JP6841391B2 - Estimating method and estimation device for the amount of residual slag in the furnace - Google Patents

Estimating method and estimation device for the amount of residual slag in the furnace Download PDF

Info

Publication number
JP6841391B2
JP6841391B2 JP2020561404A JP2020561404A JP6841391B2 JP 6841391 B2 JP6841391 B2 JP 6841391B2 JP 2020561404 A JP2020561404 A JP 2020561404A JP 2020561404 A JP2020561404 A JP 2020561404A JP 6841391 B2 JP6841391 B2 JP 6841391B2
Authority
JP
Japan
Prior art keywords
slag
furnace
amount
residual
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020561404A
Other languages
Japanese (ja)
Other versions
JPWO2020129887A1 (en
Inventor
憲一郎 内藤
憲一郎 内藤
紀史 浅原
紀史 浅原
孝夫 中切
孝夫 中切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6841391B2 publication Critical patent/JP6841391B2/en
Publication of JPWO2020129887A1 publication Critical patent/JPWO2020129887A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、炉内残留スラグ量の推定方法、すなわち、転炉での脱珪または脱燐処理後に転炉を傾転させることにより溶鉄を転炉内に残したまま炉口からスラグを排滓する操業において、排滓後に炉内に残留するスラグの量を推定する方法に関する。 The present invention is a method for estimating the amount of residual slag in a furnace, that is, slag is discharged from the furnace mouth while leaving molten iron in the converter by tilting the converter after desiliconization or dephosphorization treatment in the converter. The present invention relates to a method of estimating the amount of slag remaining in the furnace after slag.

転炉での溶銑の脱珪または脱燐処理後に転炉を傾転させることにより溶鉄を転炉内に残したまま炉口からスラグの一部を下方に配置した排滓鍋に流下させて排滓し、その後再度転炉を直立させて生石灰(主成分はCaO)等の副原料を添加し、引き続き精錬を行う方法がある(例えば特許文献2参照)。 By tilting the converter after desiliconization or dephosphorization of hot metal in the converter, a part of the slag is allowed to flow down from the furnace mouth into the drain pot arranged below while leaving the molten iron in the converter. There is a method in which the converter is slagged and then the converter is made upright again to add auxiliary raw materials such as quicklime (main component is CaO) and then refined (see, for example, Patent Document 2).

特開2007−308773号公報Japanese Unexamined Patent Publication No. 2007-308773 特開平5−140627号公報Japanese Unexamined Patent Publication No. 5-140627 国際公開2018/020929号International Publication No. 2018/020929

この方法では、転炉内でスラグをフォーミング(泡立ち)させてスラグの嵩体積を増加させることにより排滓しやすくし、排滓量を確保している。ここで、スラグのフォーミングは、溶鉄中の炭素(C)とスラグ中の酸化鉄(FeO)の反応により、一酸化炭素(CO)ガスが生成し、そのCOガスがスラグに保持されることにより発生する。 In this method, the slag is formed (foamed) in the converter to increase the bulk volume of the slag, which facilitates slag removal and secures the amount of slag. Here, in the forming of slag, carbon monoxide (CO) gas is generated by the reaction of carbon (C) in molten iron and iron oxide (FeO) in slag, and the CO gas is held in the slag. appear.

排滓後に転炉を直立させて生石灰等の副原料を添加して引き続き精錬を行うが、通常、炉内残留スラグ量に応じて、副原料の添加量を調整する。そのため、炉内残留スラグ量の推定がばらつくと、副原料の添加量の過不足が生じる。例えば、炉内残留スラグ量を実際よりも多めに推定した場合は、副原料の過剰添加によるコストの悪化を招く。一方、炉内残留スラグ量を実際よりも少なめに推定した場合は、副原料の添加不足による燐等の成分の不適合(以下、「成分はずれ」という。)を招きやすい。通常は成分はずれを防止するため、副原料を過剰気味に添加することが多い。つまり、炉内残留スラグ量の推定精度が低いと、副原料使用量の増加、発生スラグ量の増加、熱損失の増加、鉄分歩留の悪化等に伴うコスト悪化の課題がある。 After the slag, the converter is upright and auxiliary materials such as quicklime are added to continue refining. Normally, the amount of auxiliary materials added is adjusted according to the amount of residual slag in the furnace. Therefore, if the estimation of the amount of residual slag in the furnace varies, the amount of auxiliary raw material added will be excessive or insufficient. For example, if the amount of residual slag in the furnace is estimated to be larger than the actual amount, the cost will be deteriorated due to the excessive addition of auxiliary materials. On the other hand, if the amount of residual slag in the furnace is estimated to be smaller than the actual amount, incompatibility of components such as phosphorus due to insufficient addition of auxiliary raw materials (hereinafter referred to as “component loss”) is likely to occur. Usually, in order to prevent the components from coming off, auxiliary raw materials are often added in excess. That is, if the estimation accuracy of the amount of residual slag in the furnace is low, there are problems of cost deterioration due to an increase in the amount of auxiliary raw materials used, an increase in the amount of generated slag, an increase in heat loss, a deterioration in iron yield, and the like.

従来、炉内残留スラグ量の推定は、オペレータが目視で排滓状況を観察したり、排滓台車に設置した秤量器により排滓量を秤量したりすることにより排滓量を推定し、炉内の推定スラグ量から排滓量を差し引くなどの方法で行われてきた。しかし、排滓中にフォーミングしたスラグが鎮静してスラグの体積が刻々と変化するため、オペレータの目視による推定では推定精度が低いという課題があった。また、秤量器による秤量の場合は、フォーミングしたスラグが排滓鍋の容量を超えて溢出して秤量器を損傷したり、台車の振動等により秤量器の精度が悪化したりするため、秤量器の設備保全負荷が高いうえ、スラグ中に不可避的に混入している粒鉄分の補正も必要となるなど、安定して精度の高い秤量を行うことが困難であった。 Conventionally, the amount of residual slag in the furnace is estimated by the operator visually observing the slag state or weighing the slag amount with a weighing device installed on the slag trolley. It has been done by subtracting the amount of slag from the estimated amount of slag inside. However, since the slag formed during the slag calms down and the volume of the slag changes from moment to moment, there is a problem that the estimation accuracy is low in the visual estimation by the operator. Also, in the case of weighing with a weighing device, the formed slag overflows beyond the capacity of the drain pan and damages the weighing device, or the accuracy of the weighing device deteriorates due to vibration of the trolley, etc. It was difficult to perform stable and highly accurate weighing because the equipment maintenance load was high and it was necessary to correct the grain iron content that was inevitably mixed in the slag.

また、特許文献1には、転炉の傾転角度と炉内残留スラグ量に相関があることを見出し、傾転角度を基に炉内残留スラグ量を制御する方法が開示されている。しかし、この方法は、転炉の傾転角度と炉内残容積の関係を利用した方法であり、脱炭処理後のフォーミングしていないスラグ、すなわち嵩密度が一定であるスラグへの適用を前提としているため、脱珪または脱燐処理後のフォーミングしたスラグへの適用はできない。
また、特許文献3には、転炉から排滓されたフォーミングを伴うスラグの重量を推定する排滓重量推定方法が開示されている。この方法では、転炉から排滓されるスラグの体積流量の経時変化を推定した体積流量推移を導出すると共に、転炉から排滓されるスラグの嵩密度の経時変化を推定した嵩密度推移を導出し、体積流量推移および前記嵩密度推移の対応する各時点におけるスラグの体積流量と嵩密度との積を積算して得られる値を、転炉から排滓されたスラグの排滓重量の推定値として導出する。
Further, Patent Document 1 finds that there is a correlation between the tilt angle of the converter and the amount of residual slag in the furnace, and discloses a method of controlling the amount of residual slag in the furnace based on the tilt angle. However, this method utilizes the relationship between the tilt angle of the converter and the residual volume in the furnace, and is premised on application to unformed slag after decarburization treatment, that is, slag having a constant bulk density. Therefore, it cannot be applied to formed slag after desiliconization or dephosphorization treatment.
Further, Patent Document 3 discloses a waste weight estimation method for estimating the weight of slag with forming discharged from a converter. In this method, the volume flow transition that estimates the change in volume flow rate of the slag discharged from the converter over time is derived, and the change in bulk density that estimates the change in bulk density of the slag discharged from the converter over time is calculated. The value obtained by deriving and integrating the product of the volume flow rate and the bulk density of the slag at each corresponding time point of the volume flow rate transition and the bulk density transition is estimated as the waste weight of the slag discharged from the converter. Derived as a value.

本発明は、従来技術の課題に鑑み、転炉での脱珪または脱燐処理後に転炉を傾転させることにより溶鉄を転炉内に残したまま炉口からスラグを排滓する操業において、簡便かつ精度の高い炉内残留スラグ量の推定方法を提供することを目的とする。 In view of the problems of the prior art, the present invention relates to an operation in which slag is discharged from the furnace mouth while leaving molten iron in the converter by tilting the converter after desiliconization or dephosphorization treatment in the converter. An object of the present invention is to provide a simple and highly accurate method for estimating the amount of residual slag in a furnace.

本願の発明者らは、精度の高い炉内残留スラグ量の推定のために、排滓中にフォーミングしたスラグが鎮静してスラグの嵩体積が変化する挙動を推定し、それを基に炉内残留スラグ量を推定することを発想し、鋭意検討を行った。その結果、フォーミング鎮静特性を推定し、推定したフォーミング鎮静特性および排滓中の転炉の傾転パターンに基づいて炉内残留スラグ量を推定する方法を確立し、本発明を完成させた。本発明の要旨とするところは以下の通りである。 In order to estimate the amount of residual slag in the furnace with high accuracy, the inventors of the present application estimated the behavior of the formed slag during slag calming down and changing the bulk volume of the slag, and based on this, estimated the behavior in the furnace. The idea was to estimate the amount of residual slag, and we conducted a diligent study. As a result, a method for estimating the forming sedative characteristics and estimating the amount of residual slag in the furnace based on the estimated forming sedative characteristics and the tilt pattern of the converter during the discharge was established, and the present invention was completed. The gist of the present invention is as follows.

<1>
転炉での脱珪または脱燐処理後に転炉を傾転させることにより溶鉄を転炉内に残したまま炉口からスラグを排滓する操業において排滓後に炉内に残留するスラグの量を推定する方法であって、
脱珪または脱燐処理後かつ排滓開始前に、転炉内のスラグ高さを複数回または連続で測定する工程Aと、
工程Aで測定した結果に基づいて、炉内スラグのフォーミング鎮静特性を推定する工程Bと、
工程Bで推定した鎮静特性および転炉の傾転パターンに基づいて、炉内残留スラグ量を推定する工程Cと、
を含む
ことを特徴とする炉内残留スラグ量の推定方法。
<2>
工程Cは、
工程Bで推定した鎮静特性および転炉の傾転パターンに基づいて、排滓開始時点から排滓終了時点までを微小時間で区切った時間刻みごとに、鎮静挙動および排出挙動を逐次計算する工程Dを含む
ことを特徴とする<1>に記載の炉内残留スラグ量の推定方法。
<3>
工程Cは、
排滓開始時点のスラグ状態を、工程Bで推定した鎮静特性に基づいて推定する工程Eを含む
ことを特徴とする<2>に記載の炉内残留スラグ量の推定方法。
<4>
工程Cは、
転炉の傾転パターンに基づいて、残留スラグ容積推移を推定する工程Fと、
工程Bで推定した鎮静特性、および、工程Fで推定した残留スラグ容積推移に基づいて、排滓中に同時に進行する鎮静挙動および排出挙動を推定する工程Gと、を含む
ことを特徴とする<1>に記載の炉内残留スラグ量の推定方法。
<5>
工程Gは、
工程Bで推定した鎮静特性、および、工程Fで推定した残留スラグ容積推移に基づいて、排滓開始時点から排滓終了時点までを微小時間で区切った時間刻みごとにスラグ状態を逐次計算する工程Hを含む
ことを特徴とする<4>に記載の炉内残留スラグ量の推定方法。
<6>
工程Gは、
排滓開始時点のスラグ状態を、工程Bで推定した鎮静特性に基づいて推定する工程Iを含む
ことを特徴とする<5>に記載の炉内残留スラグ量の推定方法。
<7>
工程Fでは、流出中のスラグのヘッド分に相当する体積を考慮して推定する
ことを特徴とする<4>〜<6>の何れか一項に記載の炉内残留スラグ量の推定方法。
<8>
工程Aは、マイクロ波距離計を使用して行う
ことを特徴とする<1>〜<7>の何れか一項に記載の炉内残留スラグ量の推定方法。
<9>
転炉での脱珪または脱燐処理後に転炉を傾転させることにより溶鉄を転炉内に残したまま炉口からスラグを排滓する操業において排滓後に炉内に残留するスラグの量を推定する装置であって、
脱珪または脱燐処理後かつ排滓開始前に転炉内のスラグ高さを複数回または連続で測定した結果に基づいて、炉内スラグのフォーミング鎮静特性を推定する鎮静特性推定部と、
前記鎮静特性推定部で推定した鎮静特性および転炉の傾転パターンに基づいて、炉内残留スラグ量を推定する炉内残留スラグ量推定部と、を備える
ことを特徴とする炉内残留スラグ量の推定装置。
<10>
前記炉内残留スラグ量推定部は、
転炉の傾転パターンに基づいて、残留スラグ容積推移を推定する残容積推移推定部と、
排滓開始時点のスラグ状態を、前記鎮静特性推定部で推定した鎮静特性に基づいて推定する排滓開始時スラグ状態推定部と、
前記鎮静特性推定部で推定した鎮静特性、および、前記残容積推移推定部で推定した残留スラグ容積推移に基づいて、排滓開始時点から排滓終了時点までを微小時間で区切った時間刻みごとにスラグ状態を逐次計算する逐次計算部と、を備える
ことを特徴とする<9>に記載の炉内残留スラグ量の推定装置。
<1>
In the operation of discharging slag from the furnace mouth while leaving molten iron in the converter by tilting the converter after desiliconization or dephosphorization in the converter, the amount of slag remaining in the furnace after the discharge is reduced. It ’s a method of estimation,
Step A in which the slag height in the converter is measured multiple times or continuously after the desiliconization or dephosphorization treatment and before the start of slag removal.
Step B, which estimates the forming sedative characteristics of the slag in the furnace based on the results measured in step A, and step B,
Step C, which estimates the amount of residual slag in the furnace based on the sedation characteristics estimated in step B and the tilt pattern of the converter,
A method for estimating the amount of residual slag in a furnace, which comprises.
<2>
Process C is
Based on the sedation characteristics estimated in step B and the tilt pattern of the converter, the sedation behavior and the discharge behavior are sequentially calculated for each time interval from the start time of slag to the end of slag. The method for estimating the amount of residual slag in the furnace according to <1>, which comprises.
<3>
Process C is
The method for estimating the amount of residual slag in a furnace according to <2>, which includes step E in which the slag state at the start of slag is estimated based on the sedation characteristics estimated in step B.
<4>
Process C is
Step F for estimating the residual slag volume transition based on the tilt pattern of the converter, and
It is characterized by including a sedative characteristic estimated in step B and a step G in which the sedative behavior and the discharge behavior that simultaneously proceed during slag are estimated based on the residual slag volume transition estimated in step F. 1> The method for estimating the amount of residual slag in the furnace.
<5>
Process G is
Based on the sedation characteristics estimated in step B and the residual slag volume transition estimated in step F, the step of sequentially calculating the slag state for each time interval from the start time of slag discharge to the end time of slag discharge. The method for estimating the amount of residual slag in a furnace according to <4>, which comprises H.
<6>
Process G is
The method for estimating the amount of residual slag in a furnace according to <5>, which includes step I in which the slag state at the start of slag is estimated based on the sedation characteristics estimated in step B.
<7>
The method for estimating the amount of residual slag in the furnace according to any one of <4> to <6>, wherein in step F, the volume corresponding to the head portion of the slag flowing out is estimated.
<8>
The method for estimating the amount of residual slag in a furnace according to any one of <1> to <7>, wherein the step A is performed using a microwave range finder.
<9>
In the operation of discharging slag from the furnace mouth while leaving molten iron in the converter by tilting the converter after desiliconization or dephosphorization in the converter, the amount of slag remaining in the furnace after the discharge is reduced. It is a device to estimate
A sedation characteristic estimation unit that estimates the forming sedation characteristics of the slag in the furnace based on the results of measuring the slag height in the converter multiple times or continuously after the desiliconization or dephosphorization treatment and before the start of scavenging.
The amount of residual slag in the furnace is characterized by comprising an in-core residual slag amount estimating unit that estimates the amount of residual slag in the furnace based on the sedation characteristics estimated by the sedation characteristic estimation unit and the tilt pattern of the converter. Estimator.
<10>
The residual slag amount estimation unit in the furnace is
A residual volume transition estimation unit that estimates the residual slag volume transition based on the tilt pattern of the converter,
A slag state estimation unit at the start of slag that estimates the slag state at the start of slag based on the sedative characteristics estimated by the sedation characteristic estimation unit, and a slag state estimation unit at the start of slag.
Based on the sedation characteristics estimated by the sedation characteristic estimation unit and the residual slag volume transition estimated by the residual volume transition estimation unit, the period from the start time of slag to the end of slag is divided by a minute time. The device for estimating the amount of residual slag in a furnace according to <9>, comprising a sequential calculation unit for sequentially calculating the slag state.

本発明により、転炉での脱珪または脱燐処理後に転炉を傾転させることにより溶鉄を転炉内に残したまま炉口からスラグを排滓する操業において、排滓後の炉内残留スラグ量の推定が簡便となり、かつ推定精度が向上する。それにより、炉内残留スラグ量の推定のばらつきを抑制し、副原料を過不足なく添加できる。以上の効果により、コスト削減(副原料使用量の削減、発生スラグ量の削減、熱損失の抑制、鉄分歩留の向上)が可能となる。 According to the present invention, in the operation of discharging slag from the furnace mouth while leaving molten iron in the converter by tilting the converter after the desiliconization or dephosphorization treatment in the converter, the residue in the furnace after the discharge is performed. Estimating the amount of slag becomes easier and the estimation accuracy improves. As a result, variations in the estimation of the amount of residual slag in the furnace can be suppressed, and auxiliary raw materials can be added in just proportion. With the above effects, it is possible to reduce costs (reduce the amount of auxiliary raw materials used, reduce the amount of slag generated, suppress heat loss, and improve iron yield).

転炉が直立した状態での炉内のスラグ高さの経時変化を示す図であり、(a)は脱珪または脱燐処理終了直後の状態を示しており、(b)は脱珪または脱燐処理終了後ある程度時間が経過した時の状態を示している。It is a figure which shows the time-dependent change of the slag height in the furnace in the state where the converter is upright, (a) shows the state immediately after the desiliconization or dephosphorization treatment is completed, and (b) is desiliconization or desiliconization. It shows the state when a certain amount of time has passed after the completion of phosphorus treatment. 脱燐処理後に転炉内のスラグ高さを測定した結果の一例を示す図である。It is a figure which shows an example of the result of having measured the slag height in a converter after dephosphorizing treatment. 実施例において、排滓前にマイクロ波距離計でスラグ高さを測定し、その高さ変化からフォーミング鎮静特性を推定した結果を示す図である。In the example, it is a figure which shows the result of having measured the slag height with a microwave range finder before scavenging, and estimating the forming sedative characteristic from the height change. 実施例において、排滓中の転炉の傾転パターンを示す図である。It is a figure which shows the tilting pattern of the converter in the slag in the Example. 実施例において、図3Aに示したフォーミング鎮静特性と図3Bに示した傾転パターンから推定した炉内残留スラグ量の経時変化を示す図である。In the Example, it is a figure which shows the time-dependent change of the amount of residual slag in a furnace estimated from the forming sedative characteristic shown in FIG. 3A and the tilt pattern shown in FIG. 3B. 実施例の炉内残留スラグ量の推定において、実秤値からの計算値、本発明の方法による推定値、オペレータの目視による推定値、特許文献1の方法による推定値を対比させた図である。It is a figure which compared the calculated value from the actual scale value, the estimated value by the method of this invention, the estimated value by the operator's visual inspection, and the estimated value by the method of Patent Document 1 in the estimation of the residual slag amount in the furnace of an Example. .. 実施形態の炉内残留スラグ量推定装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the residual slag amount estimation apparatus in a furnace of embodiment. 実施形態の炉内残留スラグ量推定装置を実現するコンピュータの構成を示すブロック図である。It is a block diagram which shows the structure of the computer which realizes the furnace residual slag amount estimation apparatus of embodiment.

〔フォーミング鎮静について〕
図1は、脱珪または脱燐処理後、転炉6が直立した状態での転炉内のスラグ高さの経時変化を示している。スラグ上層はフォーミングして気泡を多量に含む低密度スラグ層3であり、スラグ下層は破泡後の気泡を含まないスラグが沈降した高密度スラグ層4であり、その下に溶鉄5がある。図1(a)は脱珪または脱燐処理終了直後の状態を示しており、図1(b)は脱珪または脱燐処理終了後ある程度時間が経過した時の状態を示している。
[About forming sedation]
FIG. 1 shows the time course of the slag height in the converter in the state where the converter 6 is upright after the desiliconization or dephosphorization treatment. The upper layer of the slag is a low-density slag layer 3 that is formed and contains a large amount of bubbles, and the lower layer of the slag is a high-density slag layer 4 in which slag that does not contain bubbles after bubble rupture is settled, and the molten iron 5 is below the slag layer 4. FIG. 1A shows a state immediately after the completion of the desiliconization or dephosphorization treatment, and FIG. 1B shows a state when a certain amount of time has passed after the completion of the desiliconization or dephosphorization treatment.

図1に示すように、時間経過に伴い、フォーミングスラグ(低密度スラグ層3)中の気泡が破泡し、スラグ高さが低下すること、すなわちフォーミングが鎮静することが判る。具体的には、鎮静した低密度スラグ層3は高密度スラグ層4になるため、低密度スラグ層の高さが大きく低下するとともに高密度スラグ層の高さが僅かに上昇する。 As shown in FIG. 1, it can be seen that with the passage of time, the bubbles in the forming slag (low density slag layer 3) burst and the slag height decreases, that is, the forming calms down. Specifically, since the calmed low-density slag layer 3 becomes the high-density slag layer 4, the height of the low-density slag layer is greatly reduced and the height of the high-density slag layer is slightly increased.

脱燐処理後に転炉内のスラグ高さを測定した結果の一例を図2に示す。
図中の破線はマイクロ波距離計1による連続測定結果、点(○)は測定棒2による非連続測定結果を示している。両者の値はほぼ一致している。
転炉内のスラグ高さとは、スラグ上面高さから溶鉄高さを差し引いた高さ、すなわち、スラグ層のみの高さである。スラグ上面高さをマイクロ波距離計1や測定棒2によって測定し、測定したスラグ上面高さから溶鉄高さを差し引くことで、スラグ高さを算出する。溶鉄高さは、転炉形状や装入鉄量から算出するか、もしくは処理前に測定する。
なお、マイクロ波距離計1や測定棒2による測定は脱燐処理中や脱燐処理直後も可能であり、時間t=0は脱燐処理終了直後を意味している。
FIG. 2 shows an example of the result of measuring the slag height in the converter after the dephosphorization treatment.
The broken line in the figure shows the continuous measurement result by the microwave range finder 1, and the point (◯) shows the discontinuous measurement result by the measuring rod 2. Both values are almost the same.
The height of the slag in the converter is the height obtained by subtracting the height of the molten iron from the height of the upper surface of the slag, that is, the height of only the slag layer. The height of the upper surface of the slag is measured by the microwave range finder 1 or the measuring rod 2, and the height of the molten iron is subtracted from the height of the upper surface of the slag to calculate the slag height. The molten iron height is calculated from the shape of the converter and the amount of iron charged, or measured before processing.
The measurement with the microwave range finder 1 and the measuring rod 2 can be performed during the dephosphorization treatment or immediately after the dephosphorization treatment, and the time t = 0 means immediately after the completion of the dephosphorization treatment.

〔排滓中のフォーミング鎮静とその影響〕
転炉を傾転し、フォーミングによるスラグの嵩体積増加を利用して排滓する際(スラグを排出している最中)にも、同様にフォーミング鎮静が生じている。
したがって、フォーミング鎮静が速い場合には、排滓後半でスラグの嵩体積が減少するため、十分に排滓できず、炉内残留スラグ量(重量)が増加する。一方、フォーミング鎮静が遅い場合には、排滓後半でもスラグの嵩体積を確保できるため、十分に排滓でき、炉内残留スラグ量が減少する。このように、炉内残留スラグ量はフォーミング鎮静速度の影響を受けることになる。
別の説明をすると、排滓終了時点で同じ嵩体積のスラグが残留した場合でも、その嵩体積に占める低密度スラグと高密度スラグの割合が、フォーミング鎮静速度の影響を受けることになる。同じ嵩体積でも低密度スラグと高密度スラグの割合に応じて重量が変化するため、炉内残留スラグ量(重量)が、フォーミング鎮静速度の影響を受けることとなる。
[Forming sedation during slag and its effects]
Similarly, forming sedation occurs when the converter is tilted and the slag is discharged by utilizing the increase in the bulk volume of the slag due to forming (while the slag is being discharged).
Therefore, when the forming sedation is fast, the bulk volume of the slag decreases in the latter half of the slag, so that the slag cannot be sufficiently slagged and the amount of residual slag (weight) in the furnace increases. On the other hand, when the forming sedation is slow, the bulk volume of the slag can be secured even in the latter half of the slag, so that the slag can be sufficiently discharged and the amount of residual slag in the furnace is reduced. In this way, the amount of residual slag in the furnace is affected by the forming sedation rate.
In another explanation, even if the same bulk volume of slag remains at the end of scavenging, the ratio of low-density slag and high-density slag to the bulk volume is affected by the forming sedation rate. Even with the same bulk volume, the weight changes according to the ratio of low-density slag and high-density slag, so the amount of residual slag (weight) in the furnace is affected by the forming stagnation rate.

〔フォーミング鎮静特性は、スラグの物性、ガス発生速度などの様々な因子の影響を受ける。〕
ここで、フォーミングの状況は、脱珪または脱燐処理後の時間経過に伴い変化するが、その鎮静特性は、スラグの物性(粘度、表面張力など)、ガスの発生速度などの影響を受ける。これらの因子のうち、スラグの物性はスラグの組成や温度の影響を受け、ガスの発生速度はスラグの組成や温度に加え、転炉の形状や操業条件(底吹き条件等)の影響を受ける。
[Forming sedative properties are affected by various factors such as slag physical properties and gas generation rate. ]
Here, the forming situation changes with the passage of time after the desiliconization or dephosphorization treatment, but its sedative properties are affected by the physical properties of the slag (viscosity, surface tension, etc.), the gas generation rate, and the like. Of these factors, the physical properties of slag are affected by the composition and temperature of the slag, and the gas generation rate is affected by the shape of the converter and operating conditions (bottom blowing conditions, etc.) in addition to the composition and temperature of the slag. ..

これら組成や温度、操業条件は必ずしも一定ではなく、ばらつきを持っている。これらのばらつきに応じ、フォーミングの状況、さらには排滓後の炉内残留スラグ量(重量)もばらつくことになる。このような事情が炉内残留スラグ量の高精度な推定を困難にしている。 These compositions, temperatures, and operating conditions are not always constant and vary. Depending on these variations, the forming situation and the amount (weight) of residual slag in the furnace after slag will also vary. Such circumstances make it difficult to accurately estimate the amount of residual slag in the furnace.

そこで、本願の発明者らは、フォーミング鎮静特性を推定することが炉内残留スラグ量の推定に重要となることを知見し、炉内スラグのフォーミング鎮静特性の推定方法を確立すること、さらに推定したフォーミング鎮静特性および排滓中の転炉の傾転パターンから炉内残留スラグ量を推定することを発想し、鋭意検討を行った。 Therefore, the inventors of the present application have found that estimating the forming stagnation characteristic is important for estimating the amount of residual slag in the furnace, and establish a method for estimating the forming slag characteristic of the slag in the furnace, and further estimate it. The idea was to estimate the amount of residual slag in the furnace from the forming sedation characteristics and the tilt pattern of the converter during scavenging, and we conducted a diligent study.

〔鎮静特性の推定〕
そこで、本発明では、脱珪または脱燐処理後であって排滓開始前の転炉が直立した状態で、転炉内のスラグ高さを複数回または連続で測定する。そして、その測定結果から炉内スラグのフォーミング鎮静特性(以下、単に「鎮静特性」という。)を推定する。
この方法によれば、鎮静特性の推定に用いるスラグ高さの測定結果として、炉内残留スラグ量を推定する対象である操業のスラグを測定した結果を用いるから、当該操業(炉内残留スラグ量を推定する対象である操業)に特有の事情がスラグに与える影響を取り込むことができる。なお、この点は、特許文献3開示の方法との相違点の一つである。
[Estimation of sedative characteristics]
Therefore, in the present invention, the slag height in the converter is measured a plurality of times or continuously in a state where the converter is upright after the desiliconization or dephosphorization treatment and before the start of slag removal. Then, the forming sedative characteristics of the slag in the furnace (hereinafter, simply referred to as "sedative characteristics") are estimated from the measurement results.
According to this method, as the measurement result of the slag height used for estimating the sedation characteristics, the result of measuring the slag of the operation for which the amount of residual slag in the furnace is estimated is used. It is possible to capture the influence of the circumstances peculiar to (the operation that is the target of estimation) on the slag. This point is one of the differences from the method disclosed in Patent Document 3.

〔スラグ高さ変化の測定方法〕
転炉内のスラグ高さを複数回または連続で測定する方法は、特に限定されないが、例えば以下の方法がある。
一つの方法としては、図1に示すように、測定棒2を複数回浸漬してそれに付着したスラグの高さから求める方法である。他の方法としては、マイクロ波距離計1を用いて連続的に測定する方法である。マイクロ波距離計とは、転炉内のダスト等を透過する性質を持つ波長のマイクロ波を炉上に設置したアンテナから発信および受信し、スラグ上面までの距離を測定する装置である。
[Measurement method of slag height change]
The method for measuring the slag height in the converter a plurality of times or continuously is not particularly limited, and for example, there are the following methods.
One method is to immerse the measuring rod 2 a plurality of times and obtain the height of the slag attached to the measuring rod 2 as shown in FIG. Another method is a method of continuously measuring using a microwave range finder 1. A microwave range finder is a device that transmits and receives microwaves having a wavelength that transmits dust in a converter and the like from an antenna installed on the furnace and measures the distance to the upper surface of the slag.

測定結果(スラグ高さ変化)から鎮静特性を推定する場合、測定棒等を用いて非連続で測定する方法よりも、マイクロ波距離計等を用いて連続的に測定する方法の方が、推定精度、測定時間、測定負荷の面から有利となる。 When estimating the sedation characteristics from the measurement results (change in slag height), the method of continuous measurement using a microwave rangefinder or the like is better than the method of non-continuous measurement using a measuring rod or the like. It is advantageous in terms of accuracy, measurement time, and measurement load.

〔鎮静特性推定方法の具体例〕
測定結果から鎮静特性を推定する具体的な方法は、特に限定されないが、例えば以下の方法がある。
一つの方法としては、排滓開始前の測定結果から、外挿法(補外法)により推定する方法がある。他の方法としては、排滓開始前の測定結果から鎮静特性を推定する計算モデルを予め作成しておき、この計算モデルのパラメータを排滓開始前の測定結果から算出して推定する方法がある。なお、排滓中のフォーミング鎮静速度は、転炉の形状の影響や底吹きガス流量等の操業条件の影響を受けるため、転炉毎に予備試験を行い、上記の推定を行うことが必要となる。
[Specific example of sedative characteristic estimation method]
The specific method for estimating the sedative characteristics from the measurement results is not particularly limited, and for example, there are the following methods.
One method is to estimate by the extrapolation method (extrapolation method) from the measurement results before the start of slag. As another method, there is a method in which a calculation model for estimating the sedation characteristics from the measurement result before the start of slag is created in advance, and the parameters of this calculation model are calculated and estimated from the measurement result before the start of slag. .. Since the forming sedation speed during slag is affected by the shape of the converter and the operating conditions such as the flow rate of bottom blowing gas, it is necessary to conduct a preliminary test for each converter and make the above estimation. Become.

図3Aの実線は鎮静特性を推定する計算モデルによる推定結果(後述する実施例)である。排滓前の測定結果(図中の破線)に基づいてモデルのパラメータを決定することで推定した。 The solid line in FIG. 3A is an estimation result (example described later) by a calculation model for estimating the sedation characteristic. It was estimated by determining the model parameters based on the measurement results before slag (broken line in the figure).

〔鎮静特性および傾転パターンに基づいて炉内残留スラグ量を推定〕
次に、推定した鎮静特性および転炉の傾転パターンに基づいて炉内残留スラグ量を推定する。以下でその具体例を説明する。
[Estimate the amount of residual slag in the furnace based on the sedative characteristics and tilt pattern]
Next, the amount of residual slag in the furnace is estimated based on the estimated sedative characteristics and the tilt pattern of the converter. A specific example will be described below.

〔残留スラグ容積推移Vr、tを導出する〕
まず、傾転パターンに基づいて、炉内残留スラグ体積の推移Vr,t(残留スラグ容積推移)を推定する。
[Derivation of residual slag volume transition Vr, t]
First, the transition V r, t (transition of residual slag volume) in the furnace residual slag volume is estimated based on the tilt pattern.

排滓中の炉内残留スラグ体積は、転炉の傾転パターンによって変化する。
例えば、転炉の傾転速度が非常に遅く、ほぼ準静的に傾転しているとみなせる場合、ある傾転角度における炉内残留スラグ体積は、その傾転角度における炉口下端位置を含む水平面よりも下方にある炉内容積から、溶鉄の体積分を差し引いたものとなる。
一方、転炉の傾転速度が比較的速い場合は、流出中のスラグのヘッド分に相当する体積が炉内残留スラグ体積として付加される。
The volume of residual slag in the furnace during slag varies depending on the tilt pattern of the converter.
For example, if the tilting speed of the converter is very slow and it can be considered that it is tilted almost quasi-statically, the residual slag volume in the furnace at a tilting angle includes the lower end position of the furnace mouth at that tilting angle. It is the volume of the furnace below the horizontal plane minus the volume of molten iron.
On the other hand, when the tilting speed of the converter is relatively high, a volume corresponding to the head portion of the slag flowing out is added as the residual slag volume in the furnace.

そのため、炉内残留スラグ体積推移(残留スラグ容積推移)の推定に際しては、ヘッド分を考慮することが精度の観点からして好ましい。ヘッド分を考慮して炉内残留スラグ体積を推定する方法は、特に限定されないが、例えば以下の方法がある。 Therefore, when estimating the residual slag volume transition in the furnace (residual slag volume transition), it is preferable to consider the head portion from the viewpoint of accuracy. The method for estimating the residual slag volume in the furnace in consideration of the head portion is not particularly limited, and for example, there are the following methods.

一つの方法としては、数値流体計算を用いる方法がある。この方法では、転炉の形状および傾転パターンを入力条件として、炉内残留スラグ体積を計算し、傾転パターンと炉内残留スラグ体積の対応付けをする。実際の排滓においては、傾転速度はたかだか1°/sec程度であり、傾転パターンと炉内残留スラグ体積を予め計算しておき、回帰式を作成しておけば、計算負荷も抑えられる。
他の方法としては、数値流体計算の代わりにモデル実験を行うことにより、同様の対応付けを行うこともできる。
尚、炉内残留スラグ体積の推定に際しては、転炉の形状の影響を受けるため、転炉毎に計算や実験を行い、上記の対応付けを行うことが必要となる。
One method is to use computational fluid dynamics. In this method, the residual slag volume in the furnace is calculated with the shape and tilt pattern of the converter as input conditions, and the tilt pattern and the residual slag volume in the furnace are associated with each other. In the actual slag, the tilting speed is at most about 1 ° / sec, and if the tilting pattern and the residual slag volume in the furnace are calculated in advance and a regression equation is created, the calculation load can be suppressed. ..
As another method, the same association can be performed by performing a model experiment instead of the computational fluid dynamics calculation.
Since the volume of residual slag in the furnace is affected by the shape of the converter, it is necessary to perform calculations and experiments for each converter and make the above association.

〔鎮静特性および残留スラグ容積に基づいて炉内残留スラグ量を推定〕
次に、推定した鎮静特性、および、推定した残留スラグ容積推移に基づいて、炉内残留スラグ量を推定する。
[Estimate the amount of residual slag in the furnace based on the sedative characteristics and residual slag volume]
Next, the amount of residual slag in the furnace is estimated based on the estimated sedative characteristics and the estimated residual slag volume transition.

脱珪または脱燐処理直後の時間をt=0とし、排滓開始時点(炉口からスラグが流出を開始する時点)をt=tとし、排滓終了時点をt=tとする。
s、tは、時間tにおける炉内全スラグの重量
f,tは、時間tにおける炉内の低密度スラグ層の体積
d,tは、時間tにおける炉内の高密度スラグ層の体積
s,tは、時間tにおける炉内の全スラグの体積
ρは、低密度スラグ層の嵩密度
ρは、高密度スラグ層の嵩密度
とする。なお、低密度スラグ層の嵩密度ρと高密度スラグ層の嵩密度ρは、一定値とする。
The time immediately after the desiliconization or dephosphorization treatment is t = 0, the time when the slag starts to flow out from the furnace port is t = t 1, and the time when the slag ends is t = t 2 .
W s and t are the weights of all the slag in the furnace at time t, V f and t are the volumes of the low-density slag layer in the furnace at time t, and V d and t are the volumes of the high-density slag layer in the furnace at time t. The volumes V s and t are the volumes ρ f of all the slags in the furnace at time t, and the bulk density ρ d of the low density slag layer is the bulk density of the high density slag layer. The bulk density ρ f of the low-density slag layer and the bulk density ρ d of the high-density slag layer are set to constant values.

(t=0)
この場合、処理直後(t=0)での低密度スラグ層の体積Vf,0、および、高密度スラグ層の体積Vd,0は、(1)、(2)式を用いて求めることができる。


・・・(1)


・・・(2)
(T = 0)
In this case, the volumes V f, 0 of the low-density slag layer and the volumes V d, 0 of the high-density slag layer immediately after the treatment (t = 0) are obtained by using the equations (1) and (2). Can be done.


... (1)


... (2)

式(1)の左辺は、処理直後(排滓前)の炉内スラグ量Ws、0であり、物質収支計算で求めることができる。
式(2)の左辺は、t=0での炉内スラグ体積Vs,0であり、マイクロ波距離計または測定棒等により測定した結果を用いることができる。
The left side of the equation (1) is the amount of slag in the furnace W s, 0 immediately after the treatment (before the slag), and can be obtained by the mass balance calculation.
The left side of the equation (2) is the slag volume V s, 0 in the furnace at t = 0, and the result measured by a microwave range finder, a measuring rod, or the like can be used.

(t=t
次に、排滓開始時点(t=t)のスラグ状態を求める。
(T = t 1 )
Next, the slag state at the start of slag discharge (t = t 1) is obtained.

処理直後から排滓開始時点までは、転炉からのスラグの排出がない。そのため、スラグ状態を推定するに際し、スラグの排出量(排出体積)を考慮する必要がない。そのため、以下の式(3)〜(5)を用いて求めることができる。 No slag is discharged from the converter from immediately after the treatment to the start of slag. Therefore, it is not necessary to consider the slag emission amount (emission volume) when estimating the slag state. Therefore, it can be obtained by using the following equations (3) to (5).


・・・(3)

・・・(4)

・・・(5)

... (3)

... (4)

... (5)

排滓開始時点(t=t)の低密度スラグ層の体積Vf,t1は、推定した鎮静特性により、(3)式で求めることができる。(3)式の右辺の関数f(V,t,・・・)は、低密度スラグの体積の初期値Vf、0と経過時間t、その他のパラメータの関数である。低密度スラグの体積の変化が、低密度スラグの体積の初期値と経過時間に影響を受けることを考慮したものである。
一方、鎮静した低密度スラグ層は高密度スラグ層になるため、排滓開始時点の高密度スラグ層の体積Vd,t1は、物質収支計算から(4)式で表わされる。
また、排滓開始時点での炉内スラグ体積Vs,t1は、(5)式で表わされる。
The volumes V f and t 1 of the low-density slag layer at the start of slag discharge (t = t 1) can be obtained by Eq. (3) from the estimated sedative characteristics. The function f (V f , t, ...) On the right side of equation (3) is a function of the initial value V f, 0 of the volume of the low-density slag, the elapsed time t, and other parameters. It is considered that the change in the volume of the low-density slag is affected by the initial value and the elapsed time of the volume of the low-density slag.
On the other hand, since the calmed low-density slag layer becomes a high-density slag layer, the volumes V d and t1 of the high-density slag layer at the start of scavenging are expressed by Eq. (4) from the mass balance calculation.
The in-furnace slag volumes Vs and t1 at the start of slag are expressed by Eq. (5).

(t1<t<t2)
次に、排滓開始から排滓終了までのスラグ状態の変化について考える。排滓開始から排滓終了までは、低密度スラグの鎮静と、傾転によるスラグの排出とが同時に進行する。そのため、鎮静挙動により排出挙動が影響を受け、排出挙動により鎮静挙動が影響を受ける。
そこで、この具体例では、排滓開始時点から排滓終了時点までを微小時間で区切った時間刻みごとに、鎮静挙動および排出挙動を推定することでスラグ状態(具体的には、低密度スラグ層の体積、高密度スラグ層の体積など)を逐次計算する。
(T1 <t <t2)
Next, consider the change in the slag state from the start of slag to the end of slag. From the start of slag to the end of slag, sedation of low-density slag and slag discharge due to tilting proceed at the same time. Therefore, the sedative behavior affects the discharge behavior, and the sedative behavior affects the sedative behavior.
Therefore, in this specific example, the slag state (specifically, the low-density slag layer) is estimated by estimating the sedation behavior and the discharge behavior at each time interval in which the time from the start of the discharge to the end of the discharge is divided by a minute time. Volume, volume of high-density slag layer, etc.) are calculated sequentially.

<t<tのとき、ある現時点tでのスラグ状態と、次時点t+Δtのスラグ状態との関係は以下の式で表される。When t 1 <t <t 2 , the relationship between the slag state at a certain current time t and the slag state at the next time point t + Δt is expressed by the following equation.


・・・(6)

・・・(7)

・・・(8)

... (6)

... (7)

... (8)

(6)式の右辺の2項目は、低密度スラグ層の鎮静挙動(具体的には、鎮静による低密度スラグ層の体積変化量)を表している。
現時点tの低密度スラグ層の鎮静挙動は、現時点tでの低密度スラグ層の体積Vf、tにより影響を受ける。そのため、(6)式の右辺の2項目の関数fには、現時点tでの低密度スラグ層の体積Vf、tが代入されている。
例えば、転炉を直立させたままの鎮静と異なり、排滓中(t<t<t)のある現時点tまでには排滓が進行している。そのため、現時点tでの低密度スラグ層の体積Vf、tは少なくなっている。したがって、現時点tでの鎮静速度(体積減少量)は、仮に転炉を直立させたままで鎮静させた場合の現時点tでの鎮静速度よりも通常小さくなる。
The two items on the right side of Eq. (6) represent the sedation behavior of the low-density slag layer (specifically, the amount of change in volume of the low-density slag layer due to sedation).
The sedative behavior of the low-density slag layer at the present time t is affected by the volumes V f, t of the low-density slag layer at the present time t. Therefore, the volumes V f and t of the low-density slag layer at the present time are substituted into the two-item function f on the right side of the equation (6).
For example, unlike sedation in which the converter is kept upright, the slag is progressing by the present time t when the slag is being discharged (t 1 <t <t 2). Therefore, the volumes V f and t of the low-density slag layer at the present time t are small. Therefore, the sedation rate (volume reduction amount) at the present time t is usually smaller than the sedation rate at the present time t when the converter is sedated while it is upright.

(6)式の3項目min(Vr、t+Δt−Vs、t,0)は、排出挙動(具体的には排出による低密度スラグ層の体積変化量)を表している。
r,t+Δtは、次時点t+Δtでの炉内残留スラグ体積(残留スラグ容積)を表わしており、現時点tでの炉内スラグ体積Vs、tのうち、次時点t+Δtでの炉内残留スラグ体積(残容積)Vr,t+Δtを超えた分の体積が上層側のスラグから炉外に排滓されるとしている。尚、この例では簡単のため、上層の低密度スラグ層のみが排出されるとしている。
The three items min (V r, t + Δt −V s, t , 0) in Eq. (6) represent the discharge behavior (specifically, the amount of change in the volume of the low-density slag layer due to discharge).
V r, t + Δt represent the residual slag volume in the furnace (residual slag volume) at the next time point t + Δt, and of the in-core slag volumes V s and t at the present time t, the residual slag in the furnace at the next time point t + Δt. It is said that the volume exceeding the volume (residual volume) V r, t + Δt is discharged from the slag on the upper layer side to the outside of the furnace. In this example, for the sake of simplicity, only the upper low-density slag layer is discharged.

一方、高密度スラグ層の体積は低密度スラグの鎮静分が増加するため(7)式で表わされる。 On the other hand, the volume of the high-density slag layer is expressed by Eq. (7) because the sedative content of the low-density slag increases.

これを排滓開始時点(t)から排滓終了時点(t)まで逐次計算することにより、排滓終了時点(t)で炉内に残留した低密度スラグ層と高密度スラグ層の量(重量)を算出し、その合計量を炉内残留スラグ量(重量)の推定値とする。By this sequentially calculated from Haikasu start time (t 1) until Haikasu end (t 2), low density slag layer and the dense layer of slag remaining in the furnace at Haikasu end (t 2) The amount (weight) is calculated, and the total amount is used as the estimated value of the residual slag amount (weight) in the furnace.

〔補足説明〕
なお、上記具体例では、傾転パターン(傾転角度推移)に基づいて残留スラグ容積推移Vr,tを推定した上で、推定した残留スラグ容積と鎮静特性に基づいて、排出挙動(排出体積速度、(6)式の3項目であるmin(Vr、t+Δt−Vs、t,0))を推定する例を説明した。しかし、残留スラグ容積推移を推定することは必ずしも必要ない。
つまり、傾転パターンと鎮静特性に基づいて、残留スラグ容積推移を推定することなく、排出挙動(排出による体積変化量、具体的には(6)式の3項目に相当する部分)を推定してもよい。
[Supplemental Information]
In the above specific example, after estimating the residual slag volume transition Vr, t based on the tilt pattern (tilt angle transition), the discharge behavior (discharge volume) is based on the estimated residual slag volume and sedative characteristics. An example of estimating the velocity, min (V r, t + Δt −V s, t , 0), which is the three items of Eq. (6), has been described. However, it is not always necessary to estimate the residual slag volume transition.
That is, based on the tilt pattern and the sedation characteristic, the discharge behavior (volume change due to discharge, specifically, the part corresponding to the three items of Eq. (6)) is estimated without estimating the residual slag volume transition. You may.

また、上記具体例では、低密度スラグ層のみが排出されるとした計算を用いたが本発明はこれに限定されない。例えば、排滓終了間際において高密度スラグ層が排滓されることを考慮してそれに応じた補正をしてもよい。 Further, in the above specific example, the calculation that only the low-density slag layer is discharged is used, but the present invention is not limited to this. For example, in consideration of the fact that the high-density slag layer is discharged just before the end of the discharge, the correction may be made accordingly.

また、上述した方法は、排滓中(排滓開始から排滓終了まで)を微小時間で区切った時間刻みごと炉内のスラグ状態に逐次計算するものである。そのため、炉内残留スラグ量が所望の量になるように転炉の傾転パターンをコントロールすることで、炉内残留スラグ量を制御する制御方法としても用いることができる。
また、上記説明では、転炉内のスラグ高さの測定を、転炉が直立した状態で行う方法を説明したが、本発明はこれに限定されない。転炉が直立した状態で測定を行うことは、測定の容易さから好ましいが、転炉が直立した状態であることは必ずしも必要ない。
Further, in the above-mentioned method, the slag state in the furnace is sequentially calculated for each time interval during the slag (from the start of the slag to the end of the slag) divided by a minute time. Therefore, it can also be used as a control method for controlling the amount of residual slag in the furnace by controlling the tilt pattern of the converter so that the amount of residual slag in the furnace becomes a desired amount.
Further, in the above description, a method of measuring the slag height in the converter in an upright state of the converter has been described, but the present invention is not limited to this. It is preferable to perform the measurement in the upright state of the converter because of the ease of measurement, but it is not always necessary that the converter is in the upright state.

〔推定装置〕
次に、炉内残留スラグ量推定装置10について説明する。
[Estimator]
Next, the furnace residual slag amount estimation device 10 will be described.

炉内残留スラグ量推定装置10は、上述した実施形態に係る排滓重量推定方法を用いて炉内残留スラグ量を推定する装置である。炉内残留スラグ量推定装置10の構成を示す機能ブロック図を示すと図5のようになる。 The in-core residual slag amount estimation device 10 is an apparatus for estimating the in-core residual slag amount by using the waste weight estimation method according to the above-described embodiment. FIG. 5 shows a functional block diagram showing the configuration of the in-core residual slag amount estimation device 10.

すなわち、炉内残留スラグ量推定装置10は、鎮静特性推定部11と、炉内残留スラグ量推定部12と、を備えている。
鎮静特性推定部11は、排滓開始前の測定結果(スラグ高さ変化)から鎮静特性(例えば前述した関数f)を推定する。
炉内残留スラグ量推定部12は、鎮静特性推定部11で推定された鎮静特性、および、傾転パターン(傾転角度推移)に基づいて、炉内残留スラグ量の推定値を導出する。
That is, the furnace residual slag amount estimation device 10 includes a sedation characteristic estimation unit 11 and a furnace residual slag amount estimation unit 12.
The sedative characteristic estimation unit 11 estimates the sedative characteristic (for example, the above-mentioned function f) from the measurement result (slag height change) before the start of slag.
The furnace residual slag amount estimation unit 12 derives an estimated value of the furnace residual slag amount based on the sedation characteristic estimated by the sedation characteristic estimation unit 11 and the tilt pattern (tilt angle transition).

具体的には、炉内残留スラグ量推定部12は、残容積推移推定部13と、排滓開始時スラグ状態推定部14と、逐次計算部15と、を備えている。
残容積推移推定部13は、傾転パターンから、炉内スラグ残容積の推移(残容積推移)を導出する。
排滓開始時スラグ状態推定部14は、鎮静特性推定部11で推定された鎮静特性に基づいて、排滓開始時のスラグ状態(例えば、低密度スラグの体積や高密度スラグの体積)を導出する。
逐次計算部15は、排滓開始から排滓終了までを微小時間で区切った時間刻みごとに、鎮静挙動(例えば、鎮静による低密度スラグの体積変化)と排出挙動(例えば、排出による低密度スラグの体積変化)を逐次計算する。
Specifically, the furnace residual slag amount estimation unit 12 includes a residual volume transition estimation unit 13, a slag state estimation unit 14 at the start of slag discharge, and a sequential calculation unit 15.
The residual volume transition estimation unit 13 derives the transition of the residual volume of the slag in the furnace (transition of the residual volume) from the tilt pattern.
The slag state estimation unit 14 at the start of slag derives the slag state at the start of slag (for example, the volume of low-density slag or the volume of high-density slag) based on the slag characteristics estimated by the stagnation characteristic estimation unit 11. To do.
The sequential calculation unit 15 determines the sedation behavior (for example, the volume change of the low-density slag due to sedation) and the discharge behavior (for example, the low-density slag due to the discharge) for each time step in which the period from the start of the discharge to the end of the discharge is divided by a minute time. Volume change) is calculated sequentially.

炉内残留スラグ量推定装置10は、例えば、図6に示すコンピュータ20によって実現することができる。コンピュータ20はCPU(Central Processing Unit)21、一時記憶領域を提供する主記憶装置22、及び不揮発性の記憶領域を提供する補助記憶装置23及び入出力インターフェース(I/F)24を備える。CPU21、主記憶装置22、補助記憶装置23及び入出力I/F24は、バス25を介して互いに接続されている。 The furnace residual slag amount estimation device 10 can be realized by, for example, the computer 20 shown in FIG. The computer 20 includes a CPU (Central Processing Unit) 21, a main storage device 22 that provides a temporary storage area, an auxiliary storage device 23 that provides a non-volatile storage area, and an input / output interface (I / F) 24. The CPU 21, the main storage device 22, the auxiliary storage device 23, and the input / output I / F 24 are connected to each other via the bus 25.

補助記憶装置23は、Hard Disk Drive(HDD)、Solid State Drive(SSD)、フラッシュメモリ等によって実現できる。補助記憶装置23には、コンピュータ20を炉内残留スラグ量推定装置10として機能させるための炉内残留スラグ量推定プログラム30が記憶されている。CPU21が、炉内残留スラグ量推定プログラム30を補助記憶装置23から読み出して主記憶装置22に展開し、炉内残留スラグ量推定プログラム30に記述されたプロセスを順次実行することで、コンピュータ20が、鎮静特性推定部11および炉内残留スラグ量推定部12として機能する。 The auxiliary storage device 23 can be realized by a Hard Disk Drive (HDD), a Solid State Drive (SSD), a flash memory, or the like. The auxiliary storage device 23 stores a furnace residual slag amount estimation program 30 for causing the computer 20 to function as the furnace residual slag amount estimation device 10. The CPU 21 reads the in-core residual slag amount estimation program 30 from the auxiliary storage device 23, deploys it to the main storage device 22, and sequentially executes the process described in the in-core residual slag amount estimation program 30, so that the computer 20 can perform the computer 20. , It functions as a sedation characteristic estimation unit 11 and a furnace residual slag amount estimation unit 12.

以下に本発明の実施例および比較例について説明する。
但し、実施例の条件は本発明の実施可能性および効果を確認するために採用した条件の一例であり、本発明はこの例に限定されるものではない。本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいては、種々の条件を採用し得るものである。
Examples and comparative examples of the present invention will be described below.
However, the conditions of the examples are examples of the conditions adopted for confirming the feasibility and effect of the present invention, and the present invention is not limited to this example. Various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

(実施例1)
試験は350ton規模の上底吹き転炉で実施した。転炉の炉口内径は、約4.6m、転炉の直胴部内径は約6.6m、直胴部上端から炉口までの距離は約2.7mであった。
(Example 1)
The test was carried out in a 350 ton scale top-bottom blown converter. The inner diameter of the furnace opening of the converter was about 4.6 m, the inner diameter of the straight body of the converter was about 6.6 m, and the distance from the upper end of the straight body to the furnace opening was about 2.7 m.

数値流体計算により、転炉の形状および想定される傾転パターンを入力条件として、炉内残留スラグ体積を計算した。それに基づき、当該転炉における傾転パターンと炉内残留スラグ体積の対応付けを行うための推定式(回帰式)を作成した。 By numerical fluid calculation, the residual slag volume in the furnace was calculated with the shape of the converter and the assumed tilt pattern as input conditions. Based on this, an estimation formula (regression formula) was created for associating the tilt pattern in the converter with the residual slag volume in the furnace.

次に、脱燐処理後であって排滓前にマイクロ波距離計で1分間スラグ高さを測定し、その高さ変化からフォーミング鎮静特性を推定し、その後の傾転による排滓中に傾転パターンに合わせて炉内に残留したスラグ量を微小時間毎に逐次計算し、炉内残留スラグ量(重量)を推定した。 Next, the slag height is measured for 1 minute with a microwave range finder after the dephosphorization treatment and before the slag is discharged, the forming stagnation characteristics are estimated from the height change, and the slag is tilted during the subsequent tilting. The amount of slag remaining in the furnace was sequentially calculated for each minute time according to the rolling pattern, and the amount of slag remaining in the furnace (weight) was estimated.

その一例を図3A〜図3Cに示す。
図3Aは、排滓前にマイクロ波距離計でスラグ高さを測定し、その高さ変化からフォーミング鎮静特性を推定した結果を示す。
ここで、図中の破線はマイクロ波距離計による1分間のスラグ高さ測定結果、実線はマイクロ波距離計の測定値を基にフォーミング鎮静特性を推定する計算モデルのパラメータを算出して推定した結果である。
An example thereof is shown in FIGS. 3A to 3C.
FIG. 3A shows the result of measuring the slag height with a microwave range finder before scavenging and estimating the forming sedative characteristics from the height change.
Here, the broken line in the figure is the result of slag height measurement for 1 minute by the microwave range finder, and the solid line is the parameter of the calculation model for estimating the forming sedation characteristic based on the measured value of the microwave range finder. The result.

図3Bは、転炉の傾転パターン(傾転角度推移)を示す。図3Bに示すように、初期の1分間は、転炉を直立させておき、排滓前にマイクロ波距離計でスラグ高さを測定している。その後、傾転を開始し、フォーミングしたスラグが排滓鍋から溢出しないように傾転を行い、約83°で転炉から溶鉄が流出したため、排滓を完了した。
図3Cは、推定したフォーミング鎮静特性(図3Aの実線)と、実績の傾転パターン(図3B)とから推定した炉内残留スラグ量(重量)の経時変化である。
FIG. 3B shows the tilt pattern (transition of tilt angle) of the converter. As shown in FIG. 3B, the converter is kept upright for the initial 1 minute, and the slag height is measured with a microwave range finder before the slag is discharged. After that, the tilting was started, and the tilting was performed so that the formed slag did not overflow from the slag pan, and the molten iron flowed out from the converter at about 83 °, so that the slag was completed.
FIG. 3C shows the time course of the residual slag amount (weight) in the furnace estimated from the estimated forming sedation characteristics (solid line in FIG. 3A) and the actual tilt pattern (FIG. 3B).

図3Cに示されるように、排滓終了時の炉内残留スラグ量(重量)の推定値は、秤量器による実秤値からの計算値と概ね一致している。
ここで、実秤値からの計算値は、物質収支計算で求めた排滓前の炉内スラグ量から排滓量の実秤値を差し引いて求めた。実秤値については、スラグ中に不可避的に混入している粒鉄分の量を除去する補正を行っている。補正方法としては、スラグの一部を採取し、その中に含まれている粒鉄分の比率を求め、その分を実秤値から差し引いた。
一方、本発明の方法では粒鉄分の補正は必要ない。
As shown in FIG. 3C, the estimated value of the residual slag amount (weight) in the furnace at the end of the slag is almost the same as the value calculated from the actual weighing value by the weighing device.
Here, the calculated value from the actual scale value was obtained by subtracting the actual scale value of the discharge amount from the amount of slag in the furnace before the discharge obtained by the mass balance calculation. The actual scale value is corrected to remove the amount of grain iron that is inevitably mixed in the slag. As a correction method, a part of the slag was sampled, the ratio of the grain iron contained in the slag was obtained, and the portion was subtracted from the actual scale value.
On the other hand, the method of the present invention does not require correction of the grain iron content.

さらに、複数回の試験を実施し、炉内残留スラグ量について、実秤値からの計算値、本発明の方法による推定値、オペレータの目視による推定値、特許文献1の方法による推定値の比較を行った結果を図4に示す。 Further, a plurality of tests were carried out, and the amount of residual slag in the furnace was compared with the calculated value from the actual scale value, the estimated value by the method of the present invention, the estimated value visually by the operator, and the estimated value by the method of Patent Document 1. The result of the above is shown in FIG.

なお、ここでいう特許文献1の方法とは、最終傾転角度から流出中のスラグのヘッド分を考慮せずに炉内に残留しているスラグの体積を推定し、炉内に残留しているスラグの嵩密度を一定として推定する方法である。 In the method of Patent Document 1 referred to here, the volume of slag remaining in the furnace is estimated from the final tilt angle without considering the head portion of the slag flowing out, and the slag remains in the furnace. This is a method of estimating the bulk density of existing slag as constant.

秤量値との差異の平均値(平均誤差)を算出すると、本発明の方法で0.32ton、オペレータの目視による方法で1.10ton、特許文献1の方法で1.71tonであった。 When the average value (mean error) of the difference from the weighed value was calculated, it was 0.32 ton by the method of the present invention, 1.10 ton by the method visually observed by the operator, and 1.71 ton by the method of Patent Document 1.

オペレータの目視による方法での推定値が実秤値からの計算値よりも高めに偏倚した理由としては、成分はずれのリスクを回避する目的で炉内残留スラグ量を多めに見積もったためと考えられる。 It is probable that the reason why the estimated value by the operator's visual method was biased higher than the calculated value from the actual scale value was that the amount of residual slag in the furnace was overestimated in order to avoid the risk of component loss.

特許文献1の方法での推定値が実秤値からの計算値よりも低めに偏倚した理由としては、炉内残留スラグの嵩密度が低めに見積もられていたことによると考えられる。但し、図4に示すように、特許文献1の方法での推定値は、計算値よりも低めに偏倚しているだけでなく、ばらつきも大きい。つまり、仮に炉内残留スラグの嵩密度を少し高めに見積もっていたとしても、嵩密度を一定としているため、ばらつきが大きい推定結果となる。 It is probable that the reason why the estimated value by the method of Patent Document 1 was biased to be lower than the calculated value from the actual scale value was that the bulk density of the residual slag in the furnace was estimated to be lower. However, as shown in FIG. 4, the estimated value by the method of Patent Document 1 is not only biased lower than the calculated value, but also has a large variation. That is, even if the bulk density of the residual slag in the furnace is estimated to be slightly higher, the bulk density is constant, so that the estimation result has a large variation.

これに対して、本発明の方法による推定値が秤量値との差異が小さかった理由としては、本発明が以下の知見に基づいた推定方法であるためと考えられる。
すなわち、本発明の知見によれば、炉内残留スラグは、低密度スラグと高密度スラグが混在したものとなっており、フォーミング鎮静特性や傾転パターンの変化に伴いその割合が変化するため、炉内残留スラグの平均的な嵩密度も変化する考慮する必要がある。
さらに、本発明の知見によれば、炉内に残留しているスラグの体積の推定については、流出中のスラグのヘッド分を考慮することが精度の観点から好ましい。
On the other hand, the reason why the difference between the estimated value by the method of the present invention and the weighed value was small is considered to be that the present invention is an estimation method based on the following findings.
That is, according to the findings of the present invention, the residual slag in the furnace is a mixture of low-density slag and high-density slag, and the proportion of the residual slag changes as the forming stagnation characteristics and the tilt pattern change. It is also necessary to consider that the average bulk density of residual slag in the furnace also changes.
Further, according to the findings of the present invention, it is preferable to consider the head portion of the slag flowing out from the viewpoint of accuracy in estimating the volume of the slag remaining in the furnace.

以上、本発明によれば、簡便かつ精度の高い炉内残留スラグ量の推定が可能であることがわかる。 As described above, according to the present invention, it is possible to easily and accurately estimate the amount of residual slag in the furnace.

(実施例2)
実施例2では、副原料使用量の削減効果を評価する試験を実施した。
実施例1と同じ転炉を用いて実施した。
スクラップおよび溶銑を装入した後、溶銑量およびSi濃度に応じて、スラグが所定の塩基度となるように生石灰等の副原料を投入して溶銑の脱燐処理を行った。その後、転炉を傾転して炉口から上層のスラグの一部を排滓した後、再度転炉を直立させて副原料を添加し、引き続き脱炭処理を行った。この際、本発明の方法と従来のオペレータの目視による方法で炉内残留スラグ量を推定し、脱炭処理時に添加する副原料の量を決定した。
(Example 2)
In Example 2, a test for evaluating the effect of reducing the amount of auxiliary raw materials used was carried out.
It was carried out using the same converter as in Example 1.
After charging the scrap and the hot metal, auxiliary raw materials such as quicklime were added so that the slag had a predetermined basicity according to the amount of the hot metal and the Si concentration, and the hot metal was dephosphorized. After that, the converter was tilted to remove a part of the upper slag from the furnace mouth, and then the converter was made upright again to add auxiliary materials, and the decarburization treatment was continued. At this time, the amount of residual slag in the furnace was estimated by the method of the present invention and the conventional method visually observed by the operator, and the amount of auxiliary raw material to be added during the decarburization treatment was determined.

尚、副原料の量の決定方法については、物質収支から計算した炉内残留スラグの組成および推定した炉内残留スラグ量から、炉内残留スラグに含有されるCaO量およびSiO2量を計算し、脱炭処理時の成分はずれ防止に適したスラグ組成になるように(具体的には、脱炭処理時のスラグ中のCaOとSiO2の重量濃度比である(%CaO)/(%SiO2)が適正な範囲となるように)決定する。 Regarding the method for determining the amount of auxiliary raw material, the amount of CaO and the amount of SiO2 contained in the residual slag in the furnace were calculated from the composition of the residual slag in the furnace calculated from the material balance and the estimated amount of residual slag in the furnace. The weight concentration ratio of CaO and SiO2 in the slag during the decarburization treatment is (% CaO) / (% SiO2) so that the slag composition is suitable for preventing the components from coming off during the decarburization treatment. (To be within the proper range).

本発明の方法では、従来の方法と比べて、同一の成品燐濃度レベルの鋼種で1チャージ当たり平均で約420kgの副原料使用量削減効果があることが確認できた。これは溶鋼tonあたり約25円のコスト改善効果に相当する。 It was confirmed that the method of the present invention has an effect of reducing the amount of auxiliary raw materials used on average by about 420 kg per charge for steel grades having the same product phosphorus concentration level as compared with the conventional method. This corresponds to a cost improvement effect of about 25 yen per ton of molten steel.

1 マイクロ波距離計
2 測定棒
3 低密度スラグ層
4 高密度スラグ層
5 溶鉄
6 転炉
10 炉内残留スラグ量推定装置
11 鎮静特性推定部
12 炉内残留スラグ量推定部
13 残容積推移推定部
14 排滓開始時スラグ状態推定部
15 逐次計算部
1 Microwave distance meter 2 Measuring rod 3 Low-density slag layer 4 High-density slag layer 5 Molten iron 6 Converter 10 Residual slag amount estimation device in the furnace 11 Suffocation characteristic estimation unit 12 Residual slag amount estimation unit in the furnace 13 Residual volume transition estimation unit 14 Slag state estimation unit at the start of discharge 15 Sequential calculation unit

Claims (10)

転炉での脱珪または脱燐処理後に転炉を傾転させることにより溶鉄を転炉内に残したまま炉口からスラグを排滓する操業において排滓後に炉内に残留するスラグの量を推定する方法であって、
脱珪または脱燐処理後かつ排滓開始前に、転炉内のスラグ高さを複数回または連続で測定する工程Aと、
工程Aで測定した結果に基づいて、炉内スラグのフォーミング鎮静特性を推定する工程Bと、
工程Bで推定した鎮静特性および転炉の傾転パターンに基づいて、炉内残留スラグ量を推定する工程Cと、
を含む
ことを特徴とする炉内残留スラグ量の推定方法。
In the operation of discharging slag from the furnace mouth while leaving molten iron in the converter by tilting the converter after desiliconization or dephosphorization in the converter, the amount of slag remaining in the furnace after the discharge is reduced. It ’s a method of estimation,
Step A in which the slag height in the converter is measured multiple times or continuously after the desiliconization or dephosphorization treatment and before the start of slag removal.
Step B, which estimates the forming sedative characteristics of the slag in the furnace based on the results measured in step A, and step B,
Step C, which estimates the amount of residual slag in the furnace based on the sedation characteristics estimated in step B and the tilt pattern of the converter,
A method for estimating the amount of residual slag in a furnace, which comprises.
工程Cは、
工程Bで推定した鎮静特性および転炉の傾転パターンに基づいて、排滓開始時点から排滓終了時点までを微小時間で区切った時間刻みごとに、鎮静挙動および排出挙動を逐次計算する工程Dを含む
ことを特徴とする請求項1に記載の炉内残留スラグ量の推定方法。
Process C is
Based on the sedation characteristics estimated in step B and the tilt pattern of the converter, step D in which the sedation behavior and the discharge behavior are sequentially calculated for each time step in which the time from the start of slag to the end of slag is divided by a minute time. The method for estimating the amount of residual slag in a furnace according to claim 1, wherein the method includes.
工程Cは、
排滓開始時点のスラグ状態を、工程Bで推定した鎮静特性に基づいて推定する工程Eを含む
ことを特徴とする請求項2に記載の炉内残留スラグ量の推定方法。
Process C is
The method for estimating the amount of residual slag in a furnace according to claim 2, further comprising step E in which the slag state at the start of slag is estimated based on the sedation characteristics estimated in step B.
工程Cは、
転炉の傾転パターンに基づいて、残留スラグ容積推移を推定する工程Fと、
工程Bで推定した鎮静特性、および、工程Fで推定した残留スラグ容積推移に基づいて、排滓中に同時に進行する鎮静挙動および排出挙動を推定する工程Gと、を含む
ことを特徴とする請求項1に記載の炉内残留スラグ量の推定方法。
Process C is
Step F for estimating the residual slag volume transition based on the tilt pattern of the converter, and
A claim comprising a sedative property estimated in step B and a step G for estimating sedative behavior and discharge behavior simultaneously progressing during slag based on the residual slag volume transition estimated in step F. Item 2. The method for estimating the amount of residual slag in the furnace according to Item 1.
工程Gは、
工程Bで推定した鎮静特性、および、工程Fで推定した残留スラグ容積推移に基づいて、排滓開始時点から排滓終了時点までを微小時間で区切った時間刻みごとにスラグ状態を逐次計算する工程Hを含む
ことを特徴とする請求項4に記載の炉内残留スラグ量の推定方法。
Process G is
Based on the sedation characteristics estimated in step B and the residual slag volume transition estimated in step F, the step of sequentially calculating the slag state for each time interval from the start time of slag discharge to the end time of slag discharge. The method for estimating the amount of residual slag in a furnace according to claim 4, wherein H is contained.
工程Gは、
排滓開始時点のスラグ状態を、工程Bで推定した鎮静特性に基づいて推定する工程Iを含む
ことを特徴とする請求項5に記載の炉内残留スラグ量の推定方法。
Process G is
The method for estimating the amount of residual slag in a furnace according to claim 5, further comprising step I in which the slag state at the start of slag is estimated based on the sedation characteristics estimated in step B.
工程Fでは、流出中のスラグのヘッド分に相当する体積を考慮して推定する
ことを特徴とする請求項4〜請求項6の何れか一項に記載の炉内残留スラグ量の推定方法。
The method for estimating the amount of residual slag in a furnace according to any one of claims 4 to 6, wherein in step F, the volume corresponding to the head portion of the slag flowing out is estimated.
工程Aは、マイクロ波距離計を使用して行う
ことを特徴とする請求項1〜請求項7の何れか一項に記載の炉内残留スラグ量の推定方法。
The method for estimating the amount of residual slag in a furnace according to any one of claims 1 to 7, wherein the step A is performed using a microwave range finder.
転炉での脱珪または脱燐処理後に転炉を傾転させることにより溶鉄を転炉内に残したまま炉口からスラグを排滓する操業において排滓後に炉内に残留するスラグの量を推定する装置であって、
脱珪または脱燐処理後かつ排滓開始前に転炉内のスラグ高さを複数回または連続で測定した結果に基づいて、炉内スラグのフォーミング鎮静特性を推定する鎮静特性推定部と、
前記鎮静特性推定部で推定した鎮静特性および転炉の傾転パターンに基づいて、炉内残留スラグ量を推定する炉内残留スラグ量推定部と、を備える
ことを特徴とする炉内残留スラグ量の推定装置。
In the operation of discharging slag from the furnace mouth while leaving molten iron in the converter by tilting the converter after desiliconization or dephosphorization in the converter, the amount of slag remaining in the furnace after the discharge is reduced. It is a device to estimate
A sedation characteristic estimation unit that estimates the forming sedation characteristics of the slag in the furnace based on the results of measuring the slag height in the converter multiple times or continuously after the desiliconization or dephosphorization treatment and before the start of scavenging.
The amount of residual slag in the furnace is characterized by comprising an in-core residual slag amount estimating unit that estimates the amount of residual slag in the furnace based on the sedation characteristics estimated by the sedation characteristic estimation unit and the tilt pattern of the converter. Estimator.
前記炉内残留スラグ量推定部は、
転炉の傾転パターンに基づいて、残留スラグ容積推移を推定する残容積推移推定部と、
排滓開始時点のスラグ状態を、前記鎮静特性推定部で推定した鎮静特性に基づいて推定する排滓開始時スラグ状態推定部と、
前記鎮静特性推定部で推定した鎮静特性、および、前記残容積推移推定部で推定した残留スラグ容積推移に基づいて、排滓開始時点から排滓終了時点までを微小時間で区切った時間刻みごとにスラグ状態を逐次計算する逐次計算部と、を備える
ことを特徴とする請求項9に記載の炉内残留スラグ量の推定装置。
The residual slag amount estimation unit in the furnace is
A residual volume transition estimation unit that estimates the residual slag volume transition based on the tilt pattern of the converter,
A slag state estimation unit at the start of slag that estimates the slag state at the start of slag based on the sedative characteristics estimated by the sedation characteristic estimation unit, and a slag state estimation unit at the start of slag.
Based on the sedation characteristics estimated by the sedation characteristic estimation unit and the residual slag volume transition estimated by the residual volume transition estimation unit, the period from the start of slag to the end of slag is divided by a minute time step. The device for estimating the amount of residual slag in a furnace according to claim 9, further comprising a sequential calculation unit for sequentially calculating the slag state.
JP2020561404A 2018-12-17 2019-12-16 Estimating method and estimation device for the amount of residual slag in the furnace Active JP6841391B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018235155 2018-12-17
JP2018235155 2018-12-17
PCT/JP2019/049143 WO2020129887A1 (en) 2018-12-17 2019-12-16 Method and apparatus for estimating amount of residual slag in furnace

Publications (2)

Publication Number Publication Date
JP6841391B2 true JP6841391B2 (en) 2021-03-10
JPWO2020129887A1 JPWO2020129887A1 (en) 2021-03-18

Family

ID=71101341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020561404A Active JP6841391B2 (en) 2018-12-17 2019-12-16 Estimating method and estimation device for the amount of residual slag in the furnace

Country Status (5)

Country Link
JP (1) JP6841391B2 (en)
KR (1) KR102463279B1 (en)
CN (1) CN113195746B (en)
TW (1) TW202030334A (en)
WO (1) WO2020129887A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755994B (en) * 2020-12-24 2022-02-21 台鋼環保股份有限公司 Reduction slag stabilization treatment system and its treatment method
CN117043362A (en) * 2021-03-17 2023-11-10 杰富意钢铁株式会社 Method for operating converter and method for producing molten steel
JP2023066147A (en) * 2021-10-28 2023-05-15 Jfeスチール株式会社 In-furnace slag amount estimation device, in-furnace slag amount estimation method, and molten steel production method
CN114231683A (en) * 2021-11-24 2022-03-25 中冶赛迪工程技术股份有限公司 Blast furnace slag tapping weight detection method and system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749171A (en) * 1984-09-06 1988-06-07 Nippon Steel Corporation Method and apparatus for measuring slag-foam conditions within a converter
ZA906892B (en) * 1989-09-04 1991-06-26 Nippon Steel Corp Method of operating in-bath smelting reduction furnace
CA2038823A1 (en) * 1990-03-30 1991-10-01 Akio Nagamune In-furnace slag level measuring method and apparatus therefor
JP2582692B2 (en) 1991-11-16 1997-02-19 新日本製鐵株式会社 Converter steelmaking method
US5558695A (en) * 1993-12-30 1996-09-24 Aktsionernoe Obschestvo Otkrytogo Tipa Process and unit for continuous metal refinement
JP3164976B2 (en) * 1994-08-03 2001-05-14 新日本製鐵株式会社 Method for predicting slopping in a converter and its prevention
JP2004323959A (en) * 2003-04-28 2004-11-18 Nippon Steel Corp Method for removing slag in converter
JP2007077483A (en) * 2005-09-16 2007-03-29 Nippon Steel Corp Steelmaking method in converter
JP4790489B2 (en) 2006-05-19 2011-10-12 新日本製鐵株式会社 Converter steelmaking
AT504079B1 (en) * 2006-09-13 2008-09-15 Siemens Vai Metals Tech Gmbh METHOD FOR EXTRACTING MELT FROM A TILTABLE METALLURGICAL VESSEL AND APPARATUS FOR CARRYING OUT THE METHOD
KR102136562B1 (en) * 2016-07-27 2020-07-22 닛폰세이테츠 가부시키가이샤 Exhaust weight estimation method and exhaust weight estimation device
JP7050215B2 (en) 2016-08-19 2022-04-08 ツールゲン インコーポレイテッド Artificially manipulated angiogenesis regulatory system
JP6601631B2 (en) * 2017-01-27 2019-11-06 Jfeスチール株式会社 Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal

Also Published As

Publication number Publication date
CN113195746A (en) 2021-07-30
CN113195746B (en) 2023-10-20
JPWO2020129887A1 (en) 2021-03-18
TW202030334A (en) 2020-08-16
KR102463279B1 (en) 2022-11-07
KR20210091793A (en) 2021-07-22
WO2020129887A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
JP6841391B2 (en) Estimating method and estimation device for the amount of residual slag in the furnace
JP6702420B2 (en) Dust weight estimation method and waste weight estimation device
JP6515385B2 (en) Hot metal pretreatment method and hot metal pretreatment control device
JP5582105B2 (en) Converter blowing control method
TWI681059B (en) Molten metal composition estimation device, molten metal composition estimation method, and molten metal manufacturing method
JP2015131999A (en) Dephosphorization method of molten iron
JP6601631B2 (en) Method for estimating amount of waste from molten metal refining vessel and method for refining molten metal
JP5790607B2 (en) Hot metal dephosphorization method, hot metal dephosphorization system, low phosphorus hot metal manufacturing method and low phosphorus hot metal manufacturing apparatus
JP6607333B2 (en) Method for refining molten iron
JP7404394B2 (en) Method and associated computer program for monitoring steelmaking processes
WO2023074085A1 (en) Device for estimating amount of slag in furnace, method for estimating amount of slag in furnace, and method for producing molten steel
KR20240055776A (en) Device for estimating the amount of slag in the furnace, method for estimating the amount of slag in the furnace, and method for manufacturing molten steel
JP6485432B2 (en) Blowing method for converter
JP6277991B2 (en) Slag component estimation method, solvent calculation method and hot metal pretreatment method
CN115125350B (en) Precise control method and system for slag remaining amount of converter
JP2615290B2 (en) Judgment method of blast furnace end of tapping
JP2019183222A (en) T.Fe ESTIMATION METHOD, T.Fe CONTROL METHOD, STATISTICAL MODEL CREATION METHOD, CONVERTER BLOWING CONTROL DEVICE, STATISTICAL MODEL CREATION DEVICE, AND PROGRAM
JP3232922B2 (en) Hot metal desiliconization method
JP7211553B1 (en) Method for operating converter and method for producing molten steel
TW201734214A (en) Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
JP2520191B2 (en) Blowing control method for oxygen steelmaking furnace
JP2017115173A (en) Operation method of converter
JPH01242711A (en) Method for controlling converter blowing
CN113981166A (en) Converter steelmaking deslagging method
JP2023018814A (en) Static blowing control method, temperature correction term/oxygen correction term estimation device, and converter control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201207

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R151 Written notification of patent or utility model registration

Ref document number: 6841391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151