JP2002363635A - Method for determining decarburization terminating point in vacuum degassing apparatus - Google Patents

Method for determining decarburization terminating point in vacuum degassing apparatus

Info

Publication number
JP2002363635A
JP2002363635A JP2001171834A JP2001171834A JP2002363635A JP 2002363635 A JP2002363635 A JP 2002363635A JP 2001171834 A JP2001171834 A JP 2001171834A JP 2001171834 A JP2001171834 A JP 2001171834A JP 2002363635 A JP2002363635 A JP 2002363635A
Authority
JP
Japan
Prior art keywords
molten steel
carbon concentration
decarburization
carbon
vacuum degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001171834A
Other languages
Japanese (ja)
Inventor
Takeshi Murai
剛 村井
Eiju Matsuno
英寿 松野
Eiji Sakurai
栄司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001171834A priority Critical patent/JP2002363635A/en
Publication of JP2002363635A publication Critical patent/JP2002363635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine the final point of decarburization with excellent accuracy when decarburizing a molten steel in a vacuum degassing apparatus. SOLUTION: When performing the decarburization of the molten steel in the vacuum degassing apparatus, the final point of the decarburization is determined to be: the time at which carbon concentration in the molten steel estimated on the basis of the correlation between the carbon concentration in the molten steel and the carbon concentration in the exhaust gas from the vacuum degassing apparatus reaches a target value; or the time at which the carbon concentration in the molten steel obtained by taking a sample for analysis from the molten steel during the carburization to analyze the carbon concentration, successively integrating the carbon quantity in the exhaust gas from the time when the sample for analysis is sampled, and estimating the carbon concentration on the substance balance between the carbon analysis value of the sample for analysis and the integrated carbon quantity reaches the target value, whichever the earlier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空脱ガス装置に
おいて溶鋼の脱炭精錬を行う際に、脱炭精錬の終了時点
を精度良く判定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately determining the end point of decarburization refining when performing decarburization refining of molten steel in a vacuum degassing apparatus.

【0002】[0002]

【従来の技術】薄鋼板鋼材の連続焼鈍処理化に伴う鋼成
分の極低炭素化に代表されるように、溶鋼段階での脱炭
精錬への要求は近年益々厳しくなり、又、鋼材の高級化
により脱ガス精錬を必須とする鋼種の比率も増加してい
る。このような背景から、RH真空脱ガス装置に代表さ
れる真空脱ガス装置においては、より迅速に且つ確実に
脱炭精錬を行い、大量の溶鋼を処理することが従来にも
増して要求されるようになった。
2. Description of the Related Art In recent years, the demand for decarburization and refining in the molten steel stage has become increasingly severe, as represented by the ultra-low carbonization of steel components accompanying continuous annealing of thin steel sheets. As a result, the ratio of steel types that require degassing and refining is increasing. From such a background, in a vacuum degassing device typified by an RH vacuum degassing device, it is required more than ever to perform decarburization refining more quickly and surely and treat a large amount of molten steel. It became so.

【0003】真空脱ガス装置における脱炭精錬を迅速且
つ確実に行うためには、刻一刻変化する脱炭精錬中の溶
鋼の炭素濃度を確実に把握することが極めて重要とな
る。溶鋼の炭素濃度が確実に把握されない場合には、溶
鋼の炭素濃度が目的とする濃度になっているにも拘わら
ず脱炭精錬を継続したり、目的とする濃度まで炭素濃度
が低下せずに再度の脱炭精錬が必要になったりして、脱
炭精錬の遅延を招くことになる。溶鋼から分析用試料を
採取して化学分析すれば炭素濃度を正確に把握すること
はできるが、化学分析には数分の時間が必要で、脱炭精
錬が終了した後にも分析結果の判明するまで待つ必要が
あり、精錬の迅速化には寄与しない。
In order to quickly and surely perform decarburization refining in a vacuum degassing apparatus, it is extremely important to reliably grasp the carbon concentration of molten steel during decarburization refining that changes every moment. If the carbon concentration of the molten steel is not reliably grasped, the decarburization refining is continued even though the carbon concentration of the molten steel is at the target concentration, or the carbon concentration does not decrease to the target concentration. For example, the decarburization refining is required again, which causes a delay in the decarburization refining. If a sample for analysis is taken from molten steel and subjected to chemical analysis, the carbon concentration can be accurately grasped, but the chemical analysis requires several minutes, and the analysis result is clear even after the decarburization refining is completed It does not contribute to speeding up refining.

【0004】そのため、真空脱ガス装置における脱炭精
錬を迅速且つ確実に行う手段として以下のような方法が
提案されている。
Therefore, the following method has been proposed as a means for quickly and reliably performing decarburization refining in a vacuum degassing apparatus.

【0005】特開平1−222018号公報(以下「先
行技術1」と記す)には、真空脱ガス槽のガス中のCO
ガス濃度を検出し、このCOガス濃度と溶鋼中の炭素濃
度との相関関係から溶鋼中の炭素濃度を推定しつつ脱炭
精錬する方法が開示されている。
[0005] Japanese Patent Application Laid-Open No. 1-222018 (hereinafter referred to as "prior art 1") discloses that CO contained in a gas in a vacuum degassing tank.
There is disclosed a method of detecting a gas concentration and performing decarburization refining while estimating the carbon concentration in the molten steel from the correlation between the CO gas concentration and the carbon concentration in the molten steel.

【0006】又、特開平9−272913号公報(以下
「先行技術2」と記す)には、真空脱ガス槽から排出さ
れる排ガス中のCOガス濃度、CO2 ガス濃度及び排ガ
スの流量から、排ガスにより排出された炭素量を求め、
求めた炭素量を脱炭精錬前及び脱炭精錬中に溶鋼から採
取した分析用試料の炭素分析値により修正しながら、炭
素の物質収支に基づき溶鋼中の炭素濃度を推定する方法
が開示されている。
Japanese Unexamined Patent Application Publication No. 9-272913 (hereinafter referred to as “prior art 2”) discloses a CO gas concentration, a CO 2 gas concentration, and a flow rate of exhaust gas discharged from a vacuum degassing tank. Calculate the amount of carbon emitted by the exhaust gas,
A method for estimating the carbon concentration in molten steel based on the mass balance of carbon while correcting the obtained carbon amount by the carbon analysis value of an analytical sample collected from molten steel before and during decarburization refining is disclosed. I have.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、先行技
術1においては脱ガス精錬中の操業状況、例えば不活性
ガス吹き込み量等が変化すれば排ガス中のCOガス濃度
と溶鋼中の炭素濃度との相関関係は変化するので、実際
の溶鋼中炭素濃度は目標値以下になっているにも拘わら
ず、排ガス中のCOガス濃度が高い場合には終点と判定
されない場合があり、脱炭処理時間の短縮につながらな
い。尚、本発明における終点とは脱炭精錬の終了時点の
ことである。
However, in prior art 1, if the operating conditions during degassing refining, for example, the amount of inert gas blown, change, the correlation between the CO gas concentration in the exhaust gas and the carbon concentration in the molten steel. Since the relationship changes, the end point may not be determined if the CO gas concentration in the exhaust gas is high, even though the actual carbon concentration in the molten steel is below the target value. Does not lead to Incidentally, the end point in the present invention is the end point of the decarburization refining.

【0008】又、先行技術2においては、炭素分析用試
料の採取時における炭素による汚染や、分析用試料中の
炭素の偏析等により、分析値が真値よりも高くなった場
合には、実際の溶鋼中炭素濃度は目標値以下になってい
るにも拘わらず、終点と判定されないことが発生する。
更に、分析値と真値との誤差が大きい場合には、いつま
でも終点と判断されなかったり、再度分析用試料の採取
が必要になったりして、脱炭時間の短縮につながらない
のみならず、処理時間の延長や製造コストの上昇等の弊
害を招くことになる。
In the prior art 2, when the analysis value becomes higher than the true value due to carbon contamination at the time of collecting the carbon analysis sample, segregation of carbon in the analysis sample, etc. In some cases, the end point is not determined even though the carbon concentration in the molten steel is below the target value.
Furthermore, when the difference between the analysis value and the true value is large, the end point is not determined forever, and a sample for analysis needs to be collected again. This will lead to adverse effects such as prolonged time and increased manufacturing costs.

【0009】本発明は、これらの問題点を解決するため
になされたものであり、その目的とするところは、真空
脱ガス装置において溶鋼の脱炭精錬を行う際に、脱炭精
錬の終点を精度良く判定する方法を提供することであ
る。
The present invention has been made to solve these problems, and an object of the present invention is to provide an end point of decarburization refining when performing decarburization refining of molten steel in a vacuum degassing apparatus. An object of the present invention is to provide a method for determining with high accuracy.

【0010】[0010]

【課題を解決するための手段】本発明者等は上記課題を
解決するために鋭意研究を重ねた。以下に研究結果を説
明する。
Means for Solving the Problems The present inventors have intensively studied to solve the above problems. The research results are described below.

【0011】RH真空脱ガス装置における脱炭精錬中
に、溶鋼中炭素濃度と、RH真空脱ガス装置の真空脱ガ
ス槽から排出される排ガス中炭素濃度との関係を調べた
結果、先行技術1に記すように、両者には或る程度の相
関関係はあるが、操業条件やRH真空脱ガス装置自体の
状況が処理するヒート間で微妙に異なるために相関関係
にバラツキが生じ、この方法を単独に使用した場合に
は、前述したように高精度の終点判定はできないことが
分かった。
As a result of examining the relationship between the carbon concentration in the molten steel and the carbon concentration in the exhaust gas discharged from the vacuum degassing tank of the RH vacuum degassing device during the decarburization refining in the RH vacuum degassing device, the prior art 1 As described in the above, there is a certain degree of correlation between the two, but the operating conditions and the conditions of the RH vacuum degassing device itself are slightly different between the heats to be processed, causing a variation in the correlation. When used alone, it was found that highly accurate end point determination was not possible as described above.

【0012】一方、RH真空脱ガス装置における脱炭精
錬中の任意の時点で溶鋼から分析用試料を採取して炭素
濃度を分析し、この炭素濃度の分析値と、分析用試料を
採取した時点以降に排ガスと共に排出される炭素量との
物質収支をとることにより、溶鋼中炭素濃度を逐次推定
することが可能であり、これにより脱炭精錬の終点を判
定することができるとの知見が得られた。
On the other hand, at any time during the decarburization refining in the RH vacuum degassing apparatus, a sample for analysis is taken from the molten steel to analyze the carbon concentration, and the analysis value of the carbon concentration and the time when the sample for analysis is taken By obtaining a material balance with the amount of carbon emitted together with the exhaust gas thereafter, it was possible to estimate the carbon concentration in molten steel successively, and this led to the finding that the end point of decarburization refining could be determined. Was done.

【0013】しかし、このようにして推定した推定値も
実際の濃度より高い場合が生じ、そして、この原因は、
採取した分析用試料の炭素濃度分析値が分析用試料の汚
染や分析用試料中の炭素の偏析等に起因して真値より高
かったためであることが分かった。この場合には、推定
値が炭素濃度の目標値に到達しない、或いは分析用試料
を再度採取する必要があると云った弊害が発生するが、
その際には、前述した溶鋼中炭素濃度と排ガス中炭素濃
度との相関関係に基づいて終点判定を行うことで、この
ような無駄な処理を最小限に抑えることができるとの知
見が得られた。
However, in some cases, the estimated value thus obtained is higher than the actual concentration, and the cause is as follows.
It was found that the analysis value of the carbon concentration of the sample for analysis was higher than the true value due to contamination of the sample for analysis and segregation of carbon in the sample for analysis. In this case, there is an adverse effect that the estimated value does not reach the target value of the carbon concentration or that it is necessary to collect a sample for analysis again.
At that time, it was found that such an unnecessary process can be minimized by performing the end point determination based on the above-described correlation between the carbon concentration in the molten steel and the carbon concentration in the exhaust gas. Was.

【0014】本発明は上記の知見に基づきなされたもの
で、本発明による真空脱ガス装置における脱炭終点判断
方法は、真空脱ガス装置において溶鋼の脱炭精錬を行う
際に、溶鋼中炭素濃度と真空脱ガス装置から排出される
排ガス中炭素濃度との相関関係に基づき推定した溶鋼中
炭素濃度が目標値になった時点と、脱炭精錬中に溶鋼か
ら分析用試料を採取して炭素濃度を分析し、この分析用
試料を採取した時点から前記排ガス中の炭素量を逐次積
算し、分析用試料の炭素分析値と積算した炭素量との物
質収支に基づき推定した溶鋼中炭素濃度が目標値になっ
た時点と、のどちらか早い方の時点を脱炭精錬の終了時
点と判断することを特徴とするものである。
The present invention has been made based on the above findings, and the method for determining the decarburization end point in the vacuum degassing apparatus according to the present invention provides a method for determining the carbon concentration in molten steel when decarburizing and refining molten steel in the vacuum degassing apparatus. When the carbon concentration in the molten steel estimated based on the correlation between the carbon concentration in the exhaust gas discharged from the vacuum degassing device reaches the target value, and the carbon concentration obtained by collecting a sample for analysis from the molten steel during the decarburization refining From the time when this analysis sample was collected, the carbon amount in the exhaust gas was sequentially integrated, and the carbon concentration in the molten steel estimated based on the material balance between the carbon analysis value of the analysis sample and the integrated carbon amount was set as the target. It is characterized in that the earlier of the time when the value becomes the value and the end time of the decarburization refining is determined.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は、本発明による脱炭終点判
断方法を実施する際に好適な真空脱ガス装置の概略図で
ある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a vacuum degassing apparatus suitable for performing the decarburization end point determination method according to the present invention.

【0016】図1に示すように、真空脱ガス装置1には
ガス供給装置2が接続しており、ガス供給装置2からA
rガスやO2 ガス等のガスが供給されるようになってい
る。Arガスは、真空脱ガス装置1における脱炭精錬の
際の溶鋼撹拌用ガスとして用いられ、又、真空脱ガス装
置1がRH真空脱ガス装置の場合には環流用ガスとして
用いられる。O2 ガスは脱炭精錬の際の脱炭用酸素源と
して用いられる。但し、真空脱炭精錬の場合には、O2
ガスを用いなくとも溶鋼中に存在する溶存酸素のみでも
脱炭反応が進行するので、O2 ガスは必ずしも用いる必
要はない。
As shown in FIG. 1, a gas supply device 2 is connected to the vacuum degassing device 1, and the gas supply device 2
Gases such as r gas and O 2 gas are supplied. Ar gas is used as a gas for stirring molten steel at the time of decarburization refining in the vacuum degassing device 1, and is used as a reflux gas when the vacuum degassing device 1 is an RH vacuum degassing device. O 2 gas is used as an oxygen source for decarburization during decarburization refining. However, in the case of vacuum decarburization refining, O 2
Even if no gas is used, the decarburization reaction proceeds only with the dissolved oxygen present in the molten steel, so that the O 2 gas is not necessarily used.

【0017】真空脱ガス装置1とガス供給装置2との間
のガス流路には流量調整弁6と流量計7とが設置され、
供給するガスの流量制御と流量測定とが行われる。真空
脱ガス装置1としてはRH真空脱ガス装置、DH真空脱
ガス装置、VAD炉、VOD炉、ASEA−SKF炉、
真空誘導炉等を用いることができる。
In the gas flow path between the vacuum degassing device 1 and the gas supply device 2, a flow regulating valve 6 and a flow meter 7 are installed.
Flow rate control and flow rate measurement of the supplied gas are performed. As the vacuum degassing device 1, RH vacuum degassing device, DH vacuum degassing device, VAD furnace, VOD furnace, ASEA-SKF furnace,
A vacuum induction furnace or the like can be used.

【0018】真空脱ガス装置1は排気ダクト3を介して
エジェクタ4と接続しており、真空脱ガス装置1で発生
するCOガス、CO2 ガス、及びガス供給装置2から供
給されるArガス等のガスは排ガスとして排気ダクト3
を通ってエジェクタ4により排気される。排気ダクト3
にはガス分析計5が設置されており、排ガス中のCOガ
ス濃度、CO2 ガス濃度、O2 ガス濃度、N2 ガス濃度
等が分析される。
The vacuum degassing device 1 is connected to an ejector 4 via an exhaust duct 3, so that CO gas, CO 2 gas generated by the vacuum degassing device 1, Ar gas supplied from the gas supply device 2, etc. Gas as exhaust gas in exhaust duct 3
And is discharged by the ejector 4. Exhaust duct 3
Is provided with a gas analyzer 5 for analyzing the CO gas concentration, CO 2 gas concentration, O 2 gas concentration, N 2 gas concentration and the like in the exhaust gas.

【0019】転炉や電気炉等による精錬により得られた
溶鋼を取鍋に出鋼し、取鍋内に収容された溶鋼を真空脱
ガス装置1により脱炭精錬する。溶鋼が未脱酸状態で溶
鋼中に溶存酸素が十分存在する場合には、真空脱ガス装
置1を減圧して溶鋼を減圧下に曝すだけでも脱炭反応は
進行するが、溶鋼中の溶存酸素が少ない場合や溶鋼が脱
酸された状態の場合には、溶鋼を減圧下に曝すと同時
に、更にO2 ガスを溶鋼に供給する必要がある。
The molten steel obtained by refining in a converter or an electric furnace is tapped into a ladle, and the molten steel contained in the ladle is decarburized and refined by a vacuum degassing apparatus 1. When the molten steel is in a non-deoxidized state and the dissolved oxygen is sufficiently present in the molten steel, the decarburization reaction proceeds only by depressurizing the vacuum degassing apparatus 1 and exposing the molten steel to the reduced pressure. When the amount of molten steel is small or the molten steel is in a deoxidized state, it is necessary to expose the molten steel under reduced pressure and simultaneously supply O 2 gas to the molten steel.

【0020】このような減圧下での脱炭精錬により発生
するCOガス及びCO2 ガスは排気ダクト3を通って排
気される。この排気ガス中のCOガス濃度とCO2 ガス
濃度とから得られる排ガス中炭素濃度と溶鋼中炭素濃度
との関係を調査すると、図2に例示するようなバラツキ
を持った相関が得られる。この相関からバラツキの誤差
を考慮した上で溶鋼中炭素濃度を推定し、溶鋼中炭素濃
度が目標値となる排ガス中炭素濃度を「最終排ガス中炭
素濃度」として設定する。尚、図2は、RH真空脱ガス
装置における脱炭精錬中の溶鋼中炭素濃度と排ガス中炭
素濃度との関係を例示した図であり、図2において炭素
濃度の目標値を例えば20ppmとした場合には最終排
ガス中炭素濃度はおよそ6%となる。
The CO gas and CO 2 gas generated by the decarburization refining under such reduced pressure are exhausted through the exhaust duct 3. When the relationship between the carbon concentration in the exhaust gas and the carbon concentration in the molten steel obtained from the CO gas concentration and the CO 2 gas concentration in the exhaust gas is investigated, a correlation having a variation as illustrated in FIG. 2 is obtained. From this correlation, the carbon concentration in the molten steel is estimated in consideration of the variation error, and the carbon concentration in the exhaust gas at which the carbon concentration in the molten steel becomes a target value is set as “final exhaust gas carbon concentration”. FIG. 2 is a diagram illustrating the relationship between the carbon concentration in molten steel and the carbon concentration in exhaust gas during decarburization and refining in an RH vacuum degassing apparatus. In FIG. In this case, the carbon concentration in the final exhaust gas is about 6%.

【0021】一方、この脱炭精錬中の任意の時点で溶鋼
から分析用試料を採取し、炭素濃度を化学分析する。こ
の分析用試料を採取した時点から、排ガス中のCOガス
濃度及びCO2 ガス濃度、並びに、ガス供給装置2から
供給されるArガス等のガス流量に基づき、排ガスとし
て排出された炭素量即ち脱炭反応により溶鋼から除去さ
れた炭素量を積算し、この積算した炭素量と溶鋼から採
取した分析用試料の炭素濃度分析値との物質収支に基づ
き、溶鋼中の炭素濃度を逐次推定する。
On the other hand, at any time during the decarburization refining, a sample for analysis is collected from the molten steel, and the carbon concentration is chemically analyzed. From the time when the sample for analysis is collected, the amount of carbon discharged as exhaust gas, that is, the amount of degassed gas, is determined based on the CO gas concentration and CO 2 gas concentration in the exhaust gas and the gas flow rate of Ar gas and the like supplied from the gas supply device 2. The amount of carbon removed from the molten steel by the charcoal reaction is integrated, and the carbon concentration in the molten steel is sequentially estimated based on the material balance of the integrated amount of carbon and the analytical value of the carbon concentration of the analysis sample collected from the molten steel.

【0022】排ガス中炭素量の物質収支から推定した推
定炭素濃度が目標炭素濃度になった時点を脱炭精錬の終
点とする。但し、排ガス中炭素量の物質収支から推定し
た推定炭素濃度が目標炭素濃度に到達する前に、排ガス
中炭素濃度が前述した「最終排ガス中炭素濃度」に到達
した場合には、その時点を脱炭精錬の終点とする。脱炭
精錬数量後は、必要に応じて溶鋼の脱酸や成分調整を実
施する。
The point at which the estimated carbon concentration estimated from the material balance of the carbon content in the exhaust gas reaches the target carbon concentration is defined as the end point of the decarburization refining. However, if the carbon concentration in the exhaust gas reaches the aforementioned “final carbon concentration in the exhaust gas” before the estimated carbon concentration estimated from the material balance of the carbon amount in the exhaust gas reaches the target carbon concentration, the point in time is skipped. The end point of charcoal refining. After the decarburization refining quantity, deoxidation of molten steel and component adjustment are performed as necessary.

【0023】このようにして真空脱ガス装置1における
脱炭精錬の終点を判断することにより、脱炭精錬の終点
を高精度で判断することが可能となる。その結果、脱炭
精錬時間の短縮による真空脱ガス装置1での処理量の拡
大や、溶鋼中炭素濃度のバラツキの低減による製品品質
の均一化等が達成され、製造コストの大幅な削減が可能
となる。
By determining the end point of the decarburization refining in the vacuum degassing apparatus 1 in this manner, the end point of the decarburization refining can be determined with high accuracy. As a result, the amount of treatment in the vacuum degassing device 1 can be increased by shortening the decarburization refining time, and the product quality can be made uniform by reducing the variation in the carbon concentration in the molten steel, and the production cost can be significantly reduced. Becomes

【0024】[0024]

【実施例】転炉から出鋼された、炭素濃度が0.02〜
0.06mass%の約250トンの未脱酸溶鋼を本発明に
係る脱炭終点判断方法を適用してRH真空脱ガス装置に
より脱炭精錬した本発明の実施例(以下「本発明例」と
記す)について説明する。
[Example] The carbon concentration of the steel output from the converter was 0.02 to 0.02.
An example of the present invention in which 0.06 mass% of about 250 tons of undeoxidized molten steel is decarburized and refined by an RH vacuum degassing apparatus by applying the decarburization end point determination method according to the present invention (hereinafter referred to as "Example of the present invention") Will be described.

【0025】この場合の処理条件は、真空脱ガス槽内の
到達真空度を60〜270Pa、環流用Arガス流量を
3000Nl/min、目標溶鋼炭素濃度を20ppm
とした。脱炭用酸素源としてO2 ガスは使用せずに脱炭
精錬した。又、この処理条件において溶鋼中炭素濃度と
排ガス中炭素濃度との相関関係を予め調査し、「最終排
ガス中炭素濃度」を6%に設定した。
The processing conditions in this case are as follows: the ultimate degree of vacuum in the vacuum degassing tank is 60 to 270 Pa; the Ar gas flow rate for reflux is 3000 Nl / min; and the target molten steel carbon concentration is 20 ppm.
And Decarburization refining was performed without using O 2 gas as an oxygen source for decarburization. Further, the correlation between the carbon concentration in the molten steel and the carbon concentration in the exhaust gas was examined in advance under these processing conditions, and the “final exhaust carbon concentration” was set to 6%.

【0026】上記の処理条件で真空脱炭精錬を行い、脱
炭処理開始から5分経過した時点で溶鋼から分析用試料
を採取した。そして、分析用試料を採取した時点から、
排ガスと共に排出された炭素量を排ガス成分及び吹き込
むArガス流量から算出し、算出した炭素量と分析用試
料の炭素濃度との物質収支に基づき、溶鋼中の炭素濃度
を推定した。このようにして推定した溶鋼中炭素濃度が
目標炭素濃度に到達した時点か、若しくは、排ガス中炭
素濃度が6%になった時点かの、どちらか早い時点を脱
炭精錬の終点として脱炭精錬を終了した。このようにし
て複数ヒートの脱炭精錬を実施した。
Vacuum decarburization refining was performed under the above processing conditions, and a sample for analysis was collected from the molten steel at the time when 5 minutes had passed since the start of the decarburization processing. And from the time when the sample for analysis was collected,
The carbon amount discharged together with the exhaust gas was calculated from the exhaust gas component and the flow rate of the injected Ar gas, and the carbon concentration in the molten steel was estimated based on the material balance between the calculated carbon amount and the carbon concentration of the sample for analysis. The decarburization refining is determined as the end point of the decarburization refining at the time when the estimated carbon concentration in the molten steel reaches the target carbon concentration or when the carbon concentration in the exhaust gas reaches 6%, whichever is earlier. Finished. In this way, decarburization refining of multiple heats was performed.

【0027】この脱炭精錬における脱炭精錬終了時間の
バラツキの頻度を図3に示し、又、RH真空脱ガス装置
での処理終了時の溶鋼中炭素濃度のバラツキの頻度を図
4に示す。これらの図に示すように、本発明例では脱炭
精錬を平均で13.2分の処理時間で行うことができ、
且つ、脱炭処理後の溶鋼中炭素濃度の平均値を目標値で
ある20ppmに極めて近い18.7ppmとすること
ができた。
FIG. 3 shows the frequency of the variation of the decarburization refining end time in the decarburization refining, and FIG. 4 shows the frequency of the variation of the carbon concentration in the molten steel at the end of the treatment in the RH vacuum degassing apparatus. As shown in these figures, in the example of the present invention, decarburization smelting can be performed in an average processing time of 13.2 minutes,
Moreover, the average value of the carbon concentration in the molten steel after the decarburization treatment could be set to 18.7 ppm, which is extremely close to the target value of 20 ppm.

【0028】又、比較のために、その他の条件は本発明
例と同一にして、溶鋼中炭素濃度と排ガス中炭素濃度と
の相関関係に基づき、排ガス中炭素濃度が6%になった
時点のみを脱炭精錬の終点と定めた操業(比較例1)
と、脱炭処理開始から5分経過した時点で溶鋼から分析
用試料を採取し、分析用試料を採取した時点から、排ガ
スと共に排出された炭素量を排ガス成分及び吹き込むA
rガス流量から算出し、算出した炭素量と分析用試料の
炭素濃度との物質収支に基づいて推定した溶鋼中炭素濃
度が目標炭素濃度に到達した時点のみを脱炭精錬の終点
と定めた操業(比較例2)も実施した。
For comparison, the other conditions were the same as those of the present invention, and based on the correlation between the carbon concentration in the molten steel and the carbon concentration in the exhaust gas, only when the carbon concentration in the exhaust gas reached 6%. Operation that defines the end point of decarburization refining (Comparative Example 1)
5 minutes after the start of the decarburization treatment, a sample for analysis was collected from the molten steel, and from the time when the sample for analysis was collected, the amount of carbon discharged together with the exhaust gas was discharged into the exhaust gas component and A
An operation in which only the point in time when the carbon concentration in molten steel estimated from the material balance between the calculated carbon amount and the carbon concentration of the analytical sample reaches the target carbon concentration is determined as the end point of decarburization refining. (Comparative Example 2) was also performed.

【0029】比較例1における脱炭精錬終了時間のバラ
ツキの頻度を図5に示し、RH真空脱ガス装置での処理
終了時の溶鋼中炭素濃度のバラツキの頻度を図6に示
す。又、比較例2における脱炭精錬終了時間のバラツキ
の頻度を図7に示し、RH真空脱ガス装置での処理終了
時の溶鋼中炭素濃度のバラツキの頻度を図8に示す。
FIG. 5 shows the frequency of the variation of the decarburization refining end time in Comparative Example 1, and FIG. 6 shows the frequency of the variation of the carbon concentration in the molten steel at the end of the treatment in the RH vacuum degassing apparatus. FIG. 7 shows the frequency of the variation of the decarburization refining end time in Comparative Example 2, and FIG. 8 shows the frequency of the variation of the carbon concentration in the molten steel at the end of the treatment in the RH vacuum degassing apparatus.

【0030】図5〜図8に示すように、平均脱炭処理時
間は、比較例1では15.8分、比較例2では13.7
分となり、何れも本発明例に比較して長時間を費やすこ
ととなり、又、脱炭処理後の溶鋼中炭素濃度の平均値
は、比較例で15.4ppm、比較例2で18.1pp
mとなり、何れも本発明例に比較して目標値からの隔離
が大きくなった。平均脱炭処理時間及び脱炭処理後の溶
鋼中炭素濃度のバラツキも本発明例に比較して大きくな
った。
As shown in FIGS. 5 to 8, the average decarburization time was 15.8 minutes in Comparative Example 1, and 13.7 minutes in Comparative Example 2.
, And both of them take a long time as compared with the present invention. The average carbon concentration in the molten steel after the decarburization treatment is 15.4 ppm in the comparative example and 18.1 pp in the comparative example 2.
m, and the separation from the target value became larger as compared with the examples of the present invention. The dispersion of the average decarburization treatment time and the carbon concentration in the molten steel after the decarburization treatment also became larger than those of the present invention.

【0031】これらの結果から、比較例1及び比較例2
では脱炭処理を過剰に継続していたことが分かった。こ
れに対して、本発明例では高精度に脱炭精錬の終点判定
を行うことができ、その結果、脱炭精錬時間の短縮及び
溶鋼中炭素濃度の狭範囲制御が可能であることが分かっ
た。
From these results, Comparative Example 1 and Comparative Example 2
Then it was found that the decarburization treatment was continued excessively. On the other hand, in the example of the present invention, the end point of the decarburization refining can be determined with high accuracy, and as a result, it has been found that the decarburization refining time can be reduced and the carbon concentration in the molten steel can be controlled in a narrow range. .

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
真空脱ガス装置において溶鋼の脱炭精錬を行う際に、溶
鋼中炭素濃度を、溶鋼中炭素濃度と排ガス中炭素濃度と
の相関関係、及び、排ガス中の炭素量と溶鋼中炭素量と
の物質収支の2種類の手段により推定し、どちらかの推
定値が目標値になった時点を脱炭精錬の終点と判断する
ので、高精度に脱炭精錬の終点判定を行うことができ、
その結果、脱炭精錬時間の短縮による真空脱ガス装置で
の処理量の拡大や、溶鋼中炭素濃度のバラツキの低減に
よる製品品質の均一化等が達成され、工業上有益な効果
がもたらされる。
As described above, according to the present invention,
When performing decarburization refining of molten steel in a vacuum degassing device, the carbon concentration in the molten steel, the correlation between the carbon concentration in the molten steel and the carbon concentration in the exhaust gas, and the substance between the carbon content in the exhaust gas and the carbon content in the molten steel Estimation is made by two types of means of income and expenditure, and the point when either of the estimated values reaches the target value is determined as the end point of decarburization refining, so the end point determination of decarburization refining can be performed with high accuracy,
As a result, the amount of treatment in the vacuum degassing device is increased by shortening the decarburization refining time, and the product quality is uniformized by reducing the variation in the carbon concentration in the molten steel, and an industrially beneficial effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による脱炭終点判断方法を実施する際に
好適な真空脱ガス装置の概略図である。
FIG. 1 is a schematic diagram of a vacuum degassing apparatus suitable for performing a decarburization end point determination method according to the present invention.

【図2】RH真空脱ガス装置における脱炭精錬中の溶鋼
中炭素濃度と排ガス中炭素濃度との関係を例示した図で
ある。
FIG. 2 is a diagram illustrating the relationship between the carbon concentration in molten steel and the carbon concentration in exhaust gas during decarburization refining in an RH vacuum degassing device.

【図3】本発明例における脱炭精錬終了時間のバラツキ
の頻度を示す図である。
FIG. 3 is a diagram showing the frequency of variation in the decarburization refining end time in the example of the present invention.

【図4】本発明例における溶鋼中炭素濃度のバラツキの
頻度を示す図である。
FIG. 4 is a diagram showing the frequency of variation in the carbon concentration in molten steel in an example of the present invention.

【図5】比較例1における脱炭精錬終了時間のバラツキ
の頻度を示す図である。
FIG. 5 is a diagram showing the frequency of variation in the decarburization refining end time in Comparative Example 1.

【図6】比較例1における溶鋼中炭素濃度のバラツキの
頻度を示す図である。
FIG. 6 is a diagram showing the frequency of variation in carbon concentration in molten steel in Comparative Example 1.

【図7】比較例2における脱炭精錬終了時間のバラツキ
の頻度を示す図である。
FIG. 7 is a diagram showing the frequency of variation in the decarburization refining end time in Comparative Example 2.

【図8】比較例2における溶鋼中炭素濃度のバラツキの
頻度を示す図である。
FIG. 8 is a diagram showing the frequency of variation in carbon concentration in molten steel in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 真空脱ガス装置 2 ガス供給装置 3 排気ダクト 4 エジェクタ 5 ガス分析計 6 流量調整弁 7 流量計 DESCRIPTION OF SYMBOLS 1 Vacuum degassing device 2 Gas supply device 3 Exhaust duct 4 Ejector 5 Gas analyzer 6 Flow control valve 7 Flowmeter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻井 栄司 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K013 BA02 CA02 CA04 CC01 CE00 CE01 CE02 CE04 CE05 CE08 CF12 FA02 FA03 FA11  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Eiji Sakurai 1-2-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 4K013 BA02 CA02 CA04 CC01 CE00 CE01 CE02 CE04 CE05 CE08 CF12 FA02 FA03 FA11

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空脱ガス装置において溶鋼の脱炭精錬
を行う際に、溶鋼中炭素濃度と真空脱ガス装置から排出
される排ガス中炭素濃度との相関関係に基づき推定した
溶鋼中炭素濃度が目標値になった時点と、脱炭精錬中に
溶鋼から分析用試料を採取して炭素濃度を分析し、この
分析用試料を採取した時点から前記排ガス中の炭素量を
逐次積算し、分析用試料の炭素分析値と積算した炭素量
との物質収支に基づき推定した溶鋼中炭素濃度が目標値
になった時点と、のどちらか早い方の時点を脱炭精錬の
終了時点と判断することを特徴とする、真空脱ガス装置
における脱炭終点判断方法。
When performing decarburization and refining of molten steel in a vacuum degassing apparatus, the carbon concentration in the molten steel estimated based on the correlation between the carbon concentration in the molten steel and the carbon concentration in the exhaust gas discharged from the vacuum degassing apparatus is reduced. At the time when the target value was reached, during the decarburization refining, a sample for analysis was taken from the molten steel to analyze the carbon concentration, and from the time when the sample for analysis was taken, the carbon amount in the exhaust gas was successively integrated, and The point at which the carbon concentration in the molten steel estimated based on the material balance between the carbon analysis value of the sample and the integrated carbon amount has reached the target value, whichever is earlier, is determined to be the end point of the decarburization refining. A method for determining a decarburization end point in a vacuum degassing apparatus.
JP2001171834A 2001-06-07 2001-06-07 Method for determining decarburization terminating point in vacuum degassing apparatus Pending JP2002363635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001171834A JP2002363635A (en) 2001-06-07 2001-06-07 Method for determining decarburization terminating point in vacuum degassing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001171834A JP2002363635A (en) 2001-06-07 2001-06-07 Method for determining decarburization terminating point in vacuum degassing apparatus

Publications (1)

Publication Number Publication Date
JP2002363635A true JP2002363635A (en) 2002-12-18

Family

ID=19013537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001171834A Pending JP2002363635A (en) 2001-06-07 2001-06-07 Method for determining decarburization terminating point in vacuum degassing apparatus

Country Status (1)

Country Link
JP (1) JP2002363635A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174320A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Method for controlling carbon content in molten steel in rh-degassing refining
CN110468254A (en) * 2019-09-25 2019-11-19 敬业钢铁有限公司 A kind of method of the vacuum carbon block deoxidation of safety and environmental protection
CN110846470A (en) * 2019-12-03 2020-02-28 本钢板材股份有限公司 Method for accurately controlling carbon content in RH refined low-carbon steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174320A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Method for controlling carbon content in molten steel in rh-degassing refining
CN110468254A (en) * 2019-09-25 2019-11-19 敬业钢铁有限公司 A kind of method of the vacuum carbon block deoxidation of safety and environmental protection
CN110846470A (en) * 2019-12-03 2020-02-28 本钢板材股份有限公司 Method for accurately controlling carbon content in RH refined low-carbon steel

Similar Documents

Publication Publication Date Title
KR101579011B1 (en) Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JP2002363635A (en) Method for determining decarburization terminating point in vacuum degassing apparatus
JP5087840B2 (en) Decarburization end point judgment method in vacuum degassing equipment
JP2010538279A (en) Method for indirectly determining waste gas flow rate in metallurgical process
JP6007887B2 (en) Vacuum degassing apparatus and method for decarburizing molten steel using the same
JP5896153B2 (en) Desulfurization method and manufacturing method of molten steel
JP2016141875A (en) Analytical device for exhaust gas component and evacuation decarburization treatment method for molten steel
JP4353054B2 (en) Method for decarburizing molten steel in RH vacuum degassing equipment
JPH0755780A (en) High sensitivity measuring apparatus for ultra-trace ingredient in various gas by gas chromatograph
KR970005385B1 (en) Control method of carbon concentration with low carbon steel
JP5402342B2 (en) How to prevent clogging of ladle nozzle
JP3827852B2 (en) Denitrification method for chromium-containing molten steel
JP3415997B2 (en) Guidance method for vacuum decarburization treatment of melting
JP2001234230A (en) Method for deciding end point of decarburization refining
JPH07242928A (en) Method for estimating carbon concentration in molten steel through rh type vacuum vessel
KR20010028813A (en) A method for controlling carbon contents in molten steel when refining the ultra low carbon steel
JP5464242B2 (en) Manufacturing method of clean steel
EP4095269A1 (en) Method for conducting decarburization refining of molten steel under reduced pressure
JPH02298861A (en) Estimation of decarburization in vacuum using mass spectrometer
KR101012834B1 (en) Method for predicting dissolved carbon quantity in vacuum degassing process
JPH11279625A (en) Manufacture of super-low carbon steel
KR820001717B1 (en) Method for control of steel manufacture progress of work
JP5353320B2 (en) Vacuum degassing method, vacuum degassing apparatus and manufacturing method for molten steel
JPH03199306A (en) Method for estimating vacuum decarburization

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308