JPH11172323A - Method for controlling carbon concentration in rh vacuum degassing treatment - Google Patents
Method for controlling carbon concentration in rh vacuum degassing treatmentInfo
- Publication number
- JPH11172323A JPH11172323A JP34117197A JP34117197A JPH11172323A JP H11172323 A JPH11172323 A JP H11172323A JP 34117197 A JP34117197 A JP 34117197A JP 34117197 A JP34117197 A JP 34117197A JP H11172323 A JPH11172323 A JP H11172323A
- Authority
- JP
- Japan
- Prior art keywords
- carbon concentration
- molten steel
- decarburization
- carbon
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、RH真空脱ガス
装置により溶鋼を真空脱炭処理する過程において、RH
真空脱ガスの装置条件や操業条件、及び脱炭処理の途中
における溶鋼の成分組成分析や排ガスの成分組成分析等
の結果を用い、脱炭処理途中の溶鋼の炭素濃度を脱炭モ
デルに基づき推定すると同時に、溶鋼の炭素濃度分析を
迅速に行ない、極低炭素領域での脱炭モデルに基づき上
記炭素濃度分析値を用いて、真空脱炭処理の終点におけ
る溶鋼の炭素濃度(終点炭素濃度)を目標値に制御する
方法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to a process for vacuum decarburization of molten steel by an RH vacuum degassing apparatus.
Estimate the carbon concentration of molten steel during decarburization based on the decarburization model using the equipment conditions and operating conditions of vacuum degassing and the results of component composition analysis of molten steel and exhaust gas component analysis during decarburization. At the same time, the carbon concentration of the molten steel is quickly analyzed, and the carbon concentration of the molten steel at the end point of the vacuum decarburization process (end-point carbon concentration) is determined based on the carbon concentration analysis value based on the decarburization model in the extremely low carbon region. It relates to a method of controlling to a target value.
【0002】[0002]
【従来の技術】薄鋼板の連続焼鈍処理に伴ない必要とさ
れる極低炭素化の要望にみられるように、溶鋼の脱炭処
理により、極めて低い炭素濃度の鋼が求められている。
しかも、溶鋼の脱炭処理が必要とされる薄鋼板の生産量
が増加している。こうして、溶鋼の真空脱ガス処理比率
が著しく増加している。このような状況に対処するた
め、溶鋼の真空脱ガス処理時間を短縮すること、及び脱
炭処理中の炭素濃度を精度よく推定するとともに制御
し、そして過剰な脱炭処理をしないことが重要な課題と
なっている。2. Description of the Related Art As shown in the demand for ultra-low carbonization required for continuous annealing of thin steel sheets, steel having an extremely low carbon concentration is required by decarburizing molten steel.
In addition, the production of thin steel sheets requiring decarburization of molten steel is increasing. Thus, the vacuum degassing rate of the molten steel has been significantly increased. In order to cope with such a situation, it is important to shorten the vacuum degassing time of molten steel, accurately estimate and control the carbon concentration during the decarburization process, and not to perform excessive decarburization process. It has become a challenge.
【0003】しかしながら、真空脱ガス処理時間を短縮
し、溶鋼の脱炭処理終了時点の炭素濃度を目標値に的中
させることは困難である。そこで、従来、溶鋼の脱炭処
理中に真空脱ガス槽から発生する排ガスの成分組成及び
排ガス流量等の情報を用いて、真空脱炭処理終点の溶鋼
中炭素濃度を推定する方法がとられている。[0003] However, it is difficult to shorten the vacuum degassing treatment time and to hit the carbon concentration at the end of the decarburization treatment of the molten steel to the target value. Therefore, conventionally, a method of estimating the carbon concentration in the molten steel at the end point of the vacuum decarburization process using information such as the component composition of the exhaust gas generated from the vacuum degassing tank and the flow rate of the exhaust gas during the decarburization process of the molten steel has been taken. I have.
【0004】例えば、特開昭59−185720号公報
は、真空精錬炉の稼働中の排気ダクトにおける排ガスの
情報に基づき、溶鋼中の炭素量を動的に予測する方法と
して、真空処理開始前の溶鋼中の炭素量から排ガス中に
移行した積算炭素量を差し引いて、ある時期における溶
鋼中の炭素量を算出しその濃度を求める方法(以下、先
行技術という)を開示している。For example, JP-A-59-185720 discloses a method for dynamically estimating the carbon content in molten steel based on information on exhaust gas in an exhaust duct during operation of a vacuum refining furnace. A method is disclosed in which the integrated carbon amount transferred into exhaust gas is subtracted from the carbon amount in molten steel to calculate the carbon amount in molten steel at a certain time and obtain the concentration thereof (hereinafter referred to as prior art).
【0005】[0005]
【発明が解決しようとする課題】先行技術の方法は、真
空精錬過程における溶鋼中炭素濃度を動的に制御するも
のであり、真空精錬の終点炭素濃度を比較的高精度に制
御することができる。しかしながら、排ガス中炭素量を
積算して求めることにより溶鋼中の炭素量を求めるの
で、溶鋼の成分組成や排ガス分析等の計測誤差が累積す
るのを避けることができず、終点目標炭素濃度に的中さ
せるには問題がある。The prior art method dynamically controls the carbon concentration in molten steel during the vacuum refining process, and can control the carbon concentration at the end of vacuum refining with relatively high accuracy. . However, since the amount of carbon in the molten steel is obtained by integrating the amount of carbon in the exhaust gas, the accumulation of measurement errors such as the composition of the molten steel and the analysis of exhaust gas cannot be avoided. There is a problem to get inside.
【0006】RH真空脱ガス装置を用いた真空脱炭処理
により、炭素濃度が30ppm程度以下の極低炭素鋼を
溶製する場合、炭素濃度を動的に制御して終点炭素濃度
を目標値に近づけようとする場合には、炭素濃度が極低
炭素に近い領域まで低下した以後における、脱炭処理途
中の溶鋼の炭素濃度の精度よい分析値を必要とする。従
来技術では、上記途中分析結果が判明した後、終点目標
炭素濃度に的中させるための操業条件の調整時間がとれ
ず、また、途中分析用の溶鋼試料の採取時期を適切に決
める手段がなかった。しかも、脱炭処理中に取鍋から直
接、溶鋼試料を採取して迅速に炭素濃度を分析し、この
値に基づき極低炭素領域での真空脱炭処理による炭素濃
度を推定し、終点目標炭素濃度に近づけるという方法が
見当たらない。このように、従来技術には、RH真空脱
ガス装置による溶鋼の真空脱炭処理において、極低炭素
濃度を終点目標値とする場合に、炭素濃度を動的に制御
し、精度よく目標値に的中させる技術の開示は見当たら
ない。[0006] When ultra-low carbon steel having a carbon concentration of about 30 ppm or less is melted by vacuum decarburization using an RH vacuum degassing apparatus, the carbon concentration is dynamically controlled to set the end-point carbon concentration to a target value. In the case where the carbon concentration is to be approximated, an accurate analysis value of the carbon concentration of the molten steel during the decarburization process after the carbon concentration has decreased to a region close to extremely low carbon is required. In the prior art, after the above-mentioned halfway analysis result is found, there is no time to adjust the operating conditions for hitting the target carbon concentration at the end point, and there is no means for appropriately determining the timing of collecting the molten steel sample for halfway analysis. Was. In addition, during the decarburization process, a molten steel sample is taken directly from the ladle to quickly analyze the carbon concentration. Based on this value, the carbon concentration by vacuum decarburization in the extremely low carbon region is estimated, and the target carbon There is no method to approach the concentration. As described above, in the prior art, in the vacuum decarburization process of molten steel by the RH vacuum degassing apparatus, when the extremely low carbon concentration is set as the end point target value, the carbon concentration is dynamically controlled and accurately set to the target value. There is no disclosure of the technology to hit.
【0007】従って、この発明の目的は、上述した問題
を解決して、脱炭処理中の極低炭素近傍における炭素濃
度を精度よく推定することができ、脱炭終了時の炭素濃
度を目標炭素濃度に効率よく近づけることができる、R
H真空脱ガス装置による溶鋼の炭素濃度の制御方法を提
供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems, to accurately estimate the carbon concentration in the vicinity of extremely low carbon during decarburization, and to reduce the carbon concentration at the end of decarburization to the target carbon concentration. R that can efficiently approach the concentration
An object of the present invention is to provide a method for controlling the carbon concentration of molten steel by an H vacuum degassing apparatus.
【0008】[0008]
【課題を解決するための手段】本発明者等は、上述した
観点から、鋭意研究を重ねた。RH真空脱ガス装置によ
り、炭素濃度が30ppm程度以下という極低炭素溶鋼
の炭素の目標成分の的中率をあげるために、次の3点に
注目した。Means for Solving the Problems The present inventors have made intensive studies from the above viewpoints. In order to increase the hit ratio of the target component of carbon in the extremely low carbon molten steel having a carbon concentration of about 30 ppm or less by the RH vacuum degassing apparatus, the following three points were focused on.
【0009】溶鋼の炭素濃度が極低炭素領域に低下す
る直前、例えば、40〜60ppm程度の範囲内まで低
下したときに、溶鋼の炭素濃度を迅速、且つ精度よく推
定することができる手段を講ずること。Immediately before the carbon concentration of the molten steel drops to the extremely low carbon region, for example, when the carbon concentration falls to within the range of about 40 to 60 ppm, a means for quickly and accurately estimating the carbon concentration of the molten steel is taken. thing.
【0010】溶鋼の炭素濃度が上記の水準まで低下
したときには、少なくとも、脱炭処理途中において溶鋼
の炭素分析試料を採取し、且つその炭素分析結果が迅速
に得られる手段を講ずること。When the carbon concentration of the molten steel falls to the above level, at least a carbon analysis sample of the molten steel is collected during the decarburization treatment, and measures are taken to quickly obtain the carbon analysis result.
【0011】上記における、溶鋼試料の炭素濃度の
迅速な判明結果を用い、試料採取時点以降の溶鋼の炭素
濃度を脱炭処理操業条件により制御することにより、脱
炭処理終了までの間に、終点目標炭素濃度に近づけるこ
とができる手段を講ずること。[0011] By using the results of the rapid determination of the carbon concentration of the molten steel sample described above and controlling the carbon concentration of the molten steel from the time of sample collection by operating conditions for the decarburization treatment, the end point of the decarbonization treatment is completed. Take measures that can approach the target carbon concentration.
【0012】そのためには、の手段を講ずるために当
該RH真空脱ガス設備での過去の複数の脱炭処理ヒート
で得られた各種測定データを有効に利用するとともに、
質量分析計等により、精度よい排ガス情報を迅速に得る
こと、の手段を講ずるために、溶鋼のオンサイトにお
ける試料の迅速採取技術を開発すると共に、炭素の迅速
分析技術を開発すること、そしての手段を講ずるため
に、上記迅速分析結果を極低炭素付近での適切な脱炭モ
デルに利用することが有効であることがわかった。To this end, various measurement data obtained by a plurality of past decarburization heats in the RH vacuum degassing facility are effectively used in order to take the following measures.
In order to quickly obtain accurate exhaust gas information using a mass spectrometer, etc., in order to develop a technique for rapidly collecting on-site samples of molten steel, and a technique for rapidly analyzing carbon, In order to take measures, it was found that it was effective to use the results of the rapid analysis described above for an appropriate decarburization model near extremely low carbon.
【0013】この発明は上記知見に基づきなされたもの
であり、請求項1記載の炭素濃度の制御方法は、下記特
徴を有するものである。RH真空脱ガス装置により取鍋
内の溶鋼を真空脱炭処理しつつ溶鋼の炭素濃度を制御す
る方法において、真空脱炭処理終点における推定炭素濃
度〔C〕cal,fを、真空脱炭処理操業条件の調整及び/
又は真空脱炭処理時間の修正により、真空脱炭処理の終
点における目標炭素濃度〔C〕a に近づけるために、次
の各工程を行なうものである。ここで、真空脱炭処理操
業条件の調整としては、溶鋼環流用アルゴンガス流量調
整が主体となるが、脱ガス装置の運用状況に余裕がある
ときや目標炭素濃度〔C〕a の値が極めて低い場合等で
は、操業条件をそのままにし処理時間を延長してもよ
い。The present invention has been made based on the above findings, and a method for controlling carbon concentration according to claim 1 has the following features. In the method of controlling the carbon concentration of molten steel while vacuum decarburizing the molten steel in the ladle by the RH vacuum degassing device, the estimated carbon concentration [C] cal, f at the end point of the vacuum decarburization process is reduced by the vacuum decarburization operation. Condition adjustment and / or
Alternatively, the following steps are performed in order to approach the target carbon concentration [C] a at the end point of the vacuum decarburization processing by correcting the vacuum decarburization processing time. Here, the adjustment of the vacuum decarburization processing operation conditions is mainly performed by adjusting the flow rate of argon gas for circulating molten steel. However, when there is room in the operation of the degassing apparatus or when the value of the target carbon concentration [C] a is extremely large. For example, when the temperature is low, the operating conditions may be kept as it is, and the processing time may be extended.
【0014】先ず、真空脱炭処理に要する経過時間帯を
処理前期、処理中間時点、及び処理後期に分けて設け
る。このように処理時期を分けるのは、炭素濃度の水準
により、脱炭の律速条件が異なり、炭素濃度が300〜
50ppmの領域では、脱炭溶鋼と未脱炭溶鋼との混合
律速だが、炭素濃度が50ppm以下の極低炭素付近以
下の領域では反応律速に変化するので、これに適した脱
炭モデルを採用するためである。First, the elapsed time required for the vacuum decarburization treatment is provided separately for the first half of the treatment, the middle of the treatment, and the second half of the treatment. The reason why the treatment time is divided in this way is that the rate-determining conditions for decarburization differ depending on the level of carbon concentration, and the carbon concentration is 300 to
In the region of 50 ppm, the mixing rate of decarburized molten steel and undecarburized molten steel is rate-determining. However, in the area where the carbon concentration is very low carbon and below 50 ppm, the reaction rate changes, so a decarburization model suitable for this is adopted. That's why.
【0015】工程(イ):真空脱炭処理の開始から終了
までの間での中間時点における、処理中溶鋼の中間目標
炭素濃度〔C〕int,a を予め設定し、そして、当該真空
脱炭処理による溶鋼の一の脱炭モデルに基づき溶鋼中の
炭素濃度推定式Aを作成する。そして、処理前期におい
ては、処理時間の経過につれて1回または複数回(n
回)、溶鋼の炭素濃度〔C〕cal,br(但し、rは回数を
表わす添字で、r=1,2,・・・,s、以下同じ)を
推定し、第s回目の推定された溶鋼の炭素濃度〔C〕
cal,bsが、例えば、45〜60ppm前後まで低下した
ら、速やかに引き続き処理前期の終了時点を定める。こ
のように複数回、炭素濃度を推定する理由は、推定炭素
濃度により処理前期から処理後期への移行時点を一層的
確に求めるためである。この移行時期は、終点目標炭素
濃度に依存するが、その目標値が30ppm以下の場合
には、45〜55ppm程度が望ましい。Step (a): An intermediate target carbon concentration [C] int, a of the molten steel being processed at an intermediate point between the start and the end of the vacuum decarburization treatment is set in advance, and the vacuum decarburization is performed. Formula E for estimating carbon concentration in molten steel is created based on one decarburization model of molten steel by the treatment. In the first half of the processing, one or more times (n
Times), the carbon concentration of molten steel [C] cal, br (where r is a suffix representing the number of times, r = 1, 2,..., S, the same applies hereinafter) and the s-th estimated Carbon concentration of molten steel [C]
When cal and bs drop to, for example, about 45 to 60 ppm, the end point of the first half of the process is immediately determined. The reason for estimating the carbon concentration a plurality of times in this way is to more accurately determine the transition point from the first half of the treatment to the second half of the treatment based on the estimated carbon concentration. This transition time depends on the target carbon concentration at the end point, but when the target value is 30 ppm or less, it is preferably about 45 to 55 ppm.
【0016】工程(ロ):(イ)で決定された処理前期
の終了時点の直後を処理中間時点を定め、こうして定め
られた処理中間時点に、取鍋内から溶鋼の炭素分析用試
料を採取し、その後迅速に、望ましくは2分以内に炭素
濃度〔C〕on site を測定する。Step (b): Immediately after the end of the first half of the treatment determined in (a), a treatment intermediate time is determined, and at the treatment intermediate time thus determined, a sample for carbon analysis of molten steel is taken from the ladle. Then, the carbon concentration [C] on site is measured promptly, preferably within 2 minutes.
【0017】工程(ハ):(ロ)において溶鋼の炭素分
析用試料を採取した時点を、処理後期の開始時点と定め
る。このように、脱炭処理中の取鍋内から直接溶鋼分析
試料をとるのは、取鍋中溶鋼の炭素濃度分析により高精
度の情報を得るためであり、できるだけ迅速に、望まし
くは2分以内に炭素濃度〔C〕on site を分析完了させ
るのは、終点目標炭素濃度が30ppm以下である場合
に、推定炭素濃度〔C〕cal,f を45〜55ppm程度
から終点目標炭素濃度〔C〕a に近づけるように調整す
るためのアクションをとるのに残された最小限の所要時
間を確保するためである。そして、この分析試料を採取
した時点から真空脱炭処理終了までを脱炭処理後期と定
める。Step (c): The time when the sample for carbon analysis of the molten steel is collected in (b) is defined as the start time of the latter half of the treatment. The reason why the molten steel analysis sample is taken directly from the ladle during the decarburization process is to obtain high-precision information by analyzing the carbon concentration of the molten steel in the ladle, and as quickly as possible, preferably within 2 minutes. In order to complete the analysis of the carbon concentration [C] on site , when the target carbon concentration of the end point is 30 ppm or less, the estimated carbon concentration [C] cal, f is increased from about 45 to 55 ppm to the target carbon concentration [C] a This is in order to secure the minimum required time left for taking an action for adjustment so as to approach. Then, the period from the time when the analysis sample is collected to the end of the vacuum decarburization process is defined as the latter stage of the decarburization process.
【0018】工程(ニ):真空脱炭処理による溶鋼の他
の脱炭モデルに基づき、脱炭処理後期における溶鋼中の
炭素濃度推定式Bを作成し、上記工程(ロ)で測定され
た炭素濃度〔C〕on site を当該炭素濃度推定式Bの初
期炭素濃度〔C〕0 とする。即ち、脱炭処理開始時点t
=0における炭素濃度として〔C〕0 を採用する。こう
して得られた炭素濃度推定式Bにより、脱炭処理中の推
定炭素濃度〔C〕cal, t を、処理後期の脱炭時間tの関
数H(t)で表わす。ここで採用する真空脱炭モデルと
しては、C+O→COの反応律速を前提として作られた
モデルに限定すべきである。こうして得られた下記
(1)式: 〔C〕cal,t =H(t) --------------------------(1) を用い、真空脱炭処理の終了時点の脱炭時間であるt=
tf における推定終点炭素濃度〔C〕cal,f を、下記
(2)式: 〔C〕cal,f =H(tf ) --------------------------(2) で求める。Step (d): Based on another decarburization model of molten steel by vacuum decarburization, formula B for estimating carbon concentration in molten steel in the latter stage of decarburization is prepared, and the carbon measured in step (b) is measured. Let the concentration [C] on site be the initial carbon concentration [C] 0 in the carbon concentration estimation formula B. That is, the decarburization start time t
[C] 0 is adopted as the carbon concentration at = 0. By the carbon concentration estimation formula B thus obtained, the estimated carbon concentration [C] cal, t during the decarburization treatment is represented by a function H (t) of the decarburization time t in the latter stage of the treatment. The vacuum decarburization model adopted here should be limited to a model created on the premise of the reaction rate control of C + O → CO. The following equation (1) thus obtained: [C] cal, t = H (t) -------------------------- (1) And the decarburization time at the end of the vacuum decarburization treatment, t =
The estimated end point carbon concentration [C] cal, f at t f is calculated by the following equation (2): [C] cal, f = H (t f ) --------- Find in (2).
【0019】請求項2記載の炭素濃度の制御方法は、上
記請求項1記載の方法において下記特徴を有するもので
ある。即ち、上記工程(イ)において炭素濃度推定式A
を作成し、上記推定炭素濃度〔C〕cal,brを算出し、そ
して第s回目の当該推定炭素濃度〔C〕cal,bsを求める
方法としては、下記(a)〜(e)の工程により求め
る。そして、上記工程(ニ)において、脱炭処理後期に
おける溶鋼中の推定炭素濃度〔C〕cal,t を求める方法
としては、上記のように炭素濃度〔C〕on siteを炭素
濃度推定式Bの初期炭素濃度〔C〕0 とすると共に、更
に、使用する脱ガス装置の諸元及び真空脱炭処理操業条
件を炭素濃度推定式Bに代入することにより、処理時間
tの関数H(t)として求める。According to a second aspect of the present invention, there is provided a method for controlling a carbon concentration according to the first aspect of the present invention, which has the following features. That is, in the above step (a), the carbon concentration estimation formula A
Is calculated , the estimated carbon concentration [C] cal, br is calculated, and the s-th estimated carbon concentration [C] cal, bs is calculated by the following steps (a) to (e). Ask. Then, in the above step (d), as a method of obtaining the estimated carbon concentration [C] cal, t in the molten steel in the latter half of the decarburization treatment, the carbon concentration [C] on site is calculated by the carbon concentration estimation formula B as described above. By setting the initial carbon concentration [C] to 0 and further substituting the specifications of the degassing device to be used and the vacuum decarburization processing operating conditions into the carbon concentration estimation formula B, a function H (t) of the processing time t is obtained. Ask.
【0020】但し、上記工程(a)〜(e)は次の通り
である。 工程(a):真空脱炭処理中の溶鋼の炭素濃度を推定す
る式を、真空脱炭モデル、及び真空脱炭処理系全体にお
ける炭素の物質収支式を用い、下記(3)式に示す未定
係数を含まない関数Fi と、下記(4)式に示す未定係
数のみからなる関数Gj とからなり、且つ推定しようと
する溶鋼の炭素濃度を因子として含む関数式である
(5)式に示す形で構成する。However, the above steps (a) to (e) are as follows. Step (a): The equation for estimating the carbon concentration of the molten steel during the vacuum decarburization treatment is determined using the vacuum decarburization model and the mass balance equation of carbon in the entire vacuum decarburization treatment system, and is determined as shown in the following equation (3). Expression (5), which is a function expression including a function F i not including a coefficient and a function G j including only an undetermined coefficient shown in the following expression (4) and including the carbon concentration of the molten steel to be estimated as a factor: Configure in the form shown.
【0021】工程(b):(3)式に、溶鋼の炭素濃度
を推定しようとするヒートを処理する真空脱ガス設備と
同一設備で過去に行なわれた、真空脱炭処理の複数のヒ
ートにおける操業条件、並びに溶鋼の成分組成、脱ガス
槽からの排ガスの成分組成及び排ガス流量の測定値を代
入して、未定係数を含まない関数Fi の値Fi ’(但
し、i=2,3,・・・,m)を算出する。Step (b): In the equation (3), a plurality of heats of the vacuum decarburization process which have been performed in the past with the same equipment as the vacuum degassing equipment for processing the heat for estimating the carbon concentration of the molten steel. By substituting the operating conditions, the composition of the molten steel, the composition of the exhaust gas from the degassing tank, and the measured value of the exhaust gas flow rate, the value F i ′ of the function F i not including the undetermined coefficient (where i = 2, 3 ,..., M) are calculated.
【0022】工程(c):上記工程(b)で求められた
関数Fi の値Fi ’(但し、i=2,3,・・・,m)
を、関数式(5)式に代入して、未定係数のみからなる
関数Gj の値Gj ’(但し、j=1,2,3,・・・,
n)を決定する。Step (c): The value F i ′ of the function F i obtained in the above step (b) (where i = 2, 3,..., M)
Is substituted into the function formula (5), and the value G j ′ of the function G j consisting of only undetermined coefficients (where j = 1, 2, 3,...,
Determine n).
【0023】工程(d):上記工程(b)で求められた
関数値Fi ’(但し、i=2,3,・・・,m)及び上
記工程(c)で決定された値Gj ’(但し、j=1,
2,3,・・・,n)を、関数式(5)式に代入するこ
とにより、推定しようとするヒートの溶鋼の炭素濃度を
従属変数とし、真空脱炭操業条件、並びに溶鋼の炭素を
除く成分組成、脱ガス槽からの排ガスの成分組成及び排
ガス流量の測定値を独立変数とする関数式(5’)式を
決定する。Step (d): The function value F i ′ (i = 2, 3,..., M) obtained in the above step (b) and the value G j determined in the above step (c) '(However, j = 1,
, N) into the function formula (5), the carbon concentration of the molten steel of the heat to be estimated is set as a dependent variable, and the vacuum decarburization operation conditions and the carbon of the molten steel are determined. A function formula (5 ′) is determined in which the measured values of the component composition to be removed, the component composition of the exhaust gas from the degassing tank, and the flow rate of the exhaust gas are independent variables.
【0024】工程(e):上記工程(d)で決定された
関数式(5’)式に基づき、溶鋼の炭素濃度を推定しよ
うとするヒートの、真空脱炭操業条件、並びに溶鋼の炭
素を除く成分組成、脱ガス槽からの排ガスの成分組成及
び排ガス流量の測定値を用いて当該ヒートの真空脱炭処
理中の溶鋼の炭素濃度〔C〕cal,br(但し、r=1,
2,・・・,s)を推定する。Step (e): The vacuum decarburization operation conditions of the heat for estimating the carbon concentration of the molten steel and the carbon of the molten steel are determined based on the function equation (5 ′) determined in the above step (d). The carbon composition of the molten steel during the vacuum decarburization treatment of the heat [C] cal, br (where r = 1, using the measured values of the composition of the components removed, the composition of the exhaust gas from the degassing tank, and the flow rate of the exhaust gas)
2,..., S).
【0025】ここで、 Fi =fi (Gc ,〔C〕,〔O〕,P,GAr,T,d,S)----(3) (i=1、2、・・・、m) Gj =gj (βk ) ------(4) (j=1、2、・・・、n)、(k=1、2、・・・、n) 但し、m≧n、Gc :排ガス中炭素量(t/min)、
〔C〕:溶鋼の炭素濃度(wt.%)、〔O〕:溶鋼の酸素
濃度(wt.%)、P:真空槽内圧力(atm)、GAr:溶
鋼環流用アルゴンガス流量(Nm3 /min)、T:溶
鋼温度(K)、d :浸漬管径(m)、S:下部槽断面
積(m2 )、βk :未定係数 F1 =G1 F2 +G2 F3 +・・・+Gj Fi +・・・ --------(5) F1 =G1'F2 ’+G2'F3 ’+・・・+Gj ’Fi +・・・ --------(5’) (i=1、2、・・・、m) (j=1、2、・・・、n) なお、(5’)式の導出、及び推定炭素濃度〔C〕
cal,brの導出等は、各種データの事前インプット及びオ
ンサイトでの伝送によるインプットにより、計算機で行
なう。Here, F i = f i (G c , [C], [O], P, G Ar , T, d, S) --- (3) (i = 1, 2,...) .., M) G j = g j (β k ) (4) (j = 1, 2,..., N), (k = 1, 2,..., N) , M ≧ n, G c : carbon content in exhaust gas (t / min),
[C]: Carbon concentration of molten steel (wt.%), [O]: Oxygen concentration of molten steel (wt.%), P: Vacuum tank pressure (atm), G Ar : Argon gas flow rate for molten steel reflux (Nm 3 / Min), T: molten steel temperature (K), d: immersion pipe diameter (m), S: lower tank cross-sectional area (m 2 ), β k : undetermined coefficient F 1 = G 1 F 2 + G 2 F 3 + · .. + G j F i +... --- (5) F 1 = G 1 'F 2 ' + G 2 'F 3 ' + ... + G j 'F i + ...- ------- (5 ') (i = 1, 2,..., M) (j = 1, 2,..., N) In addition, derivation of equation (5') and estimation of carbon Concentration [C]
Derivation of cal, br and the like are performed by a computer by prior input of various data and input by on-site transmission.
【0026】[0026]
【発明の実施の形態】次に、この発明の溶鋼炭素濃度の
制御方法を図面を参照しながら説明する。 〔1〕設備フロー 図1は、この発明の方法により溶鋼を真空脱炭処理し、
終点の炭素濃度を極低炭素濃度域で目標値に的中させる
ときに使用する、RH真空脱ガス設備の一例を示す概略
縦断面図である。同図において、1は取鍋、2、2’及
び2”は溶鋼、3は真空槽、4は上昇管、5は下降管で
あり、上昇管4及び下降管5が取鍋1内の溶鋼2中に浸
漬されている。真空槽3は排気管6を通して真空排気装
置7により排気され、槽内圧力が低下する。槽内圧力に
応じて槽内の溶鋼2”高さのレベルが上昇する。一方、
上昇管4内の溶鋼2’に溶鋼環流用のArガス9をAr
ガス供給管8から吹き込むと、取鍋1内の溶鋼2は、上
昇管4を通って上昇し、真空槽3内に入り、真空雰囲気
に曝される。槽内の溶鋼2”は下降管5を通って下降
し、取鍋1内へ流入する。こうして、取鍋1内の溶鋼2
は、上昇管4、真空槽3、下降管5、次いで取鍋1への
順で環流する。溶鋼2の真空脱炭処理工程においては、
溶鋼2”が真空雰囲気に曝されることにより、溶鋼中の
溶解酸素原子と炭素原子との反応により、CO及びCO
2 が生成し、脱炭が進行する。Next, a method for controlling the carbon concentration of molten steel according to the present invention will be described with reference to the drawings. [1] Equipment flow FIG. 1 shows a process of vacuum decarburization of molten steel by the method of the present invention,
It is a schematic longitudinal cross-sectional view which shows an example of RH vacuum degassing equipment used when the end point carbon concentration hits a target value in an extremely low carbon concentration region. In the figure, 1 is a ladle, 2 'and 2 "are molten steel, 3 is a vacuum tank, 4 is an ascending pipe, 5 is a descending pipe, and the ascending pipe 4 and the descending pipe 5 are molten steel in the ladle 1. The vacuum tank 3 is evacuated by a vacuum exhaust device 7 through an exhaust pipe 6, and the pressure in the tank decreases, and the level of the molten steel 2 ″ in the tank increases according to the pressure in the tank. . on the other hand,
Ar gas 9 for circulating molten steel is applied to molten steel 2 ′ in riser 4 by Ar.
When blown from the gas supply pipe 8, the molten steel 2 in the ladle 1 rises through the riser pipe 4, enters the vacuum chamber 3, and is exposed to a vacuum atmosphere. The molten steel 2 ″ in the tank descends through the downcomer pipe 5 and flows into the ladle 1. Thus, the molten steel 2 in the ladle 1
Circulates in the order of riser 4, vacuum vessel 3, descender 5 and ladle 1. In the vacuum decarburization process of the molten steel 2,
When the molten steel 2 ″ is exposed to a vacuum atmosphere, CO and CO are generated by a reaction between dissolved oxygen atoms and carbon atoms in the molten steel.
2 is generated and decarburization proceeds.
【0027】一方、排気管6の出口には、排ガス分析計
10が取り付けられ、これに連通して排ガス取出し管が
設けられており、排ガス分析計10により真空槽3から
排出される排ガス11の成分組成分析及び排ガス流量を
計測する。排ガス分析計10としては、赤外線分析計及
び質量分析計があげられるが、質量分析計の方が測定対
象雰囲気の圧力範囲が広く、分析速度及び精度がすぐれ
ており望ましい。その測定値は排ガス分析計10から演
算・制御装置12に伝送される。演算制御装置12は、
真空脱炭処理中の溶鋼の炭素濃度を推定し、推定値をも
とに操業条件及び/又は残された真空脱炭処理時間を制
御するためのものであり、演算部と制御部とからなる。
演算部では、炭素濃度推定の所定の演算式と入力された
データとにより溶鋼の炭素濃度を算出する。算出された
炭素濃度に基づき、極低炭素濃度域への入口時期を判断
し、極低炭素濃度域での所定の炭素濃度推定式に各種デ
ータを代入して炭素濃度を推定し、この推定値が目標炭
素濃度に一致するように操業条件及び/又は残された真
空脱炭処理時間を調節し、終点炭素濃度を制御する。On the other hand, an exhaust gas analyzer 10 is attached to the outlet of the exhaust pipe 6, and an exhaust gas take-out pipe is provided in communication with the exhaust gas analyzer 10. The exhaust gas analyzer 10 controls the exhaust gas 11 discharged from the vacuum chamber 3 by the exhaust gas analyzer 10. Component composition analysis and measurement of exhaust gas flow rate. Examples of the exhaust gas analyzer 10 include an infrared analyzer and a mass spectrometer. The mass spectrometer is preferable because the pressure range of the atmosphere to be measured is wider and the analysis speed and accuracy are better. The measured value is transmitted from the exhaust gas analyzer 10 to the arithmetic and control unit 12. The arithmetic and control unit 12 includes:
It is for estimating the carbon concentration of the molten steel during the vacuum decarburization process, and for controlling the operating conditions and / or the remaining vacuum decarburization process time based on the estimated value, and includes an arithmetic unit and a control unit. .
The calculation unit calculates the carbon concentration of the molten steel based on a predetermined calculation expression for estimating the carbon concentration and the input data. Based on the calculated carbon concentration, the timing of entry into the extremely low carbon concentration region is determined, and various data are substituted into a predetermined carbon concentration estimation formula in the extremely low carbon concentration region to estimate the carbon concentration. Is adjusted to match the target carbon concentration by controlling the operating conditions and / or the remaining vacuum decarburization processing time to control the end-point carbon concentration.
【0028】〔2〕炭素濃度の制御方法 RH脱ガス設備による溶鋼の真空脱炭処理時の炭素濃度
の制御は、次のようにして行なう。真空脱炭による溶鋼
中炭素の除去は、炭素濃度域により脱炭の律速段階が異
なる。従って、炭素濃度の推定に使用する脱炭モデル
は、炭素濃度領域に適した式を用いる。真空脱炭処理期
間の処理前期における炭素濃度が比較的高い時期には、
真空槽3で真空脱炭処理された後、取鍋に環流されてき
た既脱炭溶鋼と未脱炭溶鋼との混合律速が脱炭の律速で
あり、これに対して極低炭素濃度域では、C+O=CO
の反応律速である。そこで、先ず、真空脱炭処理の経過
時間帯を処理前期、処理中間時点、及び処理後期に分け
る。[2] Method of Controlling Carbon Concentration Control of carbon concentration during vacuum decarburization of molten steel by the RH degassing equipment is performed as follows. In the removal of carbon in molten steel by vacuum decarburization, the rate-determining stage of decarburization differs depending on the carbon concentration range. Therefore, the decarburization model used for estimating the carbon concentration uses an equation suitable for the carbon concentration region. When the carbon concentration is relatively high in the first half of the vacuum decarburization period,
After being subjected to vacuum decarburization treatment in the vacuum chamber 3, the mixing control of the decarburized molten steel and the undecarburized molten steel that has been recirculated to the ladle is the rate of decarburization, whereas in the extremely low carbon concentration region, , C + O = CO
The reaction is rate-limiting. Therefore, first, the elapsed time period of the vacuum decarburization process is divided into the first half of the treatment, the middle of the treatment, and the second half of the treatment.
【0029】はじめの低炭素濃度域においては、混合律
速段階の所定の脱炭モデルに基づき、これと真空脱炭処
理の系全体における炭素の物質収支式とを組み合わせ、
更に上述したように所定のデータを用いて決定した上記
関数式(5’)式:F1 =G 1'F2 ’+G2'F3 ’+・
・・+Gj ’Fi ’+・・・により、所定時間tにおけ
る溶鋼の炭素濃度〔C〕cal,brを推定する。こうして推
定された炭素濃度に基づき、低炭素濃度域から極低炭素
濃度域に入る時点である処理中間時点を決定し、次い
で、極低炭素濃度域においては、反応律速段階の所定の
脱炭モデルに基づき、上述したように所定のデータを用
いて決定した上記炭素濃度推定式の(1)式:〔C〕
cal,t =H(t)により、溶鋼の炭素濃度を時間の関数
として求め、これに基づき終点炭素濃度を制御する。In the first low carbon concentration region, the mixing law
Based on the predetermined decarburization model at the high speed stage,
Combined with the mass balance equation of carbon in the whole science system,
Further, the above determined using predetermined data as described above
Function formula (5 ') formula: F1= G 1'FTwo'+ GTwo'FThree’+
.. + Gj'Fi'+ ... at a given time t
Concentration of molten steel [C]cal, brIs estimated. In this way
Based on the specified carbon concentration,
Determine the processing intermediate time, which is the time to enter the density range, and then
In the extremely low carbon concentration region,
Based on the decarburization model, use the specified data as described above.
Equation (1) of the carbon concentration estimation equation determined above: [C]
cal, t= H (t) gives the carbon concentration of molten steel as a function of time
And the end-point carbon concentration is controlled based on this.
【0030】〔3〕現実の脱炭曲線と脱炭推定曲線 以下、図を参照しながら終点炭素濃度の制御方法を説明
する。図2は、本発明の方法による、真空脱炭処理中の
溶鋼炭素濃度を終点目標値に制御する方法を説明する模
式図である。同図において、実線は、溶鋼の現実の脱炭
曲線を表わし、破線は、脱炭モデルに基づく脱炭推定曲
線を表わす。例えば、終点目標炭素濃度を30ppm以
下とする場合を考える。この場合、処理中間時点は、推
定炭素濃度が45〜55ppmの範囲内になった時点を
基準に定める。従って、関数式(5’)式により推定炭
素濃度〔C〕cal,br(但し、rは炭素濃度の測定回数を
表わす添字で、r=1,2,・・・,s)を所定時間間
隔で経時的に求め、s回目の推定炭素濃度〔C〕cal,bs
が上記範囲内に入ったら、その時点t=−ts の後速や
かに取鍋の溶鋼試料を採取し(採取した時点t=
t0 )、炭素濃度を迅速に分析する。この「オンサイト
迅速分析」は、現時点での現実の炭素濃度を、迅速に一
層精度よく把握するために、最も信頼性の高い分析方法
で行なう。このように、炭素濃度を二段階で求めること
により初期炭素濃度を正確に求め、極低炭素域での脱炭
推定曲線を現実の脱炭曲線に近づける。上記取鍋の溶鋼
試料採取時点t=t0 を、処理後期の真空脱炭処理開始
時点と定め、極低炭素濃度域での炭素濃度推定式(1)
式における初期t=0とする。そしてこの溶鋼の炭素濃
度分析値〔C〕on site を、(1)式の初期炭素濃度
〔C〕0 と定める。即ち、図2において、関数式
(1):〔C〕cal,t =H(t)により極低炭素域での
脱炭推定曲線が得られる。なお、図2において、 45≦〔C〕cal,bs≦55ppm、 −ts ≒0 である。また、溶鋼の炭素濃度分析は試料採取後、迅速
に(td 以内に)望ましくは2分以内に行なう(td <
2min)。[3] Actual Decarburization Curve and Decarburization Estimation Curve A method of controlling the end-point carbon concentration will be described below with reference to the drawings. FIG. 2 is a schematic diagram illustrating a method for controlling the concentration of carbon in molten steel during vacuum decarburization processing to an end point target value according to the method of the present invention. In the figure, the solid line represents the actual decarburization curve of the molten steel, and the dashed line represents the decarburization estimation curve based on the decarburization model. For example, consider a case where the end point target carbon concentration is 30 ppm or less. In this case, the processing intermediate time point is determined based on the time point when the estimated carbon concentration falls within the range of 45 to 55 ppm. Therefore, the estimated carbon concentration [C] cal, br (where r is a suffix representing the number of times the carbon concentration is measured and r = 1, 2,..., S) is calculated by the function formula (5 ′) at a predetermined time interval. S-th estimated carbon concentration [C] cal, bs
There Once in the above-mentioned range, the point in time t = after the -t s soon as the molten steel sample of the ladle were taken (at the time were taken t =
t 0 ), the carbon concentration is analyzed quickly. This “on-site rapid analysis” is performed with the most reliable analysis method in order to quickly and accurately grasp the actual carbon concentration at the present time. As described above, the initial carbon concentration is accurately obtained by obtaining the carbon concentration in two stages, and the decarburization estimation curve in the extremely low carbon region is approximated to the actual decarburization curve. The time t = t 0 at which the molten steel is sampled from the ladle is defined as the start time of the vacuum decarburization treatment in the latter half of the treatment, and the carbon concentration estimation formula (1) in the extremely low carbon concentration region
Let t = 0 in the equation. Then, the carbon concentration analysis value [C] on site of the molten steel is determined as the initial carbon concentration [C] 0 of the equation (1). That is, in FIG. 2, a decarburization estimation curve in an extremely low carbon region is obtained by the function formula (1): [C] cal, t = H (t). Incidentally, in FIG. 2, 45 ≦ [C] cal, bs ≦ 55 ppm, a -t s ≒ 0. Further, after the carbon concentration analysis of molten steel sampled (within t d) rapidly desirably performed within 2 minutes (t d <
2 min).
【0031】従って、終点炭素濃度〔C〕cal,f を終点
目標炭素濃度〔C〕a に一致させる方法に二通りある。 一つの方法は、真空脱炭処理をそのままの条件で継続
して、推定終点炭素濃度〔C〕cal,f が終点目標炭素濃
度〔C〕a に一致するときの時間t=tf を求め、それ
まで処理を継続する方法である。tf は、方程式:
〔C〕a =H(t)をtについて解けばよい。Therefore, there are two methods for matching the end point carbon concentration [C] cal, f to the end point target carbon concentration [C] a . One method is to continue the vacuum decarburization process under the same conditions and obtain a time t = t f when the estimated end-point carbon concentration [C] cal, f matches the end-point target carbon concentration [C] a , This is the method for continuing the processing until then. t f is the equation:
[C] a = H (t) may be solved for t.
【0032】他の方法は、真空脱炭処理終点時間を定
め、その時間に推定終点炭素濃度〔C〕cal,f が終点目
標炭素濃度〔C〕a となるように調整する方法である。
この場合は、溶鋼環流用アルゴンガス流量GArあるいは
真空槽内圧力Pを調整する。この調整は、方程式:
〔C〕a =H(tf )を溶鋼環流用アルゴンガス流量G
Arあるいは真空槽内圧力Pについて解けばよい。Another method is to determine the end point time of the vacuum decarburization treatment and adjust the estimated end point carbon concentration [C] cal, f to become the end point target carbon concentration [C] a at that time.
In this case, the argon gas flow rate G Ar for circulating molten steel or the pressure P in the vacuum chamber is adjusted. This adjustment involves the equation:
[C] a = H (t f ) is changed to the argon gas flow rate G for circulating molten steel.
What is necessary is just to solve for Ar or the pressure P in the vacuum chamber.
【0033】こうして、終点炭素濃度を制御し処理を完
了した場合、現実の溶鋼の炭素濃度は、図2からわかる
ように、実線で表された現実の脱炭曲線上の点
〔C〕a ’であり、目標値〔C〕a との差はΔ〔C〕と
なる。When the process is completed by controlling the end-point carbon concentration in this way, the actual carbon concentration of the molten steel is, as can be seen from FIG. 2, the point [C] a 'on the actual decarburization curve represented by the solid line. And the difference from the target value [C] a is Δ [C].
【0034】〔4〕脱炭推定曲線 〔4〕−1 低炭素域における脱炭推定式 低炭素域における脱炭推定の方法を、望ましい脱炭モデ
ルを用いて説明する。RH型真空脱炭プロセスにおける
脱炭反応は、真空槽内のみで進行し、浸漬管からの下降
流は瞬間均一混合であるとして、ある時刻において炭素
濃度〔C〕の取鍋内溶鋼が上昇管から吸い上げられて真
空槽内で反応後、炭素濃度〔C〕’となって再び取鍋に
戻ると考えた場合、炭素に関する系全体の物質収支は、
下記(6)及び(7)式で表わされる。[4] Decarburization Estimation Curve [4] -1 Decarburization Estimation Formula in Low Carbon Region A method for estimating decarburization in the low carbon region will be described using a desirable decarburization model. The decarburization reaction in the RH-type vacuum decarburization process proceeds only in the vacuum chamber, and it is assumed that the downflow from the immersion pipe is instantaneous uniform mixing. If it is considered that after being sucked up and reacting in the vacuum chamber and returning to the ladle again with the carbon concentration [C] ', the mass balance of the entire system relating to carbon is:
It is expressed by the following equations (6) and (7).
【0035】 d〔C〕/dt=Q(〔C〕’−〔C〕)/W --------------(6) Q=114GAr 1/3 d4/3 {ln(1/P)}1/3 ------------(7) 但し、 〔C〕’:真空槽内通過後の溶鋼中炭素濃度(wt.%) 〔C〕 :溶鋼の炭素濃度 Q :溶鋼環流量(t/min) W :全溶鋼量(t) GAr :溶鋼環流用アルゴンガス流量(Nm3 /mi
n) d :浸漬管径(m) P :真空槽内圧力(atm) また、脱炭速度は、下記(8)式で表わされる。D [C] / dt = Q ([C] ′ − [C]) / W (6) Q = 114G Ar 1/3 d 4 / 3 {ln (1 / P)} 1/3 ------------ (7) where [C] ': carbon concentration in molten steel after passing through the vacuum chamber (wt.%) [ C]: Carbon concentration of molten steel Q: Molten steel ring flow rate (t / min) W: Total amount of molten steel (t) G Ar : Argon gas flow rate for molten steel recirculation (Nm 3 / mi)
n) d: diameter of immersion tube (m) P: pressure in vacuum chamber (atm) The decarburization rate is expressed by the following equation (8).
【0036】 d〔C〕/dt=β1 GC /W --------------------------(8) 但し、 GC :排ガス中炭素量(t/min) β1 :未定係数 (6)〜(8)式から、下記(9)式が得られる。D [C] / dt = β 1 G C / W --------------- (8) where G C : Carbon content in exhaust gas (t / min) β 1 : unknown coefficient From the equations (6) to (8), the following equation (9) is obtained.
【0037】 β1 GC =Q(〔C〕’−〔C〕)--------------------------(9) また、真空槽内溶鋼からの脱炭反応を下記(10)式の
モデルで表わした。 〔C〕’=P/K〔O〕 +{K〔O〕/β2 +K〔O〕/(K〔C〕〔O〕−P)}-1 --------------(10) ここで、K=exp(2671/T+4.612) --------------(11) 但し、 K :C−O反応の平衡定数 〔O〕:溶鋼の酸素濃度 T :溶鋼温度(K) β2 :未定係数 (9)及び(10)式から、下記(11)式が得られ
る。Β 1 G C = Q ([C] ′ − [C]) --------------- (9) The decarburization reaction from the molten steel in the vacuum chamber was represented by the following equation (10). [C] '= P / K [O] + {K [O] / β 2 + K [O] / (K [C] [O] -P)} -1 ----------- --- (10) Here, K = exp (2671 / T + 4.612) -------------- (11) where, K: equilibrium constant of CO reaction [O] : Oxygen concentration of molten steel T: molten steel temperature (K) β 2 : undetermined coefficient From the equations (9) and (10), the following equation (11) is obtained.
【0038】 β1 GC =−Q×〔(〔C〕−P/K〔O〕)2 / {(〔C〕−P/K〔O〕)+β2 /K〔O〕)}〕 --------------(12) また、排ガス中炭素量は、下記(13)で表わされる。Β 1 G C = −Q × [([C] −P / K [O]) 2 / {([C] −P / K [O]) + β 2 / K [O])}] − ------------- (12) Further, the carbon content in the exhaust gas is represented by the following (13).
【0039】 GC =12GAr(〔CO〕+〔CO2 〕)/22400〔Ar〕 --------------(13) 但し、 〔CO〕、〔CO2 〕、〔Ar〕:排ガス中の各ガスの
vol.% そこで、(13)式を(12)式に代入すると、(1
4)式が得られる。G C = 12G Ar ([CO] + [CO 2 ]) / 22400 [Ar] -------------- (13) However, [CO], [CO 2 ] , [Ar]: of each gas in the exhaust gas
vol.% Then, substituting equation (13) into equation (12) gives (1
4) Equation is obtained.
【0040】 12β1 GAr(〔CO〕+〔CO2 〕)/22400〔Ar〕 =−Q×〔(〔C〕−P/K〔O〕)2 / {(〔C〕−P/K〔O〕) +β2 /K〔O〕)}〕 --------------(14) この発明では、(14)式を下記(15)式の関数式に
変形した。12β 1 G Ar ([CO] + [CO 2 ]) / 22400 [Ar] = − Q × [([C] −P / K [O]) 2 / {([C] −P / K [O]) + β 2 / K [O])}] -------------- (14) In the present invention, equation (14) is transformed into the following equation (15). did.
【0041】 F1 =G1 F2 +G2 F3 ------------------------------(15) ここで、F1 、F2 、F3 は、以下に示す未定係数を含
まない関数である。 F1 =−Q×(〔C〕−P/K〔O〕)2 F2 =12GAr(〔CO〕+〔CO2 〕)(〔C〕−P/K〔O〕)/ 22400〔Ar〕 F3 =12GAr(〔CO〕+〔CO2 〕)/22400〔Ar〕K〔O〕 また、G1 =β1 G2 =β1 β2 こうして、脱炭推定式(15)が得られた。F 1 = G 1 F 2 + G 2 F 3 (15) where: F 1 , F 2 , and F 3 are functions that do not include the undetermined coefficients described below. F 1 = −Q × ([C] −P / K [O]) 2 F 2 = 12 G Ar ([CO] + [CO 2 ]) ([C] −P / K [O]) / 22400 [Ar F 3 = 12 G Ar ([CO] + [CO 2 ]) / 22400 [Ar] K [O] G 1 = β 1 G 2 = β 1 β 2 Thus, the decarburization estimation formula (15) is obtained. Was done.
【0042】上記(15)式の脱炭推定式における関数
F1 、F2 及びF3 の値を過去の3ヒート以上での測定
値を用いて求めた後、(15)式から統計的演算によっ
て、G1 及びG2 を算出し、こうして求めたG1 及びG
2 と、炭素濃度を推定しようとするヒートの溶鋼の溶存
酸素含有率、真空槽内圧力、溶鋼環流用Arガス流量、
全溶鋼量、溶鋼温度及び排ガス中のガス組成を、(1
5)式に代入することにより溶鋼の炭素濃度〔C〕を推
定することができる。After calculating the values of the functions F 1 , F 2 and F 3 in the decarburization estimation formula of the above formula (15) using the measured values in the past three heats or more, the statistical calculation is performed from the formula (15). , G 1 and G 2 are calculated, and G 1 and G thus obtained are calculated.
2, and the dissolved oxygen content of the molten steel of the heat for which the carbon concentration is to be estimated, the pressure in the vacuum chamber, the Ar gas flow rate for the molten steel reflux,
The total amount of molten steel, molten steel temperature and gas composition in exhaust gas
By substituting into the equation (5), the carbon concentration [C] of the molten steel can be estimated.
【0043】以上においては、脱炭反応モデルとして上
記(10)式を用いたが、他の適切な脱炭反応モデルを
用いて炭素濃度を推定してもよい。 〔4〕−2 極低炭素域における脱炭推定式 極低炭素域における脱炭推定の方法を、C+O→COの
反応律速を前提とした脱炭モデルを用いて説明する。脱
炭モデルとしては、常用の下記(16)式を用い、(1
7)〜(19)を得る。In the above description, the above equation (10) was used as a decarburization reaction model, but the carbon concentration may be estimated using another appropriate decarburization reaction model. [4] -2 Formula for Estimating Decarburization in Extremely Low Carbon Region A method for estimating decarburization in the extremely low carbon region will be described using a decarburization model on the assumption that the reaction rate is limited to C + O → CO. As a decarburization model, the following general formula (16) was used, and (1)
7) to (19) are obtained.
【0044】 〔C〕=〔C〕0 exp(−KC t) --------------------(16) ここで、 KC =(Q/W){ak /(Q/ρ+ak )} ----------(17) Q=114 G1/3 d4/3 {ln(760 /P)}1/3 S ------(18) ak =exp(−15.3)G2/3 〔C〕1.76 〔O〕0.75 ×{ln(760 /P)}2/3 S ----------(19) 但し、 〔C〕 :溶鋼中炭素濃度 〔C〕0 :処理前炭素濃度 KC :見かけの脱炭速度定数 t :脱炭時間 Q :溶鋼環流量 ak :容量係数 W :溶鋼量 ρ :溶鋼密度 G :溶鋼環流用ガス流量 d :浸漬管径 〔O〕 :溶鋼酸素濃度 P :真空槽内圧力 S :真空槽内反応界面積 上記(16)〜(19)式に基づき、過去の真空脱炭処
理ヒートにおける測定データ、当該処理ヒートで得られ
ている溶鋼酸素濃度〔O〕、及び当該ヒートの真空槽内
圧力Pその他の操業条件を用いて、溶鋼環流量Q及び容
量係数ak を求め、次いでKC を求めることにより、
(16)式により溶鋼中炭素濃度〔C〕の推定式が求め
られる。[C] = [C] 0 exp (−K C t) -------------------- (16) Here, K C = (Q / W) {ak / (Q / ρ + ak)} ---------- (17) Q = 114 G 1/3 d 4/3 {ln (760 / P)} 1/3 S --- --- (18) ak = exp (-15.3) G 2/3 [C] 1.76 [O] 0.75 × {ln (760 / P)} 2/3 S ---------- (19 However, [C]: carbon concentration in molten steel [C] 0 : carbon concentration before treatment K C : apparent decarburization rate constant t: decarburization time Q: molten steel ring flow rate ak: capacity coefficient W: molten steel amount ρ: molten steel Density G: Flow rate of gas for recirculating molten steel d: Diameter of immersion pipe [O]: Oxygen concentration of molten steel P: Pressure in vacuum chamber S: Reaction area in vacuum chamber Based on the above formulas (16) to (19), past vacuum degassing The measured data in the coal heat, the oxygen concentration [O] of the molten steel obtained in the heat, and the trueness of the heat Using intracisternal pressure P and other operating conditions, determine the molten steel ring flow Q and the capacity coefficient ak, followed by obtaining a K C,
The equation for estimating the carbon concentration [C] in the molten steel is obtained from equation (16).
【0045】[0045]
【実施例】次に、この発明を、実施例によって更に説明
する。上述した実施の形態で説明した方法に基づき真空
脱炭の終点炭素濃度を制御した。転炉から取鍋に出鋼さ
れた低炭素溶鋼を、溶鋼処理容量300t/取鍋のRH
真空脱ガス装置を用い、溶鋼炭素濃度30ppm以下の
極低炭素鋼を溶製した。脱炭処理前の炭素濃度は200
〜800ppm、酸素濃度は300〜600ppm、そ
して溶鋼温度は1620〜1640℃である。真空脱炭
処理等の主な条件は次の通りである。Next, the present invention will be further described with reference to examples. The end-point carbon concentration of vacuum decarburization was controlled based on the method described in the above embodiment. The low-carbon molten steel discharged from the converter to the ladle is subjected to a molten steel processing capacity of 300 t / ladle RH.
Using a vacuum degassing apparatus, extremely low carbon steel having a carbon concentration of molten steel of 30 ppm or less was produced. Carbon concentration before decarburization treatment is 200
800800 ppm, oxygen concentration 300-600 ppm, and molten steel temperature 1620-1640 ° C. The main conditions such as vacuum decarburization treatment are as follows.
【0046】真空槽内圧力 P:1(Torr) 溶鋼環流用アルゴンガス流量 GAr:3〜4(Nm3 /
min) 浸漬管径 d:0.65(m) 真空槽内部下部断面積 S:4.64(m2 ) なお、真空脱炭処理中の排ガス情報を得るため、排ガス
分析計として質量分析計を用い、真空槽の天蓋から排ガ
スを取り出して分析した。使用した質量分析計の分析精
度は0.1%、分析可能真空度は1〜760Torr、
そして排ガスの分析結果判明所要時間は20秒である。Pressure in vacuum chamber P: 1 (Torr) Argon gas flow rate for circulating molten steel G Ar : 3 to 4 (Nm 3 /
min) Immersion tube diameter d: 0.65 (m) Lower cross-sectional area inside the vacuum chamber S: 4.64 (m 2 ) In order to obtain information on the exhaust gas during the vacuum decarburization process, a mass spectrometer was used as the exhaust gas analyzer. The exhaust gas was taken out from the canopy of the vacuum chamber and analyzed. The analysis accuracy of the used mass spectrometer is 0.1%, the analyzable vacuum degree is 1 to 760 Torr,
The time required for analyzing the exhaust gas is 20 seconds.
【0047】上記条件を含む本発明の範囲内の方法によ
り真空脱炭処理(実施例)を行なった。一方、比較例の
真空脱炭処理として、本発明における処理中間時点での
取鍋内溶鋼の迅速炭素分析値〔C〕on site の測定を行
なわずに、低炭素域での推定炭素濃度を極低炭素域での
初期炭素濃度として採用して極低炭素域での脱炭推定曲
線を求め、これに基づき炭素濃度を終点目標炭素濃度に
制御した場合を行なった。終点炭素濃度の制御方法はい
ずれも、脱炭処理時間を15分の一定値とし、終点炭素
濃度を30ppm以下にする方法を試験した。Vacuum decarburization treatment (Example) was performed by a method within the scope of the present invention including the above conditions. On the other hand, as the vacuum decarburization treatment of the comparative example, the estimated carbon concentration in the low carbon region was extremely measured without measuring the rapid carbon analysis value [C] on site of the molten steel in the ladle at the intermediate point of the treatment in the present invention. A decarburization estimation curve in an extremely low carbon region was obtained by adopting it as an initial carbon concentration in a low carbon region, and based on this, the case where the carbon concentration was controlled to an end-point target carbon concentration was performed. Regarding the control method of the end point carbon concentration, a method of setting the decarburization treatment time to a constant value of 15 minutes and setting the end point carbon concentration to 30 ppm or less was tested.
【0048】図3及び4に、それぞれ実施例(n=30
チャージ)、及び比較例(n=30チャージ)における
脱炭推定曲線群を示す。但し、実施例及び比較例共に脱
炭時間15分での〔C〕実分析値が18ppmであった
チャージのみについての脱炭推定曲線であり、実施例及
び比較例のそれぞれにおいて、脱炭推定速度が最も遅か
ったものと最も速かったものとのグラフのみを示し、中
間の脱炭推定速度のもののグラフはそれらの中間に入る
が表記を省略した。FIGS. 3 and 4 show examples (n = 30), respectively.
5 shows a group of estimated decarburization curves in Comparative Example (n = 30 charges) and Comparative Example (n = 30 charges). However, in each of the examples and comparative examples, [C] is a decarburization estimation curve only for the charge whose actual analysis value was 18 ppm at a decarburization time of 15 minutes. Shows only the graphs of the slowest and the fastest, and the graphs of intermediate decarburization estimated speeds fall in between them, but the notation is omitted.
【0049】図3及び4から明らかなように、真空脱炭
処理時間を15分で一定として終点炭素濃度を制御した
場合、比較例においては、終点炭素濃度の平均値は2
0.5ppmで、推定精度は±5ppmであった。これ
に対して、実施例では、終点炭素濃度の平均値は18.
5ppmで、推定精度は±3ppmであった。このよう
に、本発明によれば終点炭素の推定濃度が実分析値に一
層近づくと共に、そのばらつきも小さくなり向上した。
上記脱炭試験では脱炭時間を15分の一定値として終点
炭素濃度を推定した。これに対して、終点炭素濃度の目
標値をある一定値に決めて終点炭素濃度を推定し、その
推定値が目標値に到達するのに要する脱炭時間の最小値
及び最大値、並びにその差を、上記実施例及び比較例の
試験結果を用い、一例を推定する。As apparent from FIGS. 3 and 4, when the end point carbon concentration is controlled while the vacuum decarburization treatment time is fixed at 15 minutes, the average value of the end point carbon concentration is 2 in the comparative example.
At 0.5 ppm, the estimation accuracy was ± 5 ppm. In contrast, in the example, the average value of the end point carbon concentration is 18.
At 5 ppm, the estimation accuracy was ± 3 ppm. As described above, according to the present invention, the estimated concentration of the end point carbon became closer to the actual analysis value, and the variation thereof was reduced and improved.
In the above decarburization test, the end point carbon concentration was estimated by setting the decarburization time to a constant value of 15 minutes. On the other hand, the target value of the end-point carbon concentration is determined to be a certain value, the end-point carbon concentration is estimated, and the minimum and maximum values of the decarburization time required for the estimated value to reach the target value, and the difference therebetween Is estimated using the test results of the above Examples and Comparative Examples.
【0050】終点炭素濃度の目標値は、比較例の図4に
おいて、脱炭時間15分での推定炭素濃度の最大値であ
る25.5ppmに設定する。比較例の図4において、
推定炭素濃度25.5ppmにおける二つの脱炭曲線と
の交点から、炭素濃度の推定値が25.5ppmに到達
する脱炭最短時間は点X1 における9分48秒であり、
同じく脱炭最長時間は点X2 における15分00秒であ
る。そしてその差は5分12秒となる。これに対して、
実施例の図3においても同様に推定すると、推定炭素濃
度25.5ppmにおける二つの脱炭曲線との交点か
ら、炭素濃度の推定値が25.5ppmに到達する脱炭
最短時間は点X3 における9分05秒であり、同じく脱
炭最長時間は点X4 における10分27秒である。そし
てその差は1分22秒となる。実施例と比較例とにおけ
る推定値を比較すると、目標炭素濃度を設定した脱炭処
理の場合にも、本発明によれば比較例によるよりも脱炭
所要時間が安定して著しく短縮されることがわかる。The target value of the end point carbon concentration is set to 25.5 ppm, which is the maximum value of the estimated carbon concentration at a decarburization time of 15 minutes in FIG. 4 of the comparative example. In FIG. 4 of the comparative example,
From the intersection of the two decarburization curve in the estimation carbon concentration 25.5 ppm, decarburization minimum time estimate of the carbon concentration reaches 25.5 ppm is 9 minutes 48 seconds at the point X 1,
Also decarburization longest time is 15 minutes 00 seconds at the point X 2. And the difference is 5 minutes and 12 seconds. On the contrary,
Even when it estimated similarly in FIG. 3 embodiment, the intersection of the two decarburization curve in the estimation carbon concentration 25.5 ppm, at point X 3 decarburization shortest time to estimate the carbon concentration reaches 25.5 ppm a 9 minutes 05 seconds, is also decarburization maximum time of 10 minutes 27 seconds at the point X 4. The difference is 1 minute and 22 seconds. Comparing the estimated values in the example and the comparative example, it is found that, even in the case of the decarburization treatment with the target carbon concentration set, the decarburization time required according to the present invention is more stably reduced than in the comparative example. I understand.
【0051】[0051]
【発明の効果】以上述べたように、この発明によれば、
RH真空脱炭処理により溶鋼の終点炭素濃度を的確に目
標値に制御することができるので、炭素濃度を下げ過ぎ
たり、脱ガス時間を延長したりすることがなくなる。こ
うして、極低炭素溶鋼を効率的に溶製することができる
RH真空脱ガスによる溶鋼の炭素濃度の制御方法を提供
することができ、工業上有用な効果がもたらされる。As described above, according to the present invention,
Since the end-point carbon concentration of the molten steel can be accurately controlled to the target value by the RH vacuum decarburization treatment, the carbon concentration is not excessively lowered and the degassing time is not extended. In this way, it is possible to provide a method for controlling the carbon concentration of molten steel by RH vacuum degassing, which can efficiently produce extremely low carbon molten steel, and has an industrially useful effect.
【図1】この発明の方法に使用するRH真空脱ガス設備
例のフロー図である。FIG. 1 is a flow chart of an example of RH vacuum degassing equipment used in the method of the present invention.
【図2】本発明の方法による、真空脱炭処理中の溶鋼炭
素濃度を終点目標値に制御する方法の説明図である。。FIG. 2 is an explanatory diagram of a method for controlling the carbon concentration of molten steel during vacuum decarburization processing to a target end point value according to the method of the present invention. .
【図3】実施例による脱炭推定曲線群を示すグラフであ
る。FIG. 3 is a graph showing a decarburization estimation curve group according to an example.
【図4】比較例による脱炭推定曲線群を示すグラフであ
る。FIG. 4 is a graph showing a group of estimated decarburization curves according to a comparative example.
1 取鍋 2、2’、2” 溶鋼 3 真空槽 4 上昇管 5 下降管 6 排気管 7 真空排気装置 8 Arガス供給管 9 Arガス 10 排ガス分析計 11 排ガス 12 演算・制御装置 DESCRIPTION OF SYMBOLS 1 Ladle 2, 2 ', 2 "molten steel 3 Vacuum tank 4 Rise pipe 5 Down pipe 6 Exhaust pipe 7 Vacuum exhaust system 8 Ar gas supply pipe 9 Ar gas 10 Exhaust gas analyzer 11 Exhaust gas 12 Operation / control device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 廣久 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hirohisa Nakajima 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd.
Claims (2)
を真空脱炭処理しつつ前記溶鋼の炭素濃度を制御する方
法において、 下記(イ)〜(ニ)の工程により求められる下記(2)
式中の〔C〕cal,f で表わされる、真空脱炭処理の終了
時点における推定終点炭素濃度を、真空脱炭処理操業条
件の調整及び/又は真空脱炭処理時間の修正により、真
空脱炭処理の終了時点における終点目標炭素濃度〔C〕
a に近づけるように調節することを特徴とする、RH真
空脱ガス処理における溶鋼の炭素濃度の制御方法。 工程(イ):真空脱炭処理の開始から終了までの間での
中間時点における、処理中溶鋼の中間目標炭素濃度
〔C〕int,a を予め設定し、そして、当該真空脱炭処理
による溶鋼の一の脱炭モデルに基づき溶鋼中の炭素濃度
推定式Aを作成し、当該炭素濃度推定式Aにより、処理
時間の経過につれて1回または複数回、推定炭素濃度
〔C〕cal,br(但し、rは炭素濃度の測定回数を表わす
添字で、r=1,2,・・・,s)を算出し、第s回目
の当該推定炭素濃度〔C〕cal,bs及び前記中間目標炭素
濃度〔C〕int,a に基づき、脱炭処理前期の終了時点を
決定する。 工程(ロ):上記工程(イ)で決定された脱炭処理前期
の終了時点の直後を上記処理中間時点と定め、当該処理
中間時点において取鍋内から溶鋼の炭素分析用試料を採
取し、当該試料採取後迅速にその炭素濃度〔C〕
on site を測定する。 工程(ハ):上記工程(ロ)において溶鋼の炭素分析用
試料を採取した時点を、脱炭処理後期の真空脱炭処理開
始時点と定めると共に、この時点から真空脱炭処理終了
までを脱炭処理後期と定める。 工程(ニ):真空脱炭処理による溶鋼の他の脱炭モデル
に基づき上記脱炭処理後期における溶鋼中の炭素濃度推
定式Bを作成し、上記工程(ロ)で測定された炭素濃度
〔C〕on site を当該炭素濃度推定式Bの初期炭素濃度
〔C〕0 とし、上記炭素濃度推定式Bにより脱炭処理中
の推定炭素濃度〔C〕cal,t を、処理後期の脱炭時間t
の関数H(t)で表わし、こうして得られた下記(1)
式: 〔C〕cal,t =H(t) --------------------------(1) を用い、真空脱炭処理の終了時点の脱炭時間であるt=
tf における推定終点炭素濃度〔C〕cal,f を、下記
(2)式: 〔C〕cal,f =H(tf ) --------------------------(2) で求める。1. A method for controlling the carbon concentration of molten steel in a ladle while performing vacuum decarburization treatment on the molten steel in a ladle using an RH vacuum degassing apparatus, wherein the following (2) obtained by the following steps (a) to (d): )
The estimated end-point carbon concentration at the end of the vacuum decarburization process, represented by [C] cal, f in the equation, is calculated by adjusting the vacuum decarburization process operating conditions and / or correcting the vacuum decarburization process time. End point target carbon concentration at the end of processing [C]
a method for controlling the carbon concentration of molten steel in RH vacuum degassing, wherein the method is adjusted to approach a . Step (a): An intermediate target carbon concentration [C] int, a of the molten steel being processed at an intermediate point between the start and the end of the vacuum decarburization treatment is set in advance, and the molten steel by the vacuum decarburization treatment is set. Formula A for estimating the carbon concentration in molten steel is created based on one of the decarburization models described above, and the estimated carbon concentration [C] cal, br (where , R is a subscript representing the number of times of measuring the carbon concentration, and r = 1, 2,..., S) is calculated, and the estimated carbon concentration [C] cal, bs and the intermediate target carbon concentration [ C] The end point of the first half of the decarburization treatment is determined based on int, a . Step (b): Immediately after the end of the first half of the decarburization treatment determined in the above step (a), the treatment intermediate time is determined, and a carbon analysis sample of molten steel is collected from the ladle at the treatment intermediate time. Immediately after the sampling, the carbon concentration [C]
Measure on site . Step (c): The time at which the sample for carbon analysis of the molten steel was collected in the above step (b) is defined as the start time of the vacuum decarburization treatment in the latter half of the decarburization treatment, and decarburization is performed from this time to the end of the vacuum decarburization treatment. Determined as the late stage of processing. Step (d): Based on another decarburization model of the molten steel by the vacuum decarburization treatment, formula B for estimating the carbon concentration in the molten steel in the latter stage of the decarburization treatment is prepared, and the carbon concentration [C The on-site is assumed to be the initial carbon concentration [C] 0 of the carbon concentration estimation formula B, and the estimated carbon concentration [C] cal, t during the decarburization process is calculated by the above carbon concentration estimation formula B to obtain the decarburization time t in the latter stage of the treatment.
The function H (t) is represented by the following equation (1)
Formula: [C] cal, t = H (t) -------------------------- (1) The decarburization time at the end, t =
The estimated end point carbon concentration [C] cal, f at t f is calculated by the following equation (2): [C] cal, f = H (t f ) --------- Find in (2).
推定式Aを作成し、前記推定炭素濃度〔C〕cal,brを算
出し、そして第s回目の当該推定炭素濃度〔C〕cal,bs
を求める方法は、下記(a)〜(e)の工程により求
め、そして、 前記工程(ニ)において、脱炭処理後期における溶鋼中
の推定炭素濃度〔C〕 cal,t を求める方法は、前記炭素
濃度〔C〕on site を前記炭素濃度推定式Bの初期炭素
濃度〔C〕0 とし、且つ、前記脱ガス装置の諸元及び前
記真空脱炭処理操業条件を前記炭素濃度推定式Bに代入
することにより、処理時間tの関数H(t)として求め
ることを特徴とする、請求項1記載のRH真空脱ガス処
理における溶鋼の炭素濃度の制御方法。但し、前記工程
(a)〜(e)は次の通りである。 工程(a):真空脱炭処理中の溶鋼の炭素濃度を推定す
る式を、真空脱炭モデル、及び真空脱炭処理系全体にお
ける炭素の物質収支式を用い、下記(3)式に示す未定
係数を含まない関数Fi と、下記(4)式に示す未定係
数のみからなる関数Gj とからなり、且つ推定しようと
する溶鋼の炭素濃度を因子として含む関数式である
(5)式に示す形で構成し、 工程(b):(3)式に、溶鋼の炭素濃度を推定しよう
とするヒートを処理する真空脱ガス設備と同一設備で過
去に行なわれた、真空脱炭処理の複数のヒートにおける
操業条件、並びに溶鋼の成分組成、脱ガス槽からの排ガ
スの成分組成及び排ガス流量の測定値を代入して、未定
係数を含まない関数Fi の値Fi ’(但し、i=2,
3,・・・,m)を算出し、 工程(c):上記工程(b)で求められた関数Fi の値
Fi ’(但し、i=2,3,・・・,m)を、関数式
(5)式に代入して、未定係数のみからなる関数Gj の
値Gj ’(但し、j=1,2,3,・・・,n)を決定
し、 工程(d):上記工程(b)で求められた関数値Fi ’
(但し、i=2,3,・・・,m)及び上記工程(c)
で決定された値Gj ’(但し、j=1,2,3,・・
・,n)を、関数式(5)式に代入することにより、推
定しようとするヒートの溶鋼の炭素濃度を従属変数と
し、真空脱炭操業条件、並びに、溶鋼の炭素を除く成分
組成、脱ガス槽からの排ガスの成分組成及び排ガス流量
の測定値を独立変数とする関数式(5’)式を決定し、 工程(e):上記工程(d)で決定された関数式
(5’)式に基づき、溶鋼の炭素濃度を推定しようとす
るヒートの、真空脱炭操業条件、並びに溶鋼の炭素を除
く成分組成、脱ガス槽からの排ガスの成分組成及び排ガ
ス流量の測定値を用いて当該ヒートの真空脱炭処理中の
溶鋼の炭素濃度〔C〕cal,br(但し、r=1,2,・・
・,s)を推定する。ここで、 Fi =fi (Gc ,〔C〕,〔O〕,P,GAr,T,d,S)----(3) (i=1、2、・・・、m) Gj =gj (βk ) ------(4) (j=1、2、・・・、n)、(k=1、2、・・・、n) 但し、 m≧n Gc :排ガス中炭素量(t/min) 〔C〕:溶鋼の炭素濃度(wt.%) 〔O〕:溶鋼の酸素濃度(wt.%) P :真空槽内圧力(atm) GAr:溶鋼環流用アルゴンガス流量(Nm3 /min) T :溶鋼温度(K) d :浸漬管径(m) S :下部槽断面積(m2 ) βk :未定係数 F1 =G1 F2 +G2 F3 +・・・+Gj Fi +・・・ --------(5) F1 =G1'F2 ’+G2'F3 ’+・・・+Gj ’Fi ’+・・・ --------(5’) (i=1、2、・・・、m) (j=1、2、・・・、n)2. In the step (a), the carbon concentration
An estimation formula A is created, and the estimated carbon concentration [C]cal, brIs calculated
And the s-th estimated carbon concentration [C]cal, bs
Is determined by the following steps (a) to (e).
In the step (d), the molten steel in the late stage of the decarburization treatment
Estimated carbon concentration [C] cal, tThe method for determining
Concentration [C]on siteIs the initial carbon of the carbon concentration estimation formula B.
Concentration [C]0And the specifications and specifications of the degassing device
Substitute the vacuum decarburization operating conditions into the carbon concentration estimation formula B
To obtain a function H (t) of the processing time t.
The RH vacuum degassing process according to claim 1, wherein
Method of controlling the carbon concentration of molten steel in steelmaking. However, the above process
(A) to (e) are as follows. Step (a): Estimating the carbon concentration of molten steel during vacuum decarburization
Is applied to the vacuum decarburization model and the entire vacuum decarburization processing system.
Undetermined as shown in the following equation (3)
Function F without coefficientiAnd the undecided relation shown in the following equation (4)
Function G consisting only of numbersjAnd try to estimate
Is a functional expression containing the carbon concentration of molten steel as a factor
Step (b): Estimate the carbon concentration of the molten steel in equation (3).
The same equipment as the vacuum degassing equipment that processes heat
In several heats of vacuum decarburization
Operating conditions, composition of molten steel, exhaust gas from degassing tank
Substituting the measured values of the gas composition and exhaust gas flow rate,
Function F without coefficientiThe value of Fi’(Where i = 2,
3,..., M), and step (c): the function F obtained in the above step (b)iThe value of the
Fi′ (Where i = 2, 3,..., M) is
Substituting into equation (5), a function G consisting only of undetermined coefficientsjof
Value Gj’(Where j = 1, 2, 3,..., N)
Step (d): the function value F obtained in the above step (b)i’
(Where i = 2, 3,..., M) and the above step (c)
G determined byj’(Where j = 1, 2, 3,...
, N) by substituting it into function expression (5),
The dependent variable is the carbon concentration of the molten steel of the heat to be determined.
And vacuum decarburization operating conditions, and components excluding carbon in molten steel
Composition, composition of exhaust gas from degassing tank and exhaust gas flow rate
A function formula (5 ') is determined using the measured value of the above as an independent variable. Step (e): The function formula determined in the above step (d)
Attempts to estimate the carbon concentration of molten steel based on equation (5 ')
Heat, vacuum decarburization operating conditions and carbon in molten steel
Component composition, component composition of exhaust gas from degassing tank and exhaust gas
Using the measured flow rate during the vacuum decarburization of the heat
Carbon concentration of molten steel [C]cal, br(However, r = 1, 2, ...
, S). Where Fi= Fi(Gc, [C], [O], P, GAr, T, d, S) --- (3) (i = 1, 2,..., M) Gj= Gj(Βk) (4) (j = 1, 2,..., N), (k = 1, 2,..., N) where m ≧ n Gc: Carbon content in exhaust gas (t / min) [C]: Carbon concentration of molten steel (wt.%) [O]: Oxygen concentration of molten steel (wt.%) P: Pressure in vacuum chamber (atm) GAr: Argon gas flow rate for molten steel reflux (NmThree/ Min) T: Temperature of molten steel (K) d: Diameter of submerged pipe (m) S: Cross-sectional area of lower tank (m)Two) Βk: Undetermined coefficient F1= G1FTwo+ GTwoFThree+ ... + GjFi+ ・ ・ ・ -------- (5) F1= G1'FTwo'+ GTwo'FThree'+ ... + Gj'Fi'+ ... -------- (5') (i = 1, 2,..., M) (j = 1, 2,..., N)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34117197A JPH11172323A (en) | 1997-12-11 | 1997-12-11 | Method for controlling carbon concentration in rh vacuum degassing treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34117197A JPH11172323A (en) | 1997-12-11 | 1997-12-11 | Method for controlling carbon concentration in rh vacuum degassing treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11172323A true JPH11172323A (en) | 1999-06-29 |
Family
ID=18343900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34117197A Pending JPH11172323A (en) | 1997-12-11 | 1997-12-11 | Method for controlling carbon concentration in rh vacuum degassing treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11172323A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008266751A (en) * | 2007-04-24 | 2008-11-06 | Nippon Steel Corp | Molten steel refining method |
JP2020015959A (en) * | 2018-07-26 | 2020-01-30 | 日本製鉄株式会社 | Constituent concentration operational unit, and constituent concentration operational method |
JP2021152191A (en) * | 2020-03-24 | 2021-09-30 | 日本製鉄株式会社 | Method for decarburizing molten steel in rh vacuum degassing system |
CN115038800A (en) * | 2020-02-06 | 2022-09-09 | 杰富意钢铁株式会社 | Decarburization end point determination method, decarburization end point determination device, steelmaking secondary refining operation method, and molten steel production method |
-
1997
- 1997-12-11 JP JP34117197A patent/JPH11172323A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008266751A (en) * | 2007-04-24 | 2008-11-06 | Nippon Steel Corp | Molten steel refining method |
JP2020015959A (en) * | 2018-07-26 | 2020-01-30 | 日本製鉄株式会社 | Constituent concentration operational unit, and constituent concentration operational method |
CN115038800A (en) * | 2020-02-06 | 2022-09-09 | 杰富意钢铁株式会社 | Decarburization end point determination method, decarburization end point determination device, steelmaking secondary refining operation method, and molten steel production method |
EP4101937A4 (en) * | 2020-02-06 | 2023-08-09 | JFE Steel Corporation | Decarburization end-point determination method, decarburization end-point determination device, secondary refining operation method for steel making, and method for producing molten steel |
JP2021152191A (en) * | 2020-03-24 | 2021-09-30 | 日本製鉄株式会社 | Method for decarburizing molten steel in rh vacuum degassing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5527180B2 (en) | Converter blowing method and converter blowing system | |
JP3287204B2 (en) | End point carbon concentration control method and carbon concentration control device in RH vacuum degasser | |
JPH11172323A (en) | Method for controlling carbon concentration in rh vacuum degassing treatment | |
KR102437794B1 (en) | Molten metal component estimation device, method of estimating molten metal component, and method of manufacturing molten metal | |
JP4353054B2 (en) | Method for decarburizing molten steel in RH vacuum degassing equipment | |
CN113076505B (en) | Converter molten steel decarburization rate calculation method | |
JP3891564B2 (en) | Control method of decarburization time in vacuum decarburization of molten steel | |
JP5079382B2 (en) | Method for refining molten steel | |
US3551140A (en) | Controlled refining of pig iron | |
KR20000045516A (en) | Method and device for predicting concentration of carbon in molten metal in electric furnace work | |
JP3415997B2 (en) | Guidance method for vacuum decarburization treatment of melting | |
CN113722986B (en) | Method for establishing dynamic control mathematical model of carbon content of VOD furnace | |
JP7376795B2 (en) | Molten steel decarburization method in RH vacuum degassing equipment | |
JP6943300B2 (en) | Control device and control method for vacuum degassing equipment | |
JP3827852B2 (en) | Denitrification method for chromium-containing molten steel | |
EP3943618A1 (en) | Blowing control method of converter-type dephosphorization refining furnace and blowing control device | |
JPH07242928A (en) | Method for estimating carbon concentration in molten steel through rh type vacuum vessel | |
JP3126374B2 (en) | Vacuum decarburization control method for molten steel | |
JPH07166228A (en) | Method for controlling ultimate carbon concentration of molten steel by rg degassing | |
JP2002363635A (en) | Method for determining decarburization terminating point in vacuum degassing apparatus | |
JP2021050415A (en) | Method for estimating hydrogen concentration in molten steel and method for vacuum degassing and refining molten steel | |
JP3293674B2 (en) | Control method of end point carbon concentration in RH degassing process | |
JPH05195035A (en) | Device for controlling blowing converter | |
JPH11279625A (en) | Manufacture of super-low carbon steel | |
JPH03180418A (en) | Method for controlling carbon in molten steel in converter |