JP2896839B2 - Molten steel manufacturing method - Google Patents

Molten steel manufacturing method

Info

Publication number
JP2896839B2
JP2896839B2 JP32908793A JP32908793A JP2896839B2 JP 2896839 B2 JP2896839 B2 JP 2896839B2 JP 32908793 A JP32908793 A JP 32908793A JP 32908793 A JP32908793 A JP 32908793A JP 2896839 B2 JP2896839 B2 JP 2896839B2
Authority
JP
Japan
Prior art keywords
slag
refining
dephosphorization
molten steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32908793A
Other languages
Japanese (ja)
Other versions
JPH07179920A (en
Inventor
浩 平田
祥昌 草野
弘文 前出
法行 升光
文夫 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32908793A priority Critical patent/JP2896839B2/en
Publication of JPH07179920A publication Critical patent/JPH07179920A/en
Application granted granted Critical
Publication of JP2896839B2 publication Critical patent/JP2896839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は転炉における溶鋼製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing molten steel in a converter.

【0002】[0002]

【従来の技術】製鋼トータルコストのミニマム化や低り
ん鋼化に関して、従来の溶銑脱りん方法として、(1)
トーピードカー内の溶銑に脱りん用フラックスをインジ
ェクションして予備脱りんを行う方法、(2)取鍋内の
溶銑に脱りん用フラックスをインジェクションもしくは
吹き付けを行い予備脱りんを行う方法、あるいは(3)
2基の転炉を用いて、一方で脱りんを行い、他方で脱炭
を行う方法(例えば、特開昭63−195210号公
報)が用いられている。
2. Description of the Related Art With regard to minimization of total cost of steel making and low phosphorus steel, (1)
A method for performing preliminary dephosphorization by injecting a dephosphorizing flux into the hot metal in a torpedo car, (2) A method for performing preliminary dephosphorization by injecting or spraying a hot metal in a ladle with a dephosphorizing flux, or (3)
A method of using two converters and performing dephosphorization on one side and decarburization on the other side (for example, JP-A-63-195210) is used.

【0003】しかしながら、上記(1)、(2)、
(3)のいずれの方法も脱りん工程から脱炭工程に移る
際、溶銑の移し替えを必要とし、温度低下を余儀なくさ
れ、エネルギーロスが大きいという欠点がある。この問
題点を解決するために、特開平2−181989号公報
において、従来の多工程にわたる精錬機能を転炉に集約
し、溶銑のもつエネルギーロスを大幅に低減すると共
に、転炉前後工程の固定費(設備費、労務費)の大幅な
軽減を可能とする方法が提案されている。
However, the above (1), (2),
Any of the methods (3) has a drawback that when transferring from the dephosphorization step to the decarburization step, the hot metal needs to be transferred, the temperature must be reduced, and the energy loss is large. In order to solve this problem, Japanese Patent Application Laid-Open No. Hei 18-181989 discloses that a conventional multi-step refining function is integrated into a converter to greatly reduce the energy loss of hot metal and to fix steps before and after the converter. There have been proposed methods that can significantly reduce costs (equipment costs and labor costs).

【0004】図2はこのフローを示しているが、第一工
程として溶銑を転炉に装入し、第二工程としてフラック
ス添加と酸素吹込みを行って脱珪、脱りん精錬を施し、
所定のりん含有量まで低減させ、第三工程として前記転
炉を傾動して第二工程で生成したスラグを排出し、その
後第四工程として同一転炉にてフラックス添加と酸素吹
錬により、所定のC含有量まで脱炭を行い、第五工程と
して第四工程で生成したスラグを該転炉内に残したまま
出鋼して、再び第一工程へ戻り、前記第五工程までを繰
り返し実施する。場合によっては、第四工程で生成した
スラグを第一工程に戻さず、第五工程において出鋼した
後、スラグを全量排出してもよい。
FIG. 2 shows this flow. In the first step, hot metal is charged into a converter, and in the second step, desiliconization and dephosphorization refining are performed by adding a flux and blowing oxygen.
As a third step, the converter is tilted to discharge the slag generated in the second step, and then the fourth step is performed by adding flux and oxygen blowing in the same converter in the same step as the fourth step. As a fifth step, the slag generated in the fourth step is left in the converter as the fifth step, and the steel is returned to the first step, and the process returns to the first step, and the steps up to the fifth step are repeatedly performed. I do. In some cases, the slag generated in the fourth step may not be returned to the first step, but may be entirely discharged after tapping in the fifth step.

【0005】[0005]

【発明が解決しようとする課題】上述の同一転炉を用い
て脱りん、脱炭工程を続けて行うプロセスを用いると、
脱りん工程から脱炭工程へ移る際のエネルギーロスを少
なくすることができ、また固定費(設備費、労務費)の
大幅な軽減を可能にすることができる。ところが、第三
工程でのスラグ排出量が少ないと、第二工程でスラグ中
に除去したりんが第四工程で再び溶鋼中に戻ってくる
(以下これを復りんと記述)ため、第四工程にて再び脱
りんする必要が生じ、生石灰等のフラックス量を増加さ
せねばならず、コスト増につながる。しかもこの第四工
程のりん濃度が高くなったスラグは第二工程に再び使用
されるため、第二工程での脱りん負荷が増加しコスト増
になる。このように第三工程でのスラグ排出量が少ない
と、脱りん負荷が増大しコスト増につながるという問題
が生ずる。
If the above-described process of continuously performing the dephosphorization and decarburization steps using the same converter is used,
Energy loss during the transition from the dephosphorization step to the decarburization step can be reduced, and fixed costs (equipment costs and labor costs) can be significantly reduced. However, if the amount of slag discharged in the third step is small, the phosphorus removed in the slag in the second step returns to the molten steel in the fourth step again (hereinafter, this is referred to as re-phosphorus). It is necessary to dephosphorize again, and the amount of flux such as quicklime must be increased, which leads to an increase in cost. Moreover, since the slag having a high phosphorus concentration in the fourth step is reused in the second step, the dephosphorization load in the second step is increased and the cost is increased. If the amount of slag discharged in the third step is small, a problem arises in that the dephosphorization load increases and the cost increases.

【0006】本発明は上記溶鋼製造法の第二工程での操
業条件を適正化することにより、第三工程においてスラ
グ排出量を多くし、第四工程での復りん量を抑え、生石
灰原単位の低減を図る方法を提供することを目的とする
ものである。
According to the present invention, by optimizing the operating conditions in the second step of the molten steel production method, the amount of slag discharged in the third step is increased, the amount of reconstituted phosphorus in the fourth step is suppressed, and the unit of quicklime is reduced. It is an object of the present invention to provide a method for reducing the amount of light.

【0007】[0007]

【課題を解決するための手段】本発明は上述の課題を有
利に解決したものであり、その要旨とするところは、一
つの精錬容器にて脱りん処理および脱炭処理を行い溶銑
から溶鋼を製造する際に、脱りん処理後のスラグ中のC
aO/SiO2 が2.5以下、且つ酸化鉄とマンガン酸
化物濃度の和(T.Fe+MnO)が10%以上、且つ
MgO濃度が10%以下であり、且つ処理終点温度を1
320℃以上、1400℃以下とすることを特徴とする
溶鋼製造方法にある。
DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and the gist of the present invention is to perform a dephosphorization treatment and a decarburization treatment in a single refining vessel to remove molten steel from hot metal. At the time of production, C in slag after dephosphorization
aO / SiO 2 is 2.5 or less, the sum of iron oxide and manganese oxide concentrations (T.Fe + MnO) is 10% or more, MgO concentration is 10% or less, and the treatment end point temperature is 1
A method for producing molten steel, wherein the temperature is set to 320 ° C. or higher and 1400 ° C. or lower.

【0008】[0008]

【作用】以下本発明を詳述する。本発明は溶銑予備処理
と脱炭とを集約して同一転炉によって操業される。即
ち、例えば図2に示すように、炉底に脱りん、脱炭用フ
ラックスを吹込むための1個ないし複数個の底吹き羽口
と、出鋼孔と対面炉腹にスラグフォーミング用ガス吹込
み羽口を備えた上底吹き転炉に溶銑を装入し、前述の底
吹き羽口より生石灰粉をベースとしたフラックスを窒素
等の不活性ガスを搬送ガスとして吹込み脱りん処理を行
う。
The present invention will be described below in detail. In the present invention, hot metal pretreatment and decarburization are integrated and operated by the same converter. For example, as shown in FIG. 2, one or a plurality of tuyere tuyeres for blowing dephosphorization and decarburization flux into the furnace bottom, and gas blowing vanes for slag forming at the tapping hole and the belly facing the furnace. Hot metal is charged into an upper-bottom blow converter provided with a port, and a flux based on quicklime powder is blown from the above-described bottom-blow tuyere using an inert gas such as nitrogen as a carrier gas to perform a dephosphorization treatment.

【0009】この時、酸化鉄粉を生石灰粉に混合する
か、あるいは羽口を3重管構造とし、酸素ガスを同一羽
口を通して吹込むことにより、脱りん反応速度を高める
ことができる。もしくは、上吹きランスから酸素ガスを
吹付け、上方よりフラックスを、投入、吹込み、吹付け
等の方法で添加して、生成スラグの酸化鉄濃度をコント
ロールすることによっても、脱りんを促進することがで
きる。
At this time, the dephosphorization reaction rate can be increased by mixing iron oxide powder with quick lime powder or by forming a tuyere with a triple tube structure and blowing oxygen gas through the same tuyere. Alternatively, dephosphorization is promoted by blowing oxygen gas from the upper blowing lance and adding flux from above by adding, blowing, or spraying to control the iron oxide concentration of the generated slag. be able to.

【0010】所定のりん含有量まで低下した時点で炉を
反出鋼側(排滓側)に傾動しスラグのみを排出させる。
ところが、この時のスラグ排出量が少ないと、スラグ中
に除去したりんが次の脱炭処理時に復りんするため生石
灰を余計に添加する必要が生じコスト増につながる。排
滓率(排出スラグ量/生成スラグ量×100)と生石灰
原単位の関係を図1に示す。排滓率が60%未満では生
石灰原単位が急増することがわかる。従って排滓率は少
なくとも60%以上にする必要がある。
At the time when the phosphorus content has decreased to a predetermined phosphorus content, the furnace is tilted to the counter-steel side (discharge side) to discharge only slag.
However, if the amount of slag discharged at this time is small, the phosphorus removed in the slag will return to phosphorus at the time of the next decarburization treatment, and it will be necessary to add extra quick lime, leading to an increase in cost. FIG. 1 shows the relationship between the waste rate (the amount of discharged slag / the amount of generated slag × 100) and the basic unit of quicklime. It can be seen that when the waste ratio is less than 60%, the quicklime basic unit sharply increases. Therefore, the waste rate must be at least 60% or more.

【0011】スラグ排出量はスラグの流動性が低い程少
なくなる。また流動性はスラグのCaO/SiO2
(T.Fe+MnO)濃度、MgO濃度、および温度に
依存する。これは、CaO/SiO2 が高い場合、
(T.Fe+MnO)濃度が低い場合、MgO濃度が高
い場合にはスラグの融点が上昇し、温度が低い場合スラ
グ中に固相が析出するため、スラグの見掛けの粘度が上
昇するためである。そこでスラグ排出前のスラグ組成、
即ち脱りん処理終了時のCaO/SiO2 を2.5以
下、且つ酸化鉄とマンガン酸化物濃度の和(T.Fe+
MnO)を10%以上、且つMgO濃度を10%以下と
し、温度を1320℃以上とすることによりスラグの流
動性を高め、排滓率を60%以上にすることができる。
温度に関しては温度が高い程有利であるが、温度が高く
なると脱りん反応が阻害されるために1400℃以下に
保つ必要がある。
The amount of slag discharge decreases as the fluidity of the slag decreases. The fluidity is slag CaO / SiO 2 ,
(T. Fe + MnO) concentration, MgO concentration, and temperature. This is because when CaO / SiO 2 is high,
This is because when the (T. Fe + MnO) concentration is low, the melting point of the slag increases when the MgO concentration is high, and when the temperature is low, the solid phase precipitates in the slag, so that the apparent viscosity of the slag increases. Therefore, slag composition before slag discharge,
That is, CaO / SiO 2 at the end of the dephosphorization treatment is 2.5 or less, and the sum of iron oxide and manganese oxide concentrations (T.Fe +
MnO) is set to 10% or more, the MgO concentration is set to 10% or less, and the temperature is set to 1320 ° C. or more, so that the fluidity of the slag can be increased and the waste rate can be set to 60% or more.
As for the temperature, the higher the temperature, the more advantageous it is, but the higher the temperature, the more the dephosphorization reaction is hindered.

【0012】排滓終了と共に直ちに炉を正立させ、副原
料(耐火物保護、復りん防止用生石灰、ドロマイト、鉄
鉱石、Mn鉱石等)を投入して通常の上底吹き脱炭精錬
を行う。吹止後、溶鋼は出鋼するが、スラグはそのまま
炉内に残し、次のチャージの脱りん用フラックスとして
活用する。
Immediately after the waste is finished, the furnace is erected immediately, and auxiliary raw materials (quick lime, dolomite, iron ore, Mn ore, etc. for refractory protection and rephosphorization prevention) are charged and ordinary top-bottom blowing decarburization refining is performed. . After blow-off, the molten steel is tapped, but the slag is left in the furnace as it is and used as a dephosphorization flux for the next charge.

【0013】[0013]

【実施例】4.5%のC,0.1%のP,0.3%のS
iを含む1350℃の溶銑を前チャージの脱炭滓を残し
た300t転炉に装入し、底吹攪拌を行いながら、脱り
ん剤として生石灰と鉄鉱石を添加し、上吹き吹酸を行い
脱りん処理を行った後、スラグを排出し、その後脱炭処
理を行う試験を行った。脱りん処理終了時点のスラグの
CaO/SiO2 ,(T/Fe+MnO)濃度、MgO
濃度、および温度を表1に示す。
EXAMPLE 4.5% C, 0.1% P, 0.3% S
1350 ° C. hot metal containing i was charged into a 300-t converter with the pre-charged decarburized slag remaining, and while performing bottom-blowing stirring, quicklime and iron ore were added as dephosphorizing agents, and top-blown acid was added. After performing the dephosphorization treatment, a test for discharging the slag and then performing the decarburization treatment was performed. CaO / SiO 2 , (T / Fe + MnO) concentration of slag at the end of dephosphorization treatment, MgO
Table 1 shows the concentration and the temperature.

【0014】[0014]

【表1】 [Table 1]

【0015】試験No.1〜10は、CaO/SiO2
を2.5以下、且つ酸化鉄とマンガン酸化物濃度の和
(T.Fe+MnO)を10%以上、且つMgO濃度を
10%以下とし、温度を1320℃以上とした場合であ
る。比較のため、試験No.11〜12は、CaO/S
iO2 が2.5以下、且つ(T.Fe+MnO)が10
%以上、且つMgO濃度が10%以下であるが、温度が
1320℃未満の場合、試験No.13〜14は、Ca
O/SiO2 が2.5以下、且つ(T.Fe+MnO)
が10%以上、温度が1320℃以上であるが、MgO
濃度を10%超とした場合、試験No.15〜16は、
CaO/SiO2 が2.5以下、且つMgO濃度が10
%以下、温度が1320℃以上であるが、(T.Fe+
MnO)を10%未満とした場合、試験No.17〜1
8は、(T.Fe+MnO)が10%以上、且つMgO
濃度が10%以下、温度が1320℃以上であるが、C
aO/SiO2 を2.5超とした場合である。
Test No. 1 to 10 are CaO / SiO 2
, 2.5% or less, the sum of iron oxide and manganese oxide concentrations (T. Fe + MnO) is 10% or more, the MgO concentration is 10% or less, and the temperature is 1320 ° C. or more. For comparison, test Nos. 11 to 12 are CaO / S
iO 2 is 2.5 or less and (T.Fe + MnO) is 10
% And the MgO concentration is 10% or less but the temperature is less than 1320 ° C., the test No. 13-14 are Ca
O / SiO 2 is 2.5 or less and (T.Fe + MnO)
Is 10% or more and the temperature is 1320 ° C. or more, but MgO
When the concentration was more than 10%, the test No. 15-16 are
CaO / SiO 2 of 2.5 or less and MgO concentration of 10
% And the temperature is 1320 ° C. or higher, but (T. Fe +
MnO) is less than 10%, test No. 17-1
8 has (T.Fe + MnO) of 10% or more and MgO
The concentration is 10% or less and the temperature is 1320 ° C. or more.
This is the case where aO / SiO 2 exceeds 2.5.

【0016】表2に各試験における排滓率と生石灰原単
位を示す。CaO/SiO2 を2.5以下、且つ酸化鉄
とマンガン酸化物濃度の和(T.Fe+MnO)を10
%以上、且つMgO濃度を10%以下とし、温度を13
20℃以上とした場合には、比較例に比べ安定して排滓
率を60%以上とし、生石灰原単位が低減できているこ
とがわかる。
Table 2 shows the slag ratio and the basic unit of quicklime in each test. CaO / SiO 2 is 2.5 or less, and the sum of iron oxide and manganese oxide concentrations (T.Fe + MnO) is 10
%, The MgO concentration is 10% or less, and the temperature is 13%.
When the temperature is set to 20 ° C. or higher, it can be seen that the waste rate is more stably set to 60% or higher than in the comparative example, and the quicklime basic unit can be reduced.

【0017】[0017]

【表2】 [Table 2]

【0018】以上本発明を主として同一転炉で脱珪、脱
りん処理と脱炭処理を行い、脱炭処理後のスラグを脱
珪、脱りん処理に使用する溶鋼製造法を例にとり説明し
たが、本発明はこれに限定されるものではなく、脱炭処
理後のスラグを排出し脱珪、脱りん処理に使用しない溶
鋼製造法に適用した場合もむろん本発明の範囲を逸脱す
るものではない。
The present invention has been described above mainly by taking as an example a method of producing molten steel in which desiliconization, dephosphorization and decarburization are performed in the same converter and slag after decarburization is used for desiliconization and dephosphorization. However, the present invention is not limited to this, and does not deviate from the scope of the present invention when applied to a molten steel manufacturing method in which slag after decarburization treatment is discharged and desiliconization is not used for dephosphorization treatment. .

【0019】[0019]

【発明の効果】同一精錬容器にて脱珪、脱りん処理と脱
炭処理を行うプロセスにおいて、本発明を実施すること
により、脱りん処理後のスラグの排出量を高めることが
でき、生石灰原単位を低減することができる。
According to the present invention, in the process of desiliconization, dephosphorization and decarburization in the same refining vessel, the amount of slag discharged after dephosphorization can be increased, and quicklime The unit can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】排滓率(排出スラグ量/生成スラグ量×10
0)と生石灰原単位の関係を示す図である。
FIG. 1 Waste rate (discharged slag amount / generated slag amount × 10)
FIG. 2 is a diagram showing the relationship between the basic unit of quicklime and the basic unit of quicklime.

【図2】同一転炉による精錬プロセスの模式的説明図で
ある。
FIG. 2 is a schematic explanatory view of a refining process using the same converter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 升光 法行 北海道室蘭市仲町12番地 新日本製鐵株 式会社室蘭製鐵所内 (72)発明者 小泉 文夫 北海道室蘭市仲町12番地 新日本製鐵株 式会社室蘭製鐵所内 (56)参考文献 特開 平5−140627(JP,A) 特開 平5−247511(JP,A) 特開 平5−302109(JP,A) 特開 平7−179921(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21C 5/28 C21C 1/02 110 C21C 1/04 101 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Noriyuki Shomitsu 12 Nakamachi, Muroran, Hokkaido Nippon Steel Corporation Muroran Works (72) Inventor Fumio Koizumi 12 Nakamachi, Muroran, Hokkaido Nippon Steel (56) References JP-A-5-140627 (JP, A) JP-A-5-247511 (JP, A) JP-A-5-302109 (JP, A) JP-A-7- 179921 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C21C 5/28 C21C 1/02 110 C21C 1/04 101

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶銑を精錬して溶鋼を製造する際に、第
一工程として溶銑を精錬容器に装入し、第二工程として
脱りん精錬あるいは脱珪、脱りん精錬を施し所定のりん
含有量まで低減させ、第三工程として前記精錬容器を傾
動して第二工程で生成したスラグを排出し、その後第四
工程として同一精錬容器にて脱炭精錬を行う溶鋼製造法
にて、第二工程後のスラグ中のCaO/SiO2 が2.
5以下、且つ酸化鉄とマンガン酸化物濃度の和(T.F
e+MnO)が10%以上、且つMgO濃度が10%以
下であり、且つ処理終点温度を1320℃以上、140
0℃以下とすることを特徴とする溶鋼製造方法。
1. When refining molten iron to produce molten steel, the molten iron is charged into a refining vessel as a first step, and dephosphorization refining or desiliconization and dephosphorization refining are performed in a second step to contain a predetermined amount of phosphorus. In the third step, the slag produced in the second step is discharged by tilting the smelting vessel as a third step, and then the second step is performed in a molten steel production method in which decarburization smelting is performed in the same smelting vessel as a fourth step. CaO / SiO 2 in the slag after the process is 2.
5 or less and the sum of iron oxide and manganese oxide concentrations (TF
e + MnO) is 10% or more, the MgO concentration is 10% or less, and the treatment end point temperature is 1320 ° C. or more and 140% or more.
A method for producing molten steel, wherein the temperature is set to 0 ° C. or lower.
【請求項2】 溶銑を精錬して溶鋼を製造する際に、第
一工程として溶銑を精錬容器に装入し、第二工程として
脱りん処理あるいは脱珪、脱りん精錬を施し所定のりん
含有量まで低減させ、第三工程として前記精錬容器を傾
動して第二工程で生成したスラグを排出し、その後第四
工程として同一精錬容器にて脱炭を行い、第五工程とし
て第四工程で生成したスラグを該精錬容器内に残したま
ま出鋼して、再び第一工程へ戻り、繰り返し上記工程を
行う溶鋼製造法の第二工程において、スラグ中のCaO
/SiO2 が2.5以下、且つ酸化鉄とマンガン酸化物
濃度の和(T.Fe+MnO)が10%以上、且つMg
O濃度が10%以下であり、且つ処理終点温度を132
0℃以上、1400℃以下とすることを特徴とする溶鋼
製造方法。
2. When refining molten iron to produce molten steel, the molten iron is charged into a refining vessel as a first step, and a dephosphorization treatment, a desiliconization, and a dephosphorization refining are performed as a second step to contain a predetermined amount of phosphorus. The slag generated in the second step is discharged by tilting the smelting vessel as a third step, then decarburized in the same smelting vessel as a fourth step, and in the fourth step as a fifth step The steel is produced while leaving the generated slag in the refining vessel, and the process returns to the first step again. In the second step of the molten steel production method in which the above steps are repeatedly performed, CaO in the slag is removed.
/ SiO 2 is 2.5 or less, the sum of iron oxide and manganese oxide concentrations (T.Fe + MnO) is 10% or more, and Mg
O concentration is 10% or less, and the processing end point temperature is 132
A method for producing molten steel, wherein the temperature is 0 ° C or higher and 1400 ° C or lower.
JP32908793A 1993-12-24 1993-12-24 Molten steel manufacturing method Expired - Fee Related JP2896839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32908793A JP2896839B2 (en) 1993-12-24 1993-12-24 Molten steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32908793A JP2896839B2 (en) 1993-12-24 1993-12-24 Molten steel manufacturing method

Publications (2)

Publication Number Publication Date
JPH07179920A JPH07179920A (en) 1995-07-18
JP2896839B2 true JP2896839B2 (en) 1999-05-31

Family

ID=18217475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32908793A Expired - Fee Related JP2896839B2 (en) 1993-12-24 1993-12-24 Molten steel manufacturing method

Country Status (1)

Country Link
JP (1) JP2896839B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533293B2 (en) * 2005-09-16 2010-09-01 新日本製鐵株式会社 Converter discharge method
JP2007077483A (en) * 2005-09-16 2007-03-29 Nippon Steel Corp Steelmaking method in converter
JP4983303B2 (en) * 2006-02-28 2012-07-25 Jfeスチール株式会社 Hot metal refining method
JP4790489B2 (en) * 2006-05-19 2011-10-12 新日本製鐵株式会社 Converter steelmaking
JP4977870B2 (en) * 2006-09-11 2012-07-18 Jfeスチール株式会社 Steel making method
CN117721268B (en) * 2024-02-18 2024-05-10 上海大学 Dephosphorization slag with excellent phosphorus-rich capability and fluidity for converter steelmaking by double slag method at different temperatures and dephosphorization method

Also Published As

Publication number Publication date
JPH07179920A (en) 1995-07-18

Similar Documents

Publication Publication Date Title
JP3239197B2 (en) Converter steelmaking method
JP2896839B2 (en) Molten steel manufacturing method
JP2958848B2 (en) Hot metal dephosphorization method
JP2003239009A (en) Dephosphorization refining method of hot metal
JPH0136525B2 (en)
JP3486886B2 (en) Steelmaking method using two or more converters
JP2607329B2 (en) Hot metal dephosphorization method
JP3531467B2 (en) Dephosphorization refining method of hot metal in converter
JP3486889B2 (en) Steelmaking method using two or more converters
JP2000109924A (en) Method for melting extra-low sulfur steel
JP3194212B2 (en) Converter steelmaking method
JP3440755B2 (en) How to add auxiliary raw materials to the converter
JPH08311519A (en) Steelmaking method using converter
JP2607328B2 (en) Hot metal dephosphorization method
US4439234A (en) Method of increasing the cold material charging capacity in the top-blowing production of steel
JP2000328123A (en) Converter refining method for adjusting silicon charging quality
JPH11193414A (en) Steel manufacturing method using a plurality of converters
JP2587286B2 (en) Steelmaking method
JP2000087125A (en) Method for dephosphorize-refining molten iron
JP3486890B2 (en) Converter steelmaking method using dephosphorized hot metal
JPH09256020A (en) Method for dehosphorize-refining of molten iron in converter type refining vessel.
JPH06200311A (en) Method for dephosphorizing molten iron
JPH0353014A (en) Smelting method for extremely low-sulfur steel
JPH10102120A (en) Steelmaking method
JPS61104014A (en) Method for reducing mn ore with high efficiency in oxidation refining furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990112

LAPS Cancellation because of no payment of annual fees