the slag of the upper layer of the molten iron. . Furthermore, when discharging at a tilting speed within an appropriate range, the waste is discharged into a waste pan having an appropriate effective capacity.
すなわち、本発明の要旨は以下の通りである。 That is, the gist of the present invention is as follows.
(1)溶鉄を転炉内に残したまま、転炉を横転させて、溶鉄の上層のフォーミングしたスラグを炉口から排滓する方法において、傾動角度がθ0°から少なくともθ1°に達するまでの平均傾動速度を、20°/min以上とし、かつ、θ1°からθ2°に達するまでの平均傾動速度を、6.6°/min以下とすることを特徴とする転炉排滓方法。 (1) In the method in which the molten iron is left in the converter, the converter is rolled over and the formed slag on the upper layer of the molten iron is discharged from the furnace port, and the tilt angle reaches at least θ 1 ° from θ 0 °. The average tilting speed up to 20 ° / min and the average tilting speed from reaching θ 1 ° to θ 2 ° is set to 6.6 ° / min or less. Method.
ここで、θ0°は、炉口からスラグが流出を開始する傾動角度、θ2°は、排滓時の最大傾動角度であり、θ1°は、(1)式で定義される。
θ1=0.6×(θ2−θ0)+θ0 …(1)
Here, θ 0 ° is the tilt angle at which the slag starts to flow out from the furnace port, θ 2 ° is the maximum tilt angle at the time of evacuation, and θ 1 ° is defined by equation (1).
θ 1 = 0.6 × (θ 2 −θ 0 ) + θ 0 (1)
排滓率が高い排滓が可能となることにより、副原料使用量、副産物であるスラグ発生量が削減される。また、迅速な排滓が可能となることにより、転炉の生産性が向上する。 By enabling waste with a high waste rate, the amount of by-products used and the amount of slag that is a by-product are reduced. In addition, the productivity of the converter is improved by enabling rapid discharge.
本発明を実施するための最良の形態を下記に説明する。 The best mode for carrying out the present invention will be described below.
溶鉄を転炉に残したまま、転炉を横転させて、溶鉄の上層のスラグを排滓する方法においては、上層スラグを重力やガスによる押し出し力等により流出させる方式が一般的であるが、排滓末期に、溶鉄がスラグとともに流出してしまうという現象があり、排滓率の向上と排滓の迅速化の両立は困難であった。 While the molten iron is left in the converter, the converter is overturned to discharge the upper slag of the molten iron. There was a phenomenon in which molten iron flowed out together with the slag at the end of the evacuation, and it was difficult to improve the evacuation rate and expedite the evacuation.
そこで、本発明者は、溶鉄の流出を抑制して排滓率を向上させ、また、排滓を迅速化することを目的に鋭意研究を重ねた結果、下記のような現象の機構を見出した。 Therefore, as a result of intensive studies aimed at improving the rejection rate by suppressing the outflow of molten iron and speeding up the rejection, the present inventor has found the mechanism of the following phenomenon. .
すなわち、スラグの粘度は、溶鉄の粘度の数十倍と高いため、スラグ流出時の剪断力が大きく、その剪断力に溶鉄が引きずられて、スラグとともに流出する現象が発生する。 That is, since the viscosity of the slag is as high as several tens of times that of the molten iron, the shearing force when the slag flows out is large, and the molten iron is dragged by the shearing force and flows out together with the slag.
したがって、溶鉄の流出を抑制するためには、スラグ流出時の流速を低減して剪断力を小さくせざるを得ないが、スラグ流出の流速を低減させることは、排滓速度を低下させることに他ならず、排滓の迅速化とは相反する。 Therefore, in order to suppress the outflow of molten iron, it is necessary to reduce the flow rate at the time of slag outflow and reduce the shearing force. However, reducing the flow rate of slag outflow reduces the evacuation speed. None other than the speeding up of exclusion.
しかし、一方で、転炉の傾動速度を適正に調整することにより、排滓率の向上と排滓の迅速化を両立させることが可能であることも見出した。 However, on the other hand, it has also been found that by appropriately adjusting the tilting speed of the converter, it is possible to achieve both an improvement in the rejection rate and a quicker rejection.
図1に、排滓状況の模式図を示すが、排滓初期は、傾動角度が小さいため、スラグ厚みが十分厚く、溶鉄面にかかるスラグ流出の剪断力は小さい。したがって、排滓初期は、傾動速度が速くても溶鉄の流出は生じ難い。 FIG. 1 shows a schematic diagram of the evacuation situation. In the initial stage of evacuation, since the tilt angle is small, the slag thickness is sufficiently thick and the shearing force of the slag outflow applied to the molten iron surface is small. Therefore, at the initial stage of evacuation, the molten iron does not easily flow out even if the tilting speed is high.
逆に、排滓末期にかけて傾動角度が大きくなるにつれ、スラグ厚みが徐々に薄くなり、溶鉄面にかかるスラグ流出の剪断力は次第に大きくなる。したがって、排滓末期は、傾動速度を低減することで、溶鉄にかかる剪断力を小さくし、溶鉄の流出を抑制する必要がある。 On the other hand, as the tilt angle increases toward the final stage of evacuation, the slag thickness gradually decreases, and the slag outflow shearing force on the molten iron surface gradually increases. Therefore, it is necessary to reduce the shearing force applied to the molten iron and reduce the outflow of the molten iron by reducing the tilting speed at the end of the elimination period.
このように、排滓初期には、高速で傾動し、排滓末期は、傾動速度を低減すること、すなわち、排滓段階に応じて転炉の傾動速度を調整することにより、溶鉄の流出を抑制しつつ、迅速な排滓が可能となり、排滓率の向上と排滓の迅速化を両立できることとなる。 In this way, the iron is tilted at a high speed in the early stage of slagging, and at the end of spilling, the tilting speed is reduced, that is, the tilting speed of the converter is adjusted according to the slaughtering stage, thereby preventing the molten iron from flowing out. While suppressing, it becomes possible to perform rapid evacuation and to improve both the evacuation rate and expedite evacuation.
加えて、排滓初期に高速で傾動することより、溶銑予備処理スラグのフォーミング(=泡立ち)を利用して、排滓を効率化できるという利点もある。溶銑予備処理スラグの温度、組成等の条件下では、スラグの粘度が高く、フォーミングしやすい状態となるため、吹錬中の脱炭反応により生じたCOガスで、容易に、スラグがフォーミングする。 In addition, since the tilting is performed at a high speed in the early stage of waste, there is an advantage that the waste can be made more efficient by using the forming (= foaming) of the hot metal pretreatment slag. Under the conditions such as the temperature and composition of the hot metal pretreatment slag, the slag has a high viscosity and is easily formed, so the slag is easily formed by the CO gas generated by the decarburization reaction during blowing.
フォーミングにより、スラグの嵩体積は10〜20倍に増加するが、そのため、スラグ厚みが増し、排滓が容易となる。ただし、排滓中は、吹錬時に比べて、COガスの発生が少ないため、排滓中にフォーミングは徐々に沈静し、スラグの嵩体積も減少する。 By forming, the bulk volume of the slag increases 10 to 20 times, but the slag thickness increases and the evacuation becomes easy. However, since the generation of CO gas is less during the slag than during blowing, the forming gradually subsides during the slag and the bulk volume of the slag is reduced.
したがって、フォーミングを利用して排滓を高効率化するためには、フォーミングによりスラグの嵩体積が十分大きい排滓初期に、高速で傾動することが望ましい。 Therefore, in order to increase the efficiency of waste disposal using forming, it is desirable to tilt at high speed in the early stage of waste removal where the bulk volume of the slag is sufficiently large due to forming.
傾動速度については、傾動角度がθ0°から少なくともθ1°に達するまでの平均傾動速度を、20°/min以上とし、かつ、θ1°からθ2°に達するまでの平均傾動速度を、θ0°からθ1°に達するまでの平均傾動速度よりも小さくすることが望ましい。 For tilting speed, the average inclining speed until the tilt angle reaches at least theta 1 ° from theta 0 °, and 20 ° / min or more, and an average tilt speed from theta 1 ° until it reaches the theta 2 °, It is desirable to make it smaller than the average tilt speed from θ 0 ° to θ 1 °.
ここで、θ0°は、炉口からスラグが流出を開始する傾動角度、θ2°は、排滓時の最大傾動角度であり、θ1°は、(1)式で定義される。また、傾動角度の基準は炉が直立している状態を傾動角度0°とする。
θ1=0.6×(θ2−θ0)+θ0 …(1)
Here, θ 0 ° is the tilt angle at which the slag starts to flow out from the furnace port, θ 2 ° is the maximum tilt angle at the time of evacuation, and θ 1 ° is defined by equation (1). The reference for the tilt angle is a tilt angle of 0 ° when the furnace is upright.
θ 1 = 0.6 × (θ 2 −θ 0 ) + θ 0 (1)
さらに、平均傾動速度は、傾動角度がθm°に達してからθn°に達するまでの時間を、Tθn-θmとすると(2)式で表される。
平均傾動速度=(θn−θm)/Tθn-θm …(2)
Furthermore, the average tilt speed is expressed by the following equation (2), where T θn−θm is the time from when the tilt angle reaches θ m ° until it reaches θ n °.
Average tilt speed = (θ n −θ m ) / T θn−θm (2)
この理由は、傾動角度がθ0°から少なくともθ1°に達するまでの平均傾動速度が20°/min未満の場合は、傾動速度が遅く、その間に炉内のフォーミングが沈静してしまうため、スラグの嵩体積が減少し、十分な排滓率が得られないということである。 For this reason, if the average inclining speed until the tilt angle reaches at least theta 1 ° from theta 0 ° is less than 20 ° / min, the tilting speed is slow, resulting in calm the forming in the furnace during which This means that the bulk volume of slag is reduced and a sufficient rejection rate cannot be obtained.
ここで、十分な排滓率とは、操業や鋼種の条件によって変化するが、通常は約70%程度であり、この排滓率以上であれば、系外に排出すべきりんをスラグとともに排出することができる。 Here, the sufficient rejection rate varies depending on the conditions of operation and steel type, but is usually about 70%. If this rejection rate is exceeded, phosphorus to be discharged out of the system is discharged together with slag. be able to.
排滓率が約70%未満の場合は、脱りん処理に続けて実施される脱炭処理時にも脱りん負荷がかかるため、副原料の使用量等が増加したり、復りんによる成分はずれ等の問題が発生しやすくなったりする。ただし、鋼種によっては、さらに排滓率を高めることが望ましい場合もある。 When the rejection rate is less than about 70%, a dephosphorization load is applied even during the decarburization process that is performed after the dephosphorization process, so that the amount of secondary materials used increases, components deviate due to dephosphorization, etc. The problem is likely to occur. However, depending on the steel type, it may be desirable to further increase the rejection rate.
また、さらに排滓率を高めるという面からは、平均傾動速度は速い方が望ましいが、実際には平均傾動速度が速すぎると炉口から流出するスラグが炉前の操業床に流出するなどの問題が生じるため、通常は、約120°/minが上限になると思われる。 In addition, from the standpoint of further increasing the rejection rate, it is desirable that the average tilt speed is high, but in reality, if the average tilt speed is too high, slag that flows out of the furnace port will flow into the operating floor in front of the furnace. Because of the problem, it is usually considered that the upper limit is about 120 ° / min.
一方、θ1°超の傾動角度まで平均傾動速度を20°/min以上として排滓することも可能であり、また、排滓率を高めるという面からは、できるだけ大きな傾動角度まで高速で傾動することが望ましいが、実際には、排滓末期まで高速で傾動すると、溶鉄がスラグとともに流出してしまうという現象が発生して、歩留まりが低下するため、傾動角度がθ0°からの平均傾動速度を20°/min以上とできる傾動角度の上限は、(3)式で表される傾動角度とするのが望ましい。 On the other hand, it is possible to reject with an average tilt speed of 20 ° / min or more up to a tilt angle exceeding θ 1 °, and from the aspect of increasing the rejection rate, tilting at a high speed to a tilt angle as large as possible is possible. In reality, however, when tilting at a high speed until the end of discharge, the phenomenon that molten iron flows out with slag occurs and the yield decreases, so the tilting angle is the average tilting speed from θ 0 °. The upper limit of the tilt angle at which the angle can be set to 20 ° / min or more is desirably the tilt angle represented by the expression (3).
但し、この場合でも、θ1°からθ2°に達するまでの平均傾動速度を、θ0°からθ1°に達するまでの平均傾動速度よりも小さくすることが必要である。
0.9×(θ2−θ0)+θ0 …(3)
However, even in this case, it is necessary to make the average tilt speed from θ 1 ° to θ 2 ° smaller than the average tilt speed from θ 0 ° to θ 1 °.
0.9 × (θ 2 −θ 0 ) + θ 0 (3)
ここで、上記の傾動パターンを実現するためには、炉口からスラグが流出を開始する傾動角度θ0°と排滓時の最大傾動角度θ2°の値が必要となるが、θ0°については、炉内の耐火物プロフィールから計算した傾動時の炉内容積と炉内の溶鉄量およびスラグ量から概略値は予測が可能であり、また、正確な値は単純に炉口からスラグが流出する傾動角度を記録すればよい。 Here, in order to realize the above tilt pattern, values of the tilt angle θ 0 ° at which the slag starts to flow out of the furnace port and the maximum tilt angle θ 2 ° at the time of discharge are required, but θ 0 ° The approximate value can be estimated from the furnace volume during tilting and the amount of molten iron and slag in the furnace calculated from the refractory profile in the furnace, and the exact value is simply calculated from the furnace slag. The tilt angle that flows out may be recorded.
一方、θ2°についても、炉内の耐火物プロフィールから計算した傾動時の炉内容積と炉内の溶鉄量から、準静的に傾動した場合に溶鉄が流出する傾動角度を予測することは可能であるが、実際に溶鉄が流出する傾動角度は、直前の傾動速度の影響を受けることから、予め傾動速度を変更して試験を行い、θ2°を決定しておく必要がある。 On the other hand, for θ 2 °, it is possible to predict the tilt angle at which the molten iron flows out when tilted quasi-statically from the furnace volume during tilting and the amount of molten iron in the furnace calculated from the refractory profile in the furnace. Although it is possible, the tilt angle at which the molten iron actually flows out is affected by the immediately preceding tilt speed. Therefore, it is necessary to change the tilt speed in advance to determine θ 2 °.
さらに、θ0°やθ2°は、炉内耐火物の溶損状況等の炉形状や溶鉄やスラグの装入量に応じて随時変化するため、それらの条件からθ0°やθ2°を予測できるようにすると、さらに望ましい。 Furthermore, theta 0 ° and theta 2 °, in order to change from time to time in accordance with the charging amount of the furnace shape and the molten iron and slag, such erosion condition of furnace refractories, theta 0 ° and theta 2 ° from those conditions It is more desirable to be able to predict.
実際の傾動においては、上記の傾動パターンを満たすように予め傾動パターンを設定しておき、そのパターンに則って傾動を行うのが現実的である。また、傾動パターンの制御については、段階的に傾動速度を切り替えるような制御でも、連続的に傾動速度を切り替えるような制御でも構わない。 In actual tilting, it is realistic to set a tilting pattern in advance so as to satisfy the above tilting pattern, and tilt according to the pattern. Further, the tilt pattern control may be a control that switches the tilt speed stepwise or a control that switches the tilt speed continuously.
一方、フォーミングを利用して高効率な排滓を行うに際し、フォーミングにより嵩体積が大きくなったスラグを排滓するには、排滓鍋からのスラグの溢出を防止するため、容量の大きな排滓鍋が必要となる。 On the other hand, when discharging slag that has become bulky due to forming when evacuating with high efficiency using forming, to prevent slag from overflowing from the basin pan, A pot is required.
本発明者は、上記の傾動パターンを実現し、かつ、排滓鍋からの溢出がない排滓鍋の容量についてスラグの沈静速度や傾動パターンを考慮した検討を行い、転炉内溶鉄1t当たり0.11m3以上の有効容量を確保することが望ましいことを見出した。 The present inventor has studied the capacity of the slag pan that realizes the above tilt pattern and does not overflow from the slag pan, taking into account the slag calming speed and tilt pattern, and 0 per 1 ton of molten iron in the converter. It has been found that it is desirable to secure an effective capacity of .11 m 3 or more.
ここで、有効容量とは、排滓鍋壁へのスラグの焼き付き防止用にあらかじめ鍋に装入されているスラグ等、体積を除いた鍋の容量、すなわち、実際に排滓できる容量である。 Here, the effective capacity is the capacity of the pan excluding the volume, such as slag that has been charged in the pan in advance to prevent the slag from sticking to the wall of the pan, that is, the capacity that can actually be drained.
この理由は、排滓鍋の転炉内溶鉄1t当たりの有効容量が0.11m3未満の場合は、排滓初期に高速で傾動すると、フォーミングしたスラグが排滓鍋内で沈静される前に排滓鍋の容量を超えてしまうため、排滓鍋からの溢出を防止するためには排滓の初期の段階でしか高速で傾動できず、それ以降は傾動速度を低減せざるを得ないということである。 The reason for this is that when the effective capacity per 1 ton of molten iron in the converter is less than 0.11 m 3 , if the tilting is performed at a high speed in the initial stage of discharging, the formed slag is settled in the discharging pot. Since it exceeds the capacity of the slag pan, it can tilt at high speed only at the initial stage of spilling in order to prevent overflow from the slag pan, and thereafter the tilting speed must be reduced. That is.
したがって、この間に、炉内のフォーミングが沈静してスラグの嵩体積が減少するため、十分な排滓率が得られず、また、迅速な排滓もできない。 Accordingly, during this time, the forming in the furnace is settled and the bulk volume of the slag is reduced, so that a sufficient removal rate cannot be obtained and rapid removal cannot be performed.
一方、排滓鍋の容量が大きすぎる場合は、余分な設備費を要する上、溶鉄の流出や操業床にスラグが流出するなどの制約で傾動速度にも上限があるため、一般的には、排滓鍋の転炉内溶鉄1t当たりの有効容量は、0.20m3超とする必要はない。 On the other hand, if the capacity of the pan is too large, there is an extra equipment cost and there is an upper limit on the tilting speed due to restrictions such as the outflow of molten iron and slag flowing into the operation floor. It is not necessary that the effective capacity per 1 ton of molten iron in the converter of the waste pan is more than 0.20 m 3 .
本発明の排滓方法による排滓試験について説明する。 The exclusion test by the exclusion method of the present invention will be described.
試験は370t転炉において実施した。スクラップおよび溶銑を装入した後、溶銑中のSi量に応じて、所定の塩基度およびスラグ量となるように生石灰や珪石等の造滓剤を投入して、溶銑の予備脱りん処理を行った。 The test was conducted in a 370 t converter. After charging scrap and hot metal, preliminarily dephosphorizing the hot metal by adding a faux lime or silica stone or other slagging agent to a specified basicity and slag amount according to the amount of Si in the hot metal. It was.
脱りん処理後に転炉を横転させて、炉口からスラグを排滓した。その際、傾動速度のパターン、排滓鍋の有効容量等を変更して、排滓時間、排滓率を評価した。ここで、排滓率は、スラグの組成に基づいた物質収支計算とスラグ秤量により求めた。 After dephosphorization, the converter was turned over and slag was discharged from the furnace port. At that time, the pattern of the tilting speed, the effective capacity of the waste pan, etc. were changed, and the waste time and the waste rate were evaluated. Here, the rejection rate was obtained by mass balance calculation and slag weighing based on the composition of slag.
また、炉口からスラグが流出を開始する傾動角度θ0は60°であり、排滓時の最大傾動角度の判断は、熟練オペレータによりこれ以上傾動すると溶鉄の流出が発生すると判断された時点としたが、最大傾動角度θ2は、全水準で84°であった。 The tilt angle θ 0 at which the slag starts to flow out of the furnace port is 60 °, and the determination of the maximum tilt angle at the time of discharge is the time when the skilled operator determines that the molten iron will flow out if tilted further. However, the maximum tilt angle θ 2 was 84 ° at all levels.
表1に、試験水準および試験結果、図2に実施例における傾動速度のパターン(時間と傾動角度の関係)を示すが、傾動パターンは、所定のパターンとなるように手動で制御した。 Table 1 shows the test level and test results, and FIG. 2 shows the tilt speed pattern (relationship between time and tilt angle) in the example. The tilt pattern was manually controlled to be a predetermined pattern.
水準1、2は、傾動速度のパターンが本発明の範囲外である比較例、、水準3〜6は、傾動速度のパターンが本発明の範囲内である本発明例であり、さらに、水準4〜6は、傾動速度のパターンが本発明の範囲内であり、かつ、溶鉄1t当たりの排滓鍋の有効容量が望ましい容量(0.11m3以上)の範囲内である発明例である。
表1に示すように、傾動速度のパターンが本発明の範囲外である比較例(水準1、2)に比べて、傾動速度のパターンが本発明の範囲内である例(水準3〜6)では、排滓率が70%以上と高位となるとともに、排滓時間も短縮され、また、単位時間当たりの排滓率が向上している。
As shown in Table 1, compared to comparative examples (
特に、排滓鍋の有効容量の大きい水準(水準4〜6)では、スラグの溢出がなく、大きな傾動角度まで高速で傾動することができた結果、排滓率が目標70%を大きく超過すると共に、排滓時間も、比較例よりも十分短縮できた。
In particular, at the level where the effective capacity of the sewage pan is large (levels 4 to 6), the slag does not overflow and can be tilted at a high speed up to a large tilting angle. As a result, the spillage rate greatly exceeds the
1 傾動角度
2 スラグ
3 溶鉄
1
Claims (1)
ここで、θ0°は、炉口からスラグが流出を開始する傾動角度、θ2°は、排滓時の最大傾動角度であり、θ1°は、(1)式で定義される。
θ1=0.6×(θ2−θ0)+θ0 …(1) In the method where the molten iron is left in the converter, the converter is rolled over, and the formed slag of the upper layer of the molten iron is discharged from the furnace port, the average until the tilt angle reaches at least θ 1 ° from θ 0 ° A converter evacuation method, characterized in that the tilting speed is 20 ° / min or more and the average tilting speed from θ 1 ° to θ 2 ° is 6.6 ° / min or less .
Here, θ 0 ° is the tilt angle at which the slag starts to flow out from the furnace port, θ 2 ° is the maximum tilt angle at the time of evacuation, and θ 1 ° is defined by equation (1).
θ 1 = 0.6 × (θ 2 −θ 0 ) + θ 0 (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005270250A JP4533293B2 (en) | 2005-09-16 | 2005-09-16 | Converter discharge method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005270250A JP4533293B2 (en) | 2005-09-16 | 2005-09-16 | Converter discharge method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007077481A JP2007077481A (en) | 2007-03-29 |
JP4533293B2 true JP4533293B2 (en) | 2010-09-01 |
Family
ID=37938082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005270250A Active JP4533293B2 (en) | 2005-09-16 | 2005-09-16 | Converter discharge method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4533293B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111663016A (en) * | 2020-04-30 | 2020-09-15 | 中冶南方工程技术有限公司 | Automatic control method for tilting speed in converter tapping process |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6601631B2 (en) * | 2017-01-27 | 2019-11-06 | Jfeスチール株式会社 | Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal |
CN114934150B (en) * | 2022-06-29 | 2023-06-23 | 莱芜钢铁集团银山型钢有限公司 | System and method for reducing slag quantity injected into steel ladle in converter tapping process |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4886723A (en) * | 1972-02-22 | 1973-11-15 | ||
JPH0734113A (en) * | 1993-07-20 | 1995-02-03 | Nippon Steel Corp | Converter refining method |
JPH07179920A (en) * | 1993-12-24 | 1995-07-18 | Nippon Steel Corp | Production of molten steel |
JP2000273519A (en) * | 1999-03-24 | 2000-10-03 | Kawasaki Steel Corp | Method for removing slag from torpedo car |
JP2005264210A (en) * | 2004-03-17 | 2005-09-29 | Nippon Steel Corp | Method for removing slag from converter |
-
2005
- 2005-09-16 JP JP2005270250A patent/JP4533293B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4886723A (en) * | 1972-02-22 | 1973-11-15 | ||
JPH0734113A (en) * | 1993-07-20 | 1995-02-03 | Nippon Steel Corp | Converter refining method |
JPH07179920A (en) * | 1993-12-24 | 1995-07-18 | Nippon Steel Corp | Production of molten steel |
JP2000273519A (en) * | 1999-03-24 | 2000-10-03 | Kawasaki Steel Corp | Method for removing slag from torpedo car |
JP2005264210A (en) * | 2004-03-17 | 2005-09-29 | Nippon Steel Corp | Method for removing slag from converter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111663016A (en) * | 2020-04-30 | 2020-09-15 | 中冶南方工程技术有限公司 | Automatic control method for tilting speed in converter tapping process |
Also Published As
Publication number | Publication date |
---|---|
JP2007077481A (en) | 2007-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6945055B2 (en) | Method of slag in the production process of ultra-low phosphorus steel and method of production of ultra-low phosphorus steel | |
JP6838419B2 (en) | Melting method of high nitrogen and low oxygen steel | |
US7618582B2 (en) | Continuous steel production and apparatus | |
JP4533293B2 (en) | Converter discharge method | |
JP5605339B2 (en) | Recycling method of steelmaking slag | |
JP2007077483A (en) | Steelmaking method in converter | |
JP6468084B2 (en) | Converter discharge method | |
JP4206050B2 (en) | Converter discharge method | |
JP5967139B2 (en) | Hot metal pretreatment method | |
JP2008063610A (en) | Method for producing molten steel | |
JP2011184753A (en) | Method for desiliconizing molten iron | |
JP5983900B1 (en) | Hot metal pretreatment method | |
JP6152830B2 (en) | How to use molten steel | |
JP6874904B2 (en) | Top bottom blown converter type refining container | |
JP2004323959A (en) | Method for removing slag in converter | |
JP6020414B2 (en) | Method for refining aluminum-containing stainless steel | |
KR101388062B1 (en) | Method for predicting concentration of hydrogen in molten metal | |
JP6327304B2 (en) | Shutter door of converter refining furnace and method of operating converter refining furnace | |
JP2017128751A (en) | Manufacturing method of high cleanliness steel | |
KR20110050197A (en) | Highly efficient deslagging method | |
JP6414098B2 (en) | Melting method of high Si high Al ultra-low carbon steel | |
KR102326869B1 (en) | Manufacturing method of molten material | |
JP6337681B2 (en) | Vacuum refining method for molten steel | |
RU2339887C2 (en) | Intermidiate device for cutting of slag from metal at output of it in melt form from melting facility | |
JP5515651B2 (en) | Desulfurization method for molten steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100601 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100611 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4533293 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |