JP2021152191A - Method for decarburizing molten steel in rh vacuum degassing system - Google Patents

Method for decarburizing molten steel in rh vacuum degassing system Download PDF

Info

Publication number
JP2021152191A
JP2021152191A JP2020052719A JP2020052719A JP2021152191A JP 2021152191 A JP2021152191 A JP 2021152191A JP 2020052719 A JP2020052719 A JP 2020052719A JP 2020052719 A JP2020052719 A JP 2020052719A JP 2021152191 A JP2021152191 A JP 2021152191A
Authority
JP
Japan
Prior art keywords
molten steel
decarburization
equation
carbon concentration
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020052719A
Other languages
Japanese (ja)
Other versions
JP7376795B2 (en
Inventor
健登 池末
Taketo Ikesue
健登 池末
敦 岡山
Atsushi Okayama
敦 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020052719A priority Critical patent/JP7376795B2/en
Publication of JP2021152191A publication Critical patent/JP2021152191A/en
Application granted granted Critical
Publication of JP7376795B2 publication Critical patent/JP7376795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

To provide a molten steel decarburizing method in a RH vacuum degassing system in which decarburizing progress estimation accuracy can be improved.SOLUTION: During a decarburization process a decarburization reaction rate is determined as a differential equation of the first order reaction using a decarburization rate constant KC, a decarburization capacity coefficient ak is calculated using a CO gas generation rate k, the decarburization rate constant KC is calculated using the decarburization capacity coefficient ak, and the carbon concentration in the molten steel is estimated using a mathematical model expressed by the determined differential equation. When determining the decarburization end at the timing when the estimated carbon concentration in the molten steel reaches a predetermined target value, a regression equation for obtaining the CO gas generation rate k from the molten steel information and the exhaust gas information is prepared in advance based on the relationship between the CO gas generation rate k, the molten steel information and the exhaust gas information in the past decarburization processing results. The CO gas generation rate k is calculated by the prepared regression equation using the molten steel information and the exhaust gas information in the decarburization process.SELECTED DRAWING: Figure 1

Description

本発明は、RH真空脱ガス装置における溶鋼脱炭方法に関するものである。 The present invention relates to a molten steel decarburization method in an RH vacuum degassing apparatus.

RH式脱ガス装置に代表される真空槽と取鍋との間で溶鋼を環流させる真空脱ガス装置を用いて溶鋼に対して脱炭処理を行う場合、終了後の炭素濃度が規格上下限から外れると、再溶解処理または別製品への振り当てが必要となる。生産性の観点からは、適切なタイミングで脱炭処理を停止して、時間あたりの処理チャージ数を増加させることが必要である。以上のような問題を解決するためには、脱炭処理中の溶鋼内炭素濃度を正確に推定して目標とする値に到達したときに脱炭処理を停止することが必要であり、これまでにもいくつかの方法が提案されている(例えば、特許文献1)。 When decarburizing molten steel using a vacuum degassing device that circulates molten steel between a vacuum tank and a ladle represented by an RH type degassing device, the carbon concentration after completion is from the upper and lower limits of the standard. If it comes off, it will need to be redissolved or assigned to another product. From the viewpoint of productivity, it is necessary to stop the decarburization treatment at an appropriate timing to increase the number of treatment charges per hour. In order to solve the above problems, it is necessary to accurately estimate the carbon concentration in the molten steel during the decarburization process and stop the decarburization process when the target value is reached. Also, some methods have been proposed (for example, Patent Document 1).

特許文献1は、真空槽内の溶鋼中炭素濃度の変化速度及び取鍋内の溶鋼中炭素濃度の変化速度を、真空槽内の溶鋼中炭素濃度と取鍋内の溶鋼中炭素濃度と真空槽内の圧力と溶鋼中酸素濃度と取鍋内の溶鋼質量と真空槽内の溶鋼質量とを用いた微分方程式で表す数式モデルを用いて溶鋼全体からの炭素の流出速度を算出するモデルを構築し、そのモデルによる溶鋼全体からの炭素流出速度算出値と排ガス中の炭素流出速度計算値との誤差に係数を乗じた値を、モデルの真空槽内の溶鋼中炭素濃度の変化速度と取鍋内の溶鋼中炭素濃度の変化速度とに夫々加えて補正するオブザーバにより、取鍋内の炭素濃度を経時的に推定する。 Patent Document 1 describes the rate of change of carbon concentration in molten steel in a vacuum chamber and the rate of change of carbon concentration in molten steel in a pan, the carbon concentration in molten steel in a vacuum chamber, the carbon concentration in molten steel in a pan, and the vacuum chamber. We constructed a model to calculate the outflow rate of carbon from the entire molten steel using a mathematical model expressed by a differential equation using the pressure inside, the oxygen concentration in the molten steel, the mass of the molten steel in the pan, and the mass of the molten steel in the vacuum chamber. , The value obtained by multiplying the error between the calculated carbon outflow rate from the entire molten steel by the model and the calculated carbon outflow rate in the exhaust gas by a coefficient, the rate of change in the carbon concentration in the molten steel in the vacuum chamber of the model and the inside of the pan. The carbon concentration in the pan is estimated over time by an observer that corrects the rate of change in the carbon concentration in the molten steel.

特開2006−104521号公報Japanese Unexamined Patent Publication No. 2006-104521

鉄と鋼、Vol.84(1998), No.10, pp709-714Iron and Steel, Vol.84 (1998), No.10, pp709-714 改訂五版 化学工学便覧 第1334頁Revised 5th Edition Chemical Engineering Handbook, p. 1334 製鋼反応の推奨平衡値改訂増補、日本学術振興会製鋼第19委員会編(1984)Recommended equilibrium value for steelmaking reaction Revised and expanded, Japan Society for the Promotion of Science, Steelmaking 19th Committee (1984)

特許文献1に記載の方法は、炭素流出速度qCOMの算出に脱炭容量係数aを使用しており、このaの計算はCOガス生成速度kを定数として使用している。このCOガス生成速度kは、真空槽や真空度等の処理毎の条件によって変動する。そのため、COガス生成速度kが脱炭処理ごとに変動しない定数であるとして使用すると、当該脱炭処理の正しいCOガス生成速度kを用いないこととなるので、脱炭容量係数aの計算精度が低くなる。そのため、特許文献1に記載の方法では、十分な精度で脱炭処理中の溶鋼炭素濃度を推定できないことがわかった。
本発明は、脱炭進行推定精度を向上できる、RH真空脱ガス装置における溶鋼脱炭方法を提供することを課題とする。
The method described in Patent Document 1 uses the decarburization capacity coefficient ak for calculating the carbon outflow rate q COM , and the calculation of this ak uses the CO gas production rate k as a constant. The CO gas generation rate k varies depending on the conditions for each treatment such as the vacuum chamber and the degree of vacuum. Therefore, when the CO gas generation rate k is used as a constant that does not vary from decarburization, since the not using the correct CO gas generation rate k of the decarburization, the calculation accuracy of the decarburization capacity coefficient a k Will be low. Therefore, it was found that the method described in Patent Document 1 cannot estimate the molten steel carbon concentration during the decarburization treatment with sufficient accuracy.
An object of the present invention is to provide a molten steel decarburization method in an RH vacuum degassing apparatus capable of improving the decarburization progress estimation accuracy.

即ち、本発明の要旨とするところは以下のとおりである。
[1]環流ガスの供給によって取鍋と真空槽との間で溶鋼を循環させ、CO及びCOを含む排ガスを前記真空槽から排出して溶鋼の脱炭処理行う、RH真空脱ガス装置における溶鋼脱炭方法において、
脱炭処理中の脱炭反応速度を、溶鋼中の炭素濃度Cの一次式と脱炭速度定数Kの積で表される一次反応の微分方程式として定め、
溶鋼中の炭素濃度Cおよび酸素濃度Oと真空槽内圧力PとCOガス生成速度kを用いて脱炭容量係数aを算出し、環流量Qおよび脱炭容量係数aを用いて脱炭速度定数Kを計算し、前記定めた微分方程式で表す数式モデルを用いて溶鋼中の炭素濃度を推定し、推定した溶鋼中の炭素濃度が所定の目標値に達したタイミングに脱炭終了判定をするに際し、
予め、過去の脱炭処理における実績のCOガス生成速度kと溶鋼情報と排ガス情報との関係に基づいて、溶鋼情報と排ガス情報からCOガス生成速度kを求める回帰式を作成しておき、
当該脱炭処理時の溶鋼情報と排ガス情報を用いて前記作成した回帰式によってCOガス生成速度kを算出することを特徴とするRH真空脱ガス装置における溶鋼脱炭方法。
ただし、脱炭容量係数aは、真空槽内で溶鋼からCOガス気泡として発生する速度を表すパラメータであり、溶鋼中酸素濃度Oと真空槽内の溶鋼中炭素濃度Cと真空槽内圧力Pとに依存する関数として表すことができる。
[2]前記一次反応の微分方程式は下記(1)式であり、前記脱炭容量係数aを算出する式は下記(2)式であり、脱炭速度定数Kを計算する式は下記(3)式であることを特徴とする[1]に記載のRH真空脱ガス装置における溶鋼脱炭方法。
dC/dt=−K・C ・・・(1)
=A・k・K{C・O−(P+PCO )/K}/(2・ρ・g) ・・・(2)
=(Q/W)・ρ・a/(Q+ρ・a) ・・・(3)
ここで、t:時間、A:反応界面積、K:炭素の酸化反応の平衡定数、PCO :CO気泡臨界圧、ρ:溶鋼密度、g:重力加速度、Q:溶鋼の環流量、W:取鍋内の溶鋼量
[3]脱炭処理中の時刻(t=t)において溶鋼中の炭素濃度と酸素濃度を測定してそれぞれC、Oとし、これらの値を初期値として前記微分方程式を数値的に解くことにより、t=t以降の各時刻における溶鋼中の炭素濃度Cを算出することを特徴とする[1]又は[2]に記載のRH真空脱ガス装置における溶鋼脱炭方法。
That is, the gist of the present invention is as follows.
[1] In an RH vacuum degassing device in which molten steel is circulated between a ladle and a vacuum tank by supplying recirculating gas, exhaust gas containing CO and CO 2 is discharged from the vacuum tank, and the molten steel is decarburized. In the molten steel decarburization method
The decarburization reaction rate during the decarburization process is defined as the differential equation of the first-order reaction expressed by the product of the linear equation of the carbon concentration C in the molten steel and the decarburization rate constant K C.
The decarburization capacity coefficient a k is calculated using the carbon concentration C and oxygen concentration O in the molten steel, the pressure P in the vacuum chamber, and the CO gas generation rate k, and the decarburization capacity coefficient a k is used by the ring flow rate Q and the decarburization capacity coefficient a k. The rate constant K C is calculated, the carbon concentration in the molten steel is estimated using the mathematical model expressed by the above-defined differential equation, and the decarburization end determination is made when the estimated carbon concentration in the molten steel reaches a predetermined target value. When doing
In advance, a regression equation for obtaining the CO gas generation rate k from the molten steel information and the exhaust gas information is created based on the relationship between the actual CO gas generation rate k in the past decarburization treatment, the molten steel information, and the exhaust gas information.
A method for decarburizing molten steel in an RH vacuum degassing apparatus, which comprises calculating a CO gas generation rate k by the regression equation created above using the molten steel information and exhaust gas information at the time of the decarburization treatment.
However, the decarburization capacity coefficient ak is a parameter representing the rate at which CO gas bubbles are generated from the molten steel in the vacuum chamber, and the oxygen concentration O in the molten steel, the carbon concentration C in the molten steel in the vacuum chamber, and the pressure P in the vacuum chamber. It can be expressed as a function that depends on.
[2] The differential equation of the first-order reaction is the following equation (1), the equation for calculating the decarburization capacity coefficient ak is the following equation (2), and the equation for calculating the decarburization rate constant K C is as follows. The method for decarburizing molten steel in the RH vacuum degassing apparatus according to [1], which is characterized by the equation (3).
dC / dt = -K C・ C ・ ・ ・ (1)
a k = A ・ k ・ K {C ・ O- (P + P CO * ) / K} / (2 ・ ρ ・ g) ・ ・ ・ (2)
K C = (Q / W) ・ ρ ・ a k / (Q + ρ ・ a k ) ・ ・ ・ (3)
Here, t: Time, A: Reaction interfacial area, K: equilibrium constant of the oxidation reaction of carbon, P CO *: CO bubbles critical pressure, [rho: molten steel Density, g: gravitational acceleration, Q: cyclic flow of the molten steel, W : amount of molten steel in the ladle [3] time during decarburization (t = t S) respectively by measuring the carbon concentration and the oxygen concentration in the molten steel C in S, and O S, these values as initial values The RH vacuum degassing apparatus according to [1] or [2], wherein the carbon concentration C in the molten steel at each time after t = t S is calculated by numerically solving the differential equation. Molten steel decarbonization method.

極低炭素鋼の溶製方法において、RH真空脱ガス装置における溶鋼脱炭方法を用いるに際し、精度良く脱炭進行を推定し、狙いとする脱炭濃度を高くすることで処理時間の短縮が可能となる。 When using the molten steel decarburization method in the RH vacuum degassing device in the melting method of ultra-low carbon steel, it is possible to shorten the processing time by accurately estimating the decarburization progress and increasing the target decarburization concentration. It becomes.

本発明の溶鋼脱炭を実施するためのRH真空脱ガス装置の構成例を示す図である。It is a figure which shows the structural example of the RH vacuum degassing apparatus for carrying out the molten steel decarburization of this invention. 本発明の脱炭処理のフローチャートである。It is a flowchart of the decarburization process of this invention. 本発明例と従来例とにおける脱炭処理の開始から停止までの時間の分布を示すグラフである。It is a graph which shows the distribution of the time from the start to the stop of the decarburization treatment in the example of the present invention and the conventional example.

《設備概要》
本発明をその実施の形態を示す図面を参照して説明する。図1は本発明の溶鋼脱炭方法を実施するためのRH真空脱ガス装置の構成例である。
<< Equipment Overview >>
The present invention will be described with reference to the drawings showing embodiments thereof. FIG. 1 is a configuration example of an RH vacuum degassing device for carrying out the molten steel decarburization method of the present invention.

図1に示すRH真空脱ガス装置は真空槽1と取鍋2と真空排気設備3とを有する。真空槽1は排気孔4を介して真空排気設備3に接続されており、その内部は真空状態(〜2torr)となる。取鍋2は精錬された溶鋼5を収容しており、真空槽1の下端には上昇管6と下降管7とが取り付けられている。それらの先端部を取鍋2内の溶鋼5に浸漬し、上昇管6に取り付けされている環流ガス吹込み装置8からArガスやNガスといった不活性ガス(以下環流ガス)が溶鋼5に吹き込まれている。 The RH vacuum degassing device shown in FIG. 1 has a vacuum tank 1, a ladle 2, and a vacuum exhaust facility 3. The vacuum tank 1 is connected to the vacuum exhaust facility 3 via the exhaust hole 4, and the inside thereof is in a vacuum state (~ 2torr). The ladle 2 houses the refined molten steel 5, and an ascending pipe 6 and a descending pipe 7 are attached to the lower end of the vacuum chamber 1. The tips thereof are immersed in the molten steel 5 in the pan 2, and the inert gas (hereinafter referred to as recirculation gas) such as Ar gas or N 2 gas is transferred to the molten steel 5 from the recirculation gas blowing device 8 attached to the riser pipe 6. It has been blown.

環流ガス吹込み装置8より、溶鋼5内へ環流ガスを吹き込むことで、ガスリフトポンプ作用によって取鍋2、上昇管6、真空槽1、下降管7の順に矢印で示すように溶鋼5を環流させる。この際、真空状態となっている真空槽1内で真空脱炭処理が行われる。 By blowing the recirculated gas into the molten steel 5 from the recirculation gas blowing device 8, the molten steel 5 is recirculated by the gas lift pump action in the order of the ladle 2, the ascending pipe 6, the vacuum tank 1, and the descending pipe 7 as indicated by the arrows. .. At this time, the vacuum decarburization treatment is performed in the vacuum tank 1 which is in a vacuum state.

環流ガス吹込み装置8には吹き込まれる環流ガスの流量を計測する環流ガス流量計9が設けられている。また、取鍋2内の溶鋼5に先端を浸漬させ、溶鋼5中の溶存酸素濃度を測定する酸素濃度測定器10が設けられている。また、真空槽1内の圧力を測定する圧力測定計11が設けられている。また、真空排気設備3には真空槽1から排出される排ガス中のCO、CO、H、O濃度を分析するための成分分析器12と、排ガスの流量を計測する排ガス流量計13とが設けられている。
本明細書において、酸素濃度については、特に限定を付さない限りは溶存酸素濃度を意味している。
The recirculation gas blowing device 8 is provided with a recirculation gas flow meter 9 for measuring the flow rate of the recirculation gas to be blown. Further, an oxygen concentration measuring device 10 is provided which measures the dissolved oxygen concentration in the molten steel 5 by immersing the tip in the molten steel 5 in the ladle 2. Further, a pressure gauge 11 for measuring the pressure in the vacuum chamber 1 is provided. Further, the vacuum exhaust facility 3 includes a component analyzer 12 for analyzing the CO, CO 2 , H 2 , and O 2 concentrations in the exhaust gas discharged from the vacuum tank 1, and an exhaust gas flow meter 13 for measuring the flow rate of the exhaust gas. And are provided.
In the present specification, the oxygen concentration means the dissolved oxygen concentration unless otherwise specified.

これらの環流ガス流量計9、酸素濃度測定器10、圧力測定計11、成分分析器12及び排ガス流量計13で得られた計測結果、測定結果及び分析結果は炭素濃度推定部14に伝送される。炭素濃度推定部14は入力されたこれらの結果から、本発明の方法に従って取鍋2内の溶鋼5中の炭素濃度を推定し、その推定値を脱炭終了判定部15へ出力する。脱炭終了判定部15は入力された炭素濃度の推定値と所定の値(目標値)とを比較し、推定値が所定の値に到達した時点で脱炭処理を終了すべきであると判定し、終了すべき旨の指示を出力する。 The measurement results, measurement results and analysis results obtained by the recirculation gas flow meter 9, the oxygen concentration measuring device 10, the pressure measuring meter 11, the component analyzer 12 and the exhaust gas flow meter 13 are transmitted to the carbon concentration estimation unit 14. .. From these input results, the carbon concentration estimation unit 14 estimates the carbon concentration in the molten steel 5 in the ladle 2 according to the method of the present invention, and outputs the estimated value to the decarburization end determination unit 15. The decarburization end determination unit 15 compares the input estimated value of carbon concentration with a predetermined value (target value), and determines that the decarburization process should be terminated when the estimated value reaches a predetermined value. And output an instruction to end.

《脱炭反応を支配している要因》
環流ガスの供給によって取鍋と真空槽との間で溶鋼を循環させ、CO及びCOを含む排ガスを前記真空槽から排出して溶鋼の脱炭処理行う、RH真空脱ガス装置における溶鋼の脱炭反応は、脱炭反応速度が溶鋼中の炭素濃度に比例する、即ち一次反応として把握することができる。このため、脱炭処理中の脱炭反応方程式を、溶鋼中の炭素濃度Cの一次式と脱炭速度定数Kの積で表される一次反応の微分方程式として定めることができる。
<< Factors governing decarburization reaction >>
Decarburization of molten steel in an RH vacuum degassing device, in which molten steel is circulated between a pan and a vacuum tank by supplying recirculating gas, exhaust gas containing CO and CO 2 is discharged from the vacuum tank, and the molten steel is decarburized. The carbon dioxide reaction can be grasped as a primary reaction in which the decarburization reaction rate is proportional to the carbon concentration in the molten steel. Therefore, the decarburization reaction equation during the decarburization process can be defined as a differential equation of the linear reaction represented by the product of the linear equation of the carbon concentration C in the molten steel and the decarburization rate constant K C.

一次反応として把握する微分方程式として具体的には、時間tとの関係で下記(1)式のように記述することができる(非特許文献1の(1)式参照)。
dC/dt=−K・C ・・・(1)
Specifically, the differential equation to be grasped as a first-order reaction can be described as the following equation (1) in relation to the time t (see equation (1) of Non-Patent Document 1).
dC / dt = -K C・ C ・ ・ ・ (1)

環流量Qおよび脱炭容量係数aを用いて脱炭速度定数Kを計算することができる。具体的には、非特許文献1にあるように、脱炭速度定数Kは脱炭容量係数aを用いて下記(3)式で表される(非特許文献1の(4)式参照)。
=(Q/W)・ρ・a/(Q+ρ・a) ・・・(3)
ここで、Q:溶鋼の環流量、W:取鍋内の溶鋼量、ρ:溶鋼密度である。
The decarburization rate constant K C can be calculated using the ring flow rate Q and the decarburization capacity coefficient a k. Specifically, as in Non-Patent Document 1, decarburization rate constant K C is represented by the following equation (3) using a decarburization capacity coefficient a k (Non-Patent Document 1 (4) reference ).
K C = (Q / W) ・ ρ ・ a k / (Q + ρ ・ a k ) ・ ・ ・ (3)
Here, Q: the ring flow rate of the molten steel, W: the amount of molten steel in the ladle, and ρ: the density of the molten steel.

脱炭容量係数aは、真空槽内で溶鋼からCOガス気泡として発生する速度を表すパラメータであり、溶鋼中酸素濃度Oと真空槽内の溶鋼中炭素濃度Cと真空槽内圧力Pとに依存する関数として表すことができる。溶鋼中の炭素濃度Cおよび酸素濃度Oと真空槽内圧力PとCOガス生成速度kを用いて脱炭容量係数aを算出することかできる。具体的には、脱炭容量係数aは、COガス生成速度kを用いて下記(2)式で表される(非特許文献1の(13)式参照)。
=A・k・K{C・O−(P+PCO )/K}/(2・ρ・g) ・・・(2)
ここで、O:溶鋼中酸素濃度(溶存酸素)、A:反応界面積、K:炭素の酸化反応の平衡定数、P:真空槽内圧力、PCO :CO気泡臨界圧である。
The decarburization capacity coefficient ak is a parameter representing the rate at which CO gas bubbles are generated from molten steel in the vacuum chamber, and is defined as an oxygen concentration O in the molten steel, a carbon concentration C in the molten steel in the vacuum chamber, and a pressure P in the vacuum chamber. It can be expressed as a dependent function. The decarburization capacity coefficient a k can be calculated by using the carbon concentration C and the oxygen concentration O in the molten steel, the pressure P in the vacuum chamber, and the CO gas generation rate k. Specifically, the decarburization capacity coefficient a k is expressed by the following equation (2) using the CO gas generation rate k (see equation (13) of Non-Patent Document 1).
a k = A ・ k ・ K {C ・ O- (P + P CO * ) / K} / (2 ・ ρ ・ g) ・ ・ ・ (2)
Here, O: oxygen concentration in molten steel (dissolved oxygen), A: reaction boundary area, K: equilibrium constant of carbon oxidation reaction, P: vacuum chamber pressure, PCO * : CO bubble critical pressure.

《COガス生成速度kの定め方》
非特許文献1では、実験で得られたkの平均値0.8(s−1)を用いて計算を行っている。また特許文献1においても、非特許文献1にならって、kを定数として扱っている。しかし前述のとおり、このCOガス生成速度kは、真空槽や真空度等の処理毎の条件によって変動する。そのため、COガス生成速度kが脱炭処理ごとに変動しない定数であるとして使用すると、当該脱炭処理の正しいCOガス生成速度kを用いないこととなるので、脱炭容量係数aの計算精度が低くなる。そのため、特許文献1に記載の方法では、十分な精度で脱炭処理中の溶鋼炭素濃度を推定できないことがわかった。
<< How to determine the CO gas generation rate k >>
In Non-Patent Document 1, the calculation is performed using the average value of k obtained in the experiment of 0.8 (s -1). Further, in Patent Document 1, k is treated as a constant, following Non-Patent Document 1. However, as described above, the CO gas generation rate k varies depending on the conditions for each treatment such as the vacuum chamber and the degree of vacuum. Therefore, when the CO gas generation rate k is used as a constant that does not vary from decarburization, since the not using the correct CO gas generation rate k of the decarburization, the calculation accuracy of the decarburization capacity coefficient a k Will be low. Therefore, it was found that the method described in Patent Document 1 cannot estimate the molten steel carbon concentration during the decarburization treatment with sufficient accuracy.

COガス生成速度kは、各脱炭処理で採用する溶鋼情報や排ガス情報などによって変動する性質を有し、当該脱炭処理中においては一定値(定数)として扱うことができるが、脱炭処理ごとに異なった値になり得る。数式モデルを用いて溶鋼中の炭素濃度を正確に推定するためには、当該脱炭処理におけるCOガス生成速度kを、脱炭処理が終了するまでの間に正確に推定することが必要となる。 The CO gas generation rate k has a property of fluctuating depending on the molten steel information and exhaust gas information used in each decarburization treatment, and can be treated as a constant value (constant) during the decarburization treatment, but the decarburization treatment Each can have a different value. In order to accurately estimate the carbon concentration in molten steel using a mathematical model, it is necessary to accurately estimate the CO gas generation rate k in the decarburization process until the decarburization process is completed. ..

時刻t=tにおいて脱炭処理が終了し、脱炭処理後の実績炭素濃度Cが判明すると、当該脱炭処理におけるCOガス生成速度kの値を正確に算出することができる。具体的には、脱炭処理中の時刻t=tにおける炭素濃度Cと酸素濃度Oから、上記(1)〜(3)式を用いて時刻t=tにおける炭素濃度と酸素濃度を数値解法で算出し、算出した炭素濃度と酸素濃度との値が、前記実測した時刻tにおける実績炭素濃度C、実績酸素濃度Oにできるだけ近い値になるよう、COガス生成速度kの値をフィッティングによって定める。このような方法により、当該脱炭処理における実績のCOガス生成速度kの値を定めることかできる。 Time t = t F decarburization process ends at, the actual carbon concentration C F after decarburization is known, it is possible to accurately calculate the value of the CO gas generation rate k in the decarburization. Specifically, the carbon concentration and the oxygen concentration at time t = t F with a carbon concentration C S and the oxygen concentration O S at time t = t S in decarburization, the (1) to (3) was calculated by numerical solution, the value of the calculated carbon concentration and the oxygen concentration is, the actually measured time t F actual concentration of carbon C F, so that as much as possible close to the actual oxygen concentration O F, CO gas generation rate k The value of is determined by fitting. By such a method, the value of the actual CO gas generation rate k in the decarburization treatment can be determined.

次に、過去の脱炭処理において算出した上記実績のCOガス生成速度kを従属変数とし、それぞれの脱炭処理における溶鋼情報と排ガス情報を独立変数として、溶鋼情報と排ガス情報からCOガス生成速度kを求める回帰式を作成する。選択する溶鋼情報と排ガス情報については、それぞれの溶鋼情報と排ガス情報を独立変数、COガス生成速度kを従属変数として単回帰分析を行い、相関の大きい独立変数を選ぶこととすると良い。溶鋼情報として、少なくともRH処理開始(時刻t=0)から溶鋼サンプル採取までの時間t、時刻tでの炭素濃度Cと酸素濃度Oを含み、排ガス情報として、少なくとも溶鋼サンプル採取時の排ガス流量Qgas、排ガス中の(CO+CO)濃度を含むことが好ましい。 Next, the CO gas generation rate k calculated in the past decarburization treatment is used as the dependent variable, and the molten steel information and exhaust gas information in each decarburization treatment are used as independent variables, and the CO gas generation rate is obtained from the molten steel information and exhaust gas information. Create a regression equation to find k. Regarding the molten steel information and the exhaust gas information to be selected, it is preferable to perform a simple regression analysis with the respective molten steel information and the exhaust gas information as the independent variables and the CO gas generation rate k as the dependent variable, and select the independent variables having a large correlation. As the molten steel information includes carbon concentration C S and the oxygen concentration O S at time t S, the time t S of at least RH processing start (time t = 0) to the molten steel sampled, as an exhaust gas information, at least the molten steel sampled It is preferable to include the exhaust gas flow rate Q gas and the (CO + CO 2) concentration in the exhaust gas.

《脱炭反応を記述する微分方程式の数値解法》
脱炭反応を記述する微分方程式である前記(1)式において、処理の過程においてKが一定であれば、(1)式を変形して(4)式のように不定積分形とし、解析的に解いて(5)式を導くことができる。(5)式において、t=tでのC分析値をCとし、積分定数を決めている。
∫dC/C=−K∫dt (4)
C=C・exp(−K(t−t)) (5)
<< Numerical solution of differential equations describing decarburization reaction >>
In the above equation (1), which is a differential equation describing the decarburization reaction , if K C is constant in the process of processing, the equation (1) is transformed into an indefinite integral form as in the equation (4) for analysis. Can be solved to derive equation (5). In equation (5), the C analysis value at t = t 0 is set to C 0 , and the constant of integration is determined.
∫dC / C = -K C ∫dt (4)
C = C 0 · exp (-K C (tt 0 )) (5)

しかし、Kは前記(3)式にあるようにaの関数である。aは(2)式にあるように、kの関数であるとともに炭素濃度C、酸素濃度Oの関数でもあるため、処理の過程においてKは変化するため、上記(4)式を用いることができない。 However, K C is a function of ak as shown in the above equation (3). As shown in Eq. (2), a k is a function of k as well as a function of carbon concentration C and oxygen concentration O. Therefore, K C changes in the process of processing. Therefore, use Eq. (4) above. I can't.

<第1の数値解法>
微少時間Δt(例えば0.1秒)の間であれば、Kを一定値と見なすことができ、(5)式が成立していると考えられる。そこで、時刻tにおけるCの値、Oの値に基づいてKを算出し、(5)式を変形した下記(6)式によって時刻t+ΔtにおけるCの値を算出することが可能となる。ここでC(t)、K(t)は時刻tにおけるC、Kの値である。K(t)は時刻tにおけるC(t)などの値から都度算出する。
C(t+Δt)=C(t)・exp(−K(t)・Δt) (6)
上記(6)式によって、サンプル採取時(t)における炭素濃度C、酸素濃度Oを初期値とし、時間ΔtピッチでC(t)を順次計算し、結果として時刻tからのC(t)の時間変化を算出することができる。C(t)が目標とする炭素濃度に到達した時刻に脱炭処理を終了する。
<First numerical solution>
It is considered that K C can be regarded as a constant value within the minute time Δt (for example, 0.1 second), and the equation (5) holds. Therefore, K C can be calculated based on the value of C and the value of O at time t, and the value of C at time t + Δt can be calculated by the following equation (6) which is a modification of equation (5). Here, C (t) and K C (t) are the values of C and K C at time t. K C (t) is calculated each time from a value such as C (t) at time t.
C (t + Δt) = C (t) ・ exp (−K C (t) ・ Δt) (6)
By the above equation (6), during sampling (t S) the carbon concentration in the C S, the oxygen concentration O S and the initial value, successively calculates the C (t) at time Δt pitch, C from the time t S as a result The time change of (t) can be calculated. The decarburization process is completed when C (t) reaches the target carbon concentration.

<第2の数値解法>
前記(1)式を差分方程式に変形する。
ΔC/Δt=−K・C ・・・(7)
Δtを右辺に移項し、ΔCを分解すると下記(8)式となる。
C(t+Δt)−C(t)=K(t)・C(t)・Δt (8)
即ち、時刻tにおけるCの値C(t)等に基づいて時刻tにおけるK(t)を算出し、(8)式によって時刻t+ΔtにおけるCの値C(t+Δt)を算出することが可能となる。ここでC(t)、K(t)は時刻tにおけるC、Kの値である。K(t)は時刻tにおけるC(t)などの値から都度(2)式(3)式で算出する。
<Second numerical solution>
The above equation (1) is transformed into a difference equation.
ΔC / Δt = −K C・ C ・ ・ ・ (7)
When Δt is transferred to the right side and ΔC is decomposed, the following equation (8) is obtained.
C (t + Δt) -C (t) = K C (t), C (t), Δt (8)
That is, it is possible to calculate K C (t) at time t based on the value C (t) of C at time t, and to calculate the value C (t + Δt) of C at time t + Δt by the equation (8). Become. Here, C (t) and K C (t) are the values of C and K C at time t. K C (t) is calculated by Eqs. (2) and (3) each time from a value such as C (t) at time t.

<第3の数値解法>
常微分方程式の数値解法として、ルンゲ・クッタ法が知られている(非特許文献2、特許文献1)。前記(1)式を基礎の常微分方程式とし、ルンゲ・クッタ法を用いることにより、初期値問題として方程式を精度良く数値的に解くことができる。
<Third numerical solution>
The Runge-Kutta method is known as a numerical method for solving ordinary differential equations (Non-Patent Document 2 and Patent Document 1). By using the above equation (1) as the basic ordinary differential equation and using the Runge-Kutta method, the equation can be solved numerically with high accuracy as an initial value problem.

<数値解法で計算に用いる各パラメータの算出>
を求めるための(2)式において、CはC(t)として数値解法で順次算出される。その他、Oの値、Pの値が時間の経過とともに変化するので、これら数値の扱いを定める必要がある。
脱炭処理中において、
C+O=CO(ガス) (9)
の反応が進行する。従って、時刻tでのサンプル採取時の炭素濃度C、酸素濃度Oと、時刻tでの算出した炭素濃度C(t)から、C−C(t)で表される炭素低減量と化学量論的に等しい量のOが低減したものとして、時刻tでの酸素濃度O(t)を算出することができる。酸素濃度測定器10を用いて測定した時々刻々の酸素濃度測定値を用いることとしても良い。
真空槽内圧力Pについては、各時刻で圧力測定計11によって実測しているPの値をそのまま用いることができる。
(2)式(3)式で用いられるパラメータのうち、反応界面積Aは真空槽1内の溶鋼表面積であり、取鍋2内の溶鋼量Wは取鍋の形状から定まる。炭素の酸化反応の平衡定数Kは、非特許文献3をもとにして、
K=10(1160/(溶鋼温度(℃)+273)+2.003)×大気圧
として定め、CO気泡臨界圧PCO は非特許文献1に記載された値(=0.7×10Pa)として定める。溶鋼の環流量Qは、下記(10)式で定まる(非特許文献1の(5)式参照)。
Q=η・D4/3・G1/3・T・ln(P/P) (10)
ただし、D:RH浸漬管径、G:環流ガス流量、T:溶鋼温度、P:吹き込み位置での静圧、P:真空槽内雰囲気圧力、η:定数(7.44×10)である。
<Calculation of each parameter used in the calculation by the numerical solution method>
In Eq. (2) for obtaining a k, C is sequentially calculated as C (t) by a numerical solution method. In addition, since the value of O and the value of P change with the passage of time, it is necessary to determine the handling of these numerical values.
During the decarburization process
C + O = CO (gas) (9)
Reaction progresses. Therefore, the carbon concentration at the time of sampling at time t S C S, and the oxygen concentration O S, carbon concentration C calculated at time t (t), the carbon reduces the amount represented by the C S -C (t) The oxygen concentration O (t) at time t can be calculated assuming that the amount of O that is stoichiometrically equal to that of is reduced. It is also possible to use the oxygen concentration measurement value measured every moment using the oxygen concentration measuring device 10.
As for the pressure P in the vacuum chamber, the value of P actually measured by the pressure gauge 11 at each time can be used as it is.
Among the parameters used in the equations (2) and (3), the reaction boundary area A is the surface area of the molten steel in the vacuum chamber 1, and the amount of molten steel W in the ladle 2 is determined by the shape of the ladle. The equilibrium constant K of the carbon oxidation reaction is based on Non-Patent Document 3.
K = 10 (1160 / (molten steel temperature (℃) +273) +2.003) × defined as the atmospheric pressure, CO bubble critical pressure P CO * is the value described in Non-Patent Document 1 (= 0.7 × 10 3 Pa ). The ring flow rate Q of the molten steel is determined by the following equation (10) (see equation (5) of Non-Patent Document 1).
Q = η ・ D 4/3・ G 1/3・ T ・ ln (P 0 / P) (10)
However, D: RH immersion tube diameter, G: recirculated gas flow rate, T: temperature of molten steel, P 0: static pressure at blowing position, P: vacuum chamber ambient pressure, eta: constant (7.44 × 10 3) be.

《COガス生成速度kを定めての微分方程式の数値解析》
前述のように、従来の数値解析においては、COガス生成速度kを定数として定め、脱炭処理中の溶鋼中炭素濃度の経時変化を計算していた。
それに対して本発明では、予め、過去の脱炭処理における実績のCOガス生成速度kと溶鋼情報と排ガス情報との関係に基づいて、溶鋼情報と排ガス情報からCOガス生成速度kを求める回帰式を作成しておき、当該脱炭処理の溶鋼情報と排ガス情報を用いて前記作成した回帰式によってCOガス生成速度kを算出する。
<< Numerical analysis of differential equations with CO gas generation rate k defined >>
As described above, in the conventional numerical analysis, the CO gas generation rate k is set as a constant, and the change with time of the carbon concentration in the molten steel during the decarburization treatment is calculated.
On the other hand, in the present invention, a regression equation for obtaining the CO gas generation rate k from the molten steel information and the exhaust gas information in advance based on the relationship between the CO gas generation rate k, the molten steel information, and the exhaust gas information, which has been actually obtained in the past decarburization treatment. Is prepared, and the CO gas generation rate k is calculated by the regression equation prepared above using the molten steel information and the exhaust gas information of the decarburization treatment.

本発明法では、RH真空脱ガス装置を用いた溶鋼脱炭処理において、脱炭処理開始から処理途中にかけて、上記回帰式で用いている各パラメータの数値を採取し、それら数値を回帰式に代入して、当該脱炭処理におけるCOガス生成速度kを推定する。
推定したCOガス生成速度k、反応界面積A、炭素の酸化反応の平衡定数K、処理途中の溶鋼5中の炭素濃度C、処理途中の溶鋼5中の溶存酸素濃度O、真空槽内圧力P、CO気泡臨界圧PCO 、溶鋼密度ρ及び重力加速度gを用いて、次式(2)によって脱炭容量係数aを算出する。
=A・k・K{C・O−(P+PCO )/K}/(2・ρ・g) ・・・(2)
算出した脱炭容量係数a、溶鋼5の環流量Q、取鍋2内の溶鋼5の重量W及び溶鋼5密度ρを用いて、次式(3)によって脱炭速度定数Kを算出する。
=(Q/W)・ρ・a/(Q+ρ・a) ・・・(3)
In the method of the present invention, in the molten steel decarburization treatment using the RH vacuum degassing apparatus, the numerical values of each parameter used in the above regression equation are collected from the start of the decarburization treatment to the middle of the treatment, and these numerical values are substituted into the regression equation. Then, the CO gas generation rate k in the decarburization treatment is estimated.
Estimated CO gas generation rate k, reaction boundary area A, equilibrium constant K of carbon oxidation reaction, carbon concentration C in molten steel 5 during treatment, dissolved oxygen concentration O in molten steel 5 during treatment, pressure P in vacuum chamber , CO Bubble critical pressure PCO * , molten steel density ρ, and gravitational acceleration g are used to calculate the decarburization capacity coefficient ak by the following equation (2).
a k = A ・ k ・ K {C ・ O- (P + P CO * ) / K} / (2 ・ ρ ・ g) ・ ・ ・ (2)
Using the calculated decarburization capacity coefficient a k , the ring flow rate Q of the molten steel 5, the weight W of the molten steel 5 in the ladle 2, and the molten steel 5 density ρ, the decarburization rate constant K C is calculated by the following equation (3). ..
K C = (Q / W) ・ ρ ・ a k / (Q + ρ ・ a k ) ・ ・ ・ (3)

以下、実施例を含め、数値解析には前記第1の数値解法を採用した。Δt=0.1秒とし、サンプル採取時(t)における炭素濃度C、酸素濃度Oを初期値とし、(6)式によって、時間ΔtピッチでC(t)を計算し、結果として時刻tからのC(t)の時間変化を算出できる。時刻tでの酸素濃度O(t)については、溶鋼中でCとOがCO生成反応を起こしているとして、Oの値から化学量論的に算出した。真空槽内圧力Pとしては、各時刻における圧力測定計11の実測値を用いることができる。 Hereinafter, the first numerical solution method is adopted for the numerical analysis including the examples. And Delta] t = 0.1 sec, the carbon concentration C S during sampling (t S), the oxygen concentration O S as an initial value, the (6), to calculate the C (t) at time Delta] t pitch, as a result The time change of C (t) from the time t S can be calculated. The oxygen concentration O (t) at time t was stoichiometrically calculated from the value of OS , assuming that C and O are undergoing a CO formation reaction in the molten steel. As the pressure P in the vacuum chamber, the measured value of the pressure gauge 11 at each time can be used.

数値解法の結果にしたがって、炭素濃度推定部14は取鍋2内の溶鋼5中の炭素濃度を推定し、その推定値を脱炭終了判定部15へ出力する。
脱炭終了判定部15は入力された炭素濃度の推定値と所定の値とを比較し、推定値が所定の値に到達した時点で脱炭処理を終了すべきであると判定し、終了すべき旨の指示を操業者に出力する。
According to the result of the numerical solution method, the carbon concentration estimation unit 14 estimates the carbon concentration in the molten steel 5 in the ladle 2, and outputs the estimated value to the decarburization end determination unit 15.
The decarburization end determination unit 15 compares the input estimated value of carbon concentration with a predetermined value, determines that the decarburization process should be ended when the estimated value reaches a predetermined value, and ends the decarburization process. Output the instruction to the operator.

脱炭終了に至るまでのフローチャートを図2に示す。RH真空脱ガス装置にて溶鋼5の脱炭処理を開始し、回帰式の右辺に登場するパラメータの値を決定して回帰式に代入し、COガス生成速度kを算出する。加えて、溶鋼5中の炭素および酸素濃度と真空槽1内圧力とCOガス生成速度kを用いて脱炭容量係数aを算出し、環流量Qおよび脱炭容量係数aを用いて脱炭速度定数Kを算出し、微分方程式で表す数式モデルを用いて炭素濃度推定部14にて溶鋼5中の炭素濃度を推定する。推定した溶鋼5中の炭素濃度は脱炭終了判定部15へ出力され、炭素濃度の目標値に到達していない場合は再度炭素濃度推定部14にて炭素濃度を推定し、溶鋼5中の炭素濃度が目標値に到達するまで再計算を実施する。炭素濃度の目標値に到達している場合、脱炭終了判定部15は脱炭処理を終了すべきであると判定し、終了すべき旨の指示を操業者に出力する。 FIG. 2 shows a flowchart up to the end of decarburization. The decarburization process of the molten steel 5 is started by the RH vacuum degassing device, the values of the parameters appearing on the right side of the regression equation are determined and substituted into the regression equation, and the CO gas generation rate k is calculated. In addition, by using the carbon and oxygen concentration and the vacuum chamber 1 in the pressure and the CO gas generation rate k in the molten steel 5 calculates the decarburization capacity coefficient a k, using a recirculation flow Q and decarburization capacity coefficient a k de The coal rate constant K C is calculated, and the carbon concentration in the molten steel 5 is estimated by the carbon concentration estimation unit 14 using a mathematical model expressed by a differential equation. The estimated carbon concentration in the molten steel 5 is output to the decarburization end determination unit 15, and if the target value of the carbon concentration is not reached, the carbon concentration estimation unit 14 estimates the carbon concentration again and carbon in the molten steel 5. Recalculate until the concentration reaches the target value. When the target value of the carbon concentration is reached, the decarburization end determination unit 15 determines that the decarburization process should be completed, and outputs an instruction to the operator to end the decarburization process.

本発明を具体的に実施した実施例について説明する。高炉から出銑された溶銑をトーピードカーにて脱珪処理、脱りん処理または脱硫処理などの溶銑予備処理を一つ以上実施した後、溶銑予備処理設備にて脱硫処理を実施し、溶銑を400ton転炉に装入して脱珪処理、脱りん処理、脱炭処理等などの一次精錬を実施した。転炉での一次精錬により得られた溶鋼を取鍋へ収容し、真空槽まで輸送して真空脱ガス処理を実施した。環流用Arガスの流量を3000NL/min、真空槽内圧力を300Paとした条件にて、炭素濃度の規格上限を30ppmとした極低炭素鋼が得られるように真空脱炭処理を行った。 Examples of concrete implementation of the present invention will be described. After performing one or more hot metal pretreatments such as desiliconization treatment, dephosphorization treatment or desulfurization treatment of hot metal discharged from the blast furnace with a torpedo car, desulfurization treatment is carried out with a hot metal pretreatment facility, and the hot metal is converted to 400 tons. It was charged into a furnace and subjected to primary refining such as desulfurization, dephosphorization, and decarburization. The molten steel obtained by the primary refining in the converter was stored in a pan and transported to a vacuum tank for vacuum degassing. Under the conditions that the flow rate of Ar gas for recirculation was 3000 NL / min and the pressure in the vacuum chamber was 300 Pa, vacuum decarburization treatment was performed so that an extremely low carbon steel having a standard upper limit of carbon concentration of 30 ppm could be obtained.

従来方法(COガス生成速度kを処理ごとに変化させずに定数として定めるモデル)と本発明方法(COガス生成速度kを処理ごとに計算するモデル)にて取鍋内での炭素濃度推定値が脱炭処理後の炭素濃度の目標値20ppmに到達し任意の時間経過後、真空槽中にAl合金を投入して脱炭処理を停止した。処理後の取鍋から採取した溶鋼の炭素濃度と、従来方法と本発明方法での脱炭停止時の推定炭素濃度を比較すると、従来方法は標準偏差2.9ppm、本発明は標準偏差2.1ppmで溶鋼中炭素濃度を推定することができた。 Estimated carbon concentration in the ladle by the conventional method (model in which the CO gas production rate k is determined as a constant without changing for each process) and the method of the present invention (model in which the CO gas production rate k is calculated for each process). Reached the target value of 20 ppm of carbon concentration after the decarburization treatment, and after an arbitrary time elapsed, an Al alloy was put into the vacuum chamber to stop the decarburization treatment. Comparing the carbon concentration of the molten steel collected from the pan after the treatment with the estimated carbon concentration at the time of stopping decarburization by the conventional method and the method of the present invention, the standard deviation of the conventional method is 2.9 ppm, and that of the present invention is 2. The carbon concentration in the molten steel could be estimated at 1 ppm.

炭素濃度の規格上限とモデルの標準偏差を考慮し、脱炭終了後の炭素濃度の目標値を定めた。従来方法を用いる場合、モデルの標準偏差が大きいので、脱炭終了後の炭素濃度の目標値を22ppmと低めの目標値とした。推定値が目標値に到達した時に脱炭を停止する試験を46回行った結果、処理開始から脱炭停止までの時間の分布の平均は16.7分であった。
一方、本発明方法を用いる場合、モデルの標準偏差が小さいので、脱炭終了後の炭素濃度の目標値を25ppmと高めの目標値とした。推定値が目標値に到達した時に脱炭を停止する試験を20回行った結果、処理開始から脱炭停止までの時間の分布の平均は15.1分であった。
Taking into consideration the upper limit of the carbon concentration standard and the standard deviation of the model, the target value of the carbon concentration after the completion of decarburization was set. When the conventional method is used, the standard deviation of the model is large, so the target value of the carbon concentration after the completion of decarburization is set to a low target value of 22 ppm. As a result of conducting 46 tests to stop decarburization when the estimated value reached the target value, the average distribution of the time from the start of treatment to the stop of decarburization was 16.7 minutes.
On the other hand, when the method of the present invention is used, since the standard deviation of the model is small, the target value of the carbon concentration after the completion of decarburization is set to a high target value of 25 ppm. As a result of conducting 20 tests to stop decarburization when the estimated value reached the target value, the average distribution of the time from the start of treatment to the stop of decarburization was 15.1 minutes.

図3は本発明例と従来例とにおける処理開始から脱炭停止までの時間の分布の平均を示すグラフである。図中の“I”状線ははらつきを表す。本発明方法を用いることにより、脱炭処理時間を短縮できることが確認できた。 FIG. 3 is a graph showing the average distribution of the time from the start of treatment to the stop of decarburization in the example of the present invention and the conventional example. The "I" -shaped line in the figure represents fluttering. It was confirmed that the decarburization treatment time can be shortened by using the method of the present invention.

1 真空槽
2 取鍋
3 真空排気設備
4 排気孔
5 溶鋼
6 上昇管
7 下降管
8 環流ガス吹込み装置
9 環流ガス流量計
10 酸素濃度測定器
11 圧力測定計
12 成分分析器
13 排ガス流量計
14 炭素濃度推定部
15 脱炭終了判定部
1 Vacuum tank 2 Topping pot 3 Vacuum exhaust equipment 4 Exhaust hole 5 Molten steel 6 Ascending pipe 7 Down pipe 8 Circulating gas blowing device 9 Circulating gas flow meter 10 Oxygen concentration measuring device 11 Pressure measuring meter 12 Component analyzer 13 Exhaust gas flow meter 14 Carbon concentration estimation unit 15 Decarburization end determination unit

Claims (3)

環流ガスの供給によって取鍋と真空槽との間で溶鋼を循環させ、CO及びCOを含む排ガスを前記真空槽から排出して溶鋼の脱炭処理行う、RH真空脱ガス装置における溶鋼脱炭方法において、
脱炭処理中の脱炭反応速度を、溶鋼中の炭素濃度Cの一次式と脱炭速度定数Kの積で表される一次反応の微分方程式として定め、
溶鋼中の炭素濃度Cおよび酸素濃度Oと真空槽内圧力PとCOガス生成速度kを用いて脱炭容量係数aを算出し、環流量Qおよび脱炭容量係数aを用いて脱炭速度定数Kを計算し、前記定めた微分方程式で表す数式モデルを用いて溶鋼中の炭素濃度を推定し、推定した溶鋼中の炭素濃度が所定の目標値に達したタイミングに脱炭終了判定をするに際し、
予め、過去の脱炭処理における実績のCOガス生成速度kと溶鋼情報と排ガス情報との関係に基づいて、溶鋼情報と排ガス情報からCOガス生成速度kを求める回帰式を作成しておき、
当該脱炭処理時の溶鋼情報と排ガス情報を用いて前記作成した回帰式によってCOガス生成速度kを算出することを特徴とするRH真空脱ガス装置における溶鋼脱炭方法。
ただし、脱炭容量係数aは、真空槽内で溶鋼からCOガス気泡として発生する速度を表すパラメータであり、溶鋼中酸素濃度Oと真空槽内の溶鋼中炭素濃度Cと真空槽内圧力Pとに依存する関数として表すことができる。
Molten steel is circulated between the ladle and the vacuum tank by supplying recirculation gas, and exhaust gas containing CO and CO 2 is discharged from the vacuum tank to perform decarburization treatment of the molten steel. In the method
The decarburization reaction rate during the decarburization process is defined as the differential equation of the first-order reaction expressed by the product of the linear equation of the carbon concentration C in the molten steel and the decarburization rate constant K C.
The decarburization capacity coefficient a k is calculated using the carbon concentration C and oxygen concentration O in the molten steel, the pressure P in the vacuum chamber, and the CO gas generation rate k, and the decarburization capacity coefficient a k is used by the ring flow rate Q and the decarburization capacity coefficient a k. The rate constant K C is calculated, the carbon concentration in the molten steel is estimated using the mathematical model expressed by the above-defined differential equation, and the decarburization end determination is made when the estimated carbon concentration in the molten steel reaches a predetermined target value. When doing
In advance, a regression equation for obtaining the CO gas generation rate k from the molten steel information and the exhaust gas information is created based on the relationship between the actual CO gas generation rate k in the past decarburization treatment, the molten steel information, and the exhaust gas information.
A method for decarburizing molten steel in an RH vacuum degassing apparatus, which comprises calculating a CO gas generation rate k by the regression equation created above using the molten steel information and exhaust gas information at the time of the decarburization treatment.
However, the decarburization capacity coefficient ak is a parameter representing the rate at which CO gas bubbles are generated from the molten steel in the vacuum chamber, and the oxygen concentration O in the molten steel, the carbon concentration C in the molten steel in the vacuum chamber, and the pressure P in the vacuum chamber. It can be expressed as a function that depends on.
前記一次反応の微分方程式は下記(1)式であり、前記脱炭容量係数aを算出する式は下記(2)式であり、脱炭速度定数Kを計算する式は下記(3)式であることを特徴とする請求項1に記載のRH真空脱ガス装置における溶鋼脱炭方法。
dC/dt=−K・C ・・・(1)
=A・k・K{C・O−(P+PCO )/K}/(2・ρ・g) ・・・(2)
=(Q/W)・ρ・a/(Q+ρ・a) ・・・(3)
ここで、t:時間、A:反応界面積、K:炭素の酸化反応の平衡定数、PCO :CO気泡臨界圧、ρ:溶鋼密度、g:重力加速度、Q:溶鋼の環流量、W:取鍋内の溶鋼量
Differential equation of the first order reaction is the following equation (1), equation for calculating the decarburization capacity coefficient a k is the following equation (2), equations for calculating decarburization rate constant K C is below (3) The method for decarburizing molten steel in the RH vacuum degassing apparatus according to claim 1, wherein the equation is used.
dC / dt = -K C・ C ・ ・ ・ (1)
a k = A ・ k ・ K {C ・ O- (P + P CO * ) / K} / (2 ・ ρ ・ g) ・ ・ ・ (2)
K C = (Q / W) ・ ρ ・ a k / (Q + ρ ・ a k ) ・ ・ ・ (3)
Here, t: Time, A: Reaction interfacial area, K: equilibrium constant of the oxidation reaction of carbon, P CO *: CO bubbles critical pressure, [rho: molten steel Density, g: gravitational acceleration, Q: cyclic flow of the molten steel, W : Amount of molten steel in the pan
脱炭処理中の時刻(t=t)において溶鋼中の炭素濃度と酸素濃度を測定してそれぞれC、Oとし、これらの値を初期値として前記微分方程式を数値的に解くことにより、t=t以降の各時刻における溶鋼中の炭素濃度Cを算出することを特徴とする請求項1又は請求項2に記載のRH真空脱ガス装置における溶鋼脱炭方法。 Time during decarburization (t = t S) respectively C S by measuring the carbon concentration and the oxygen concentration in the molten steel in, and O S, by solving the differential equation numerically these values as initial values The method for decarburizing molten steel in the RH vacuum degassing apparatus according to claim 1 or 2, wherein the carbon concentration C in the molten steel at each time after t = t S is calculated.
JP2020052719A 2020-03-24 2020-03-24 Molten steel decarburization method in RH vacuum degassing equipment Active JP7376795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020052719A JP7376795B2 (en) 2020-03-24 2020-03-24 Molten steel decarburization method in RH vacuum degassing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020052719A JP7376795B2 (en) 2020-03-24 2020-03-24 Molten steel decarburization method in RH vacuum degassing equipment

Publications (2)

Publication Number Publication Date
JP2021152191A true JP2021152191A (en) 2021-09-30
JP7376795B2 JP7376795B2 (en) 2023-11-09

Family

ID=77886271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052719A Active JP7376795B2 (en) 2020-03-24 2020-03-24 Molten steel decarburization method in RH vacuum degassing equipment

Country Status (1)

Country Link
JP (1) JP7376795B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4353054B2 (en) 2004-10-05 2009-10-28 住友金属工業株式会社 Method for decarburizing molten steel in RH vacuum degassing equipment
JP6007887B2 (en) 2013-11-21 2016-10-19 Jfeスチール株式会社 Vacuum degassing apparatus and method for decarburizing molten steel using the same
JP6447198B2 (en) 2015-02-04 2019-01-09 新日鐵住金株式会社 Exhaust gas component analyzer and method for vacuum decarburization treatment of molten steel

Also Published As

Publication number Publication date
JP7376795B2 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JP2021152191A (en) Method for decarburizing molten steel in rh vacuum degassing system
JP5087840B2 (en) Decarburization end point judgment method in vacuum degassing equipment
RU2766093C1 (en) Apparatus for evaluating molten metal components, method for evaluating molten metal components and method for producing molten metal
JP4353054B2 (en) Method for decarburizing molten steel in RH vacuum degassing equipment
TWI665307B (en) Estimation method of phosphorus concentration in molten steel, converter blowing control device, program and recording medium
JP6007887B2 (en) Vacuum degassing apparatus and method for decarburizing molten steel using the same
JP6966029B1 (en) Decarburization refining method of molten steel under reduced pressure
JP3891564B2 (en) Control method of decarburization time in vacuum decarburization of molten steel
JP6989056B1 (en) Decarburization end point determination method, decarburization end point determination device, steelmaking secondary refining operation method, and molten steel manufacturing method
RU2802218C1 (en) Method for refining molten steel by vacuum decarburization
KR101911491B1 (en) Apparatus for off-gas measure and this measure using a decarbonizing predicting in molten steel
JP4816513B2 (en) Molten steel component estimation method
JP6943300B2 (en) Control device and control method for vacuum degassing equipment
JP3415997B2 (en) Guidance method for vacuum decarburization treatment of melting
JP4715617B2 (en) Abnormality detection method, abnormality detection system, and abnormality detection device for detecting abnormality of vacuum degassing device
JP3293674B2 (en) Control method of end point carbon concentration in RH degassing process
JP4289214B2 (en) Method for decarburizing molten steel and method for producing molten steel
JP2012149341A (en) Estimation method of molten metal component and estimation apparatus of molten metal component
TW201734214A (en) Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
SU1010140A1 (en) Method for vacuum treating molten steel in ladle
JPH07242928A (en) Method for estimating carbon concentration in molten steel through rh type vacuum vessel
JPH05239540A (en) Method for estimating carbon concentration in molten steel in vacuum degassing apparatus
KR101012834B1 (en) Method for predicting dissolved carbon quantity in vacuum degassing process
JP2021050415A (en) Method for estimating hydrogen concentration in molten steel and method for vacuum degassing and refining molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R151 Written notification of patent or utility model registration

Ref document number: 7376795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151