JP5343308B2 - Desulfurization method for molten steel - Google Patents

Desulfurization method for molten steel Download PDF

Info

Publication number
JP5343308B2
JP5343308B2 JP2006245555A JP2006245555A JP5343308B2 JP 5343308 B2 JP5343308 B2 JP 5343308B2 JP 2006245555 A JP2006245555 A JP 2006245555A JP 2006245555 A JP2006245555 A JP 2006245555A JP 5343308 B2 JP5343308 B2 JP 5343308B2
Authority
JP
Japan
Prior art keywords
molten steel
desulfurization
vacuum degassing
flux
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006245555A
Other languages
Japanese (ja)
Other versions
JP2008063647A (en
Inventor
孝彦 前田
明彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006245555A priority Critical patent/JP5343308B2/en
Publication of JP2008063647A publication Critical patent/JP2008063647A/en
Application granted granted Critical
Publication of JP5343308B2 publication Critical patent/JP5343308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、RH真空脱ガス装置を用いた溶鋼の脱硫方法に関し、詳しくは、目標S濃度が数ppmレベルの所謂、極低硫鋼を対象とするのではなく、目標S濃度が数十ppmレベルの低硫鋼或いはそれ以上の普通鋼における目標S濃度の上限外れを防止するために行う溶鋼の脱硫方法に関するものである。   The present invention relates to a method for desulfurizing molten steel using an RH vacuum degassing apparatus. Specifically, the present invention is not intended for so-called ultra-low sulfur steel having a target S concentration of several ppm level, but has a target S concentration of several tens of ppm. The present invention relates to a method for desulfurizing molten steel to prevent the upper limit of the target S concentration in low-sulfur steel or higher level steel.

転炉から出鋼された後の溶鋼を脱硫する二次精錬方法としては、アーク加熱とスラグ精錬とが可能なLF(Ladle Furnace )と称する取鍋精錬設備を用い、多量の脱硫用フラックスを溶鋼に添加して溶鋼を加熱しつつ攪拌する方法(例えば特許文献1参照)、及び、RH真空脱ガス装置を用い、RH真空脱ガス装置の真空脱ガス槽内の溶鋼に脱硫用フラックスを投入して脱硫する方法(例えば特許文献2及び特許文献3参照)が一般的である。これらの何れの方法も、ラインパイプ材などに代表される目標S濃度が数ppmレベルの極低硫鋼の製造に適するように、脱硫用フラックスの組成やその投入方法が工夫されている。   As a secondary refining method for desulfurizing molten steel after it has been discharged from the converter, a ladle refining facility called LF (Ladle Furnace) capable of arc heating and slag refining is used, and a large amount of desulfurization flux is supplied to the molten steel. A method of stirring the molten steel while heating it (see Patent Document 1, for example), and using an RH vacuum degassing apparatus, the desulfurization flux is introduced into the molten steel in the vacuum degassing tank of the RH vacuum degassing apparatus. The desulfurization method is generally used (see, for example, Patent Document 2 and Patent Document 3). In any of these methods, the composition of the desulfurization flux and its input method are devised so as to be suitable for the production of ultra-low sulfur steel having a target S concentration represented by a line pipe material of several ppm level.

このような極低硫鋼の製造においては、脱硫処理のために、LFでのアーク加熱によって電力コストが上昇しても、また、CaF2 や金属Caを含有する特殊な脱硫用フラックスを使用することによって脱硫用フラックスコストが上昇しても、或いは、このような特殊な脱硫用フラックスの使用に起因して取鍋や真空脱ガス槽の耐火物が溶損し、それによって耐火物コストが上昇しても、鋼材価格はそれに見合ったもので取引されるので問題とならない。 In the production of such ultra-low sulfur steel, even if the power cost increases due to arc heating in LF, a special desulfurization flux containing CaF 2 or Ca is used for the desulfurization treatment. Even if the desulfurization flux cost increases, or due to the use of such a special desulfurization flux, the refractory in the ladle or the vacuum degassing tank is melted, thereby increasing the refractory cost. However, there is no problem because the steel price is traded according to the price.

これに対して、目標S濃度が数十ppmレベルの低硫鋼やそれ以上の一般の普通鋼では、溶銑予備処理の段階でS濃度を低減することで、特段に二次精錬での脱硫処理を実施することなく目標S濃度の上限以下となるようにしていた。これは、二次精錬での脱硫処理は、低硫鋼や普通鋼では、上記のコスト上昇を鋼材価格が補いきれないからである。   On the other hand, in low-sulfur steels with a target S concentration of several tens of ppm level and general ordinary steels of more than that, desulfurization treatment in the secondary refining process is especially achieved by reducing the S concentration in the hot metal pretreatment stage. It was made to become below the upper limit of target S concentration, without implementing. This is because the desulfurization treatment in secondary refining cannot compensate for the above-mentioned cost increase in low-sulfur steel and ordinary steel.

しかし、近年、スラグに対する環境規制の観点から、転炉脱炭精錬における媒溶剤にフッ素含有物質である蛍石を使用しない傾向になってきたことと、CO2 発生量低減の要請から、鉄スクラップを転炉で多量に使用する操業が増えたことによって、これらの低硫鋼や普通鋼で目標S濃度の上限外れが発生するようになった。これは、品質の悪い鉄スクラップ中からのSの混入が避けがたいことと、併せて、転炉での媒溶剤に蛍石を使用しなくなったことに起因する転炉スラグの脱硫能の低下とが相俟って発生したものである。
特開2005−179762号公報 特開2003−342631号公報 特開平11−6009号公報
However, in recent years, in view of environmental regulations for the slag, and it has become a trend that does not use fluorite fluorine-containing substances to medium solvent in BOF decarburization refining, the demand for CO 2 emissions reduction, scrap iron As a result of an increase in operations that use a large amount of steel in converters, the lower limit of the target S concentration has occurred in these low-sulfur steels and plain steels. This is due to the inevitable mixing of S from scrap iron with poor quality and, at the same time, the desulfurization ability of converter slag due to the fact that fluorite is no longer used as the solvent solvent in the converter. Together.
JP 2005-179762 A Japanese Patent Application Laid-Open No. 2003-342631 Japanese Patent Laid-Open No. 11-6209

このように、普通鋼や低硫鋼で転炉出鋼時のS含有量が目標S濃度の上限を外れた場合、これを救済する有効な手だては無かった。例えば、このようなチャージをLFにて脱硫処理しようとすると、連続鋳造工程までの製造工程が撹乱されて連続鋳造工程での連々鋳を妨げる原因となり、また、溶鋼加熱の電力や耐火物溶損のためにコストが著しく増大し、経済的に成り立たないからである。   As described above, when the S content at the time of steel leaving the converter is out of the upper limit of the target S concentration in ordinary steel or low-sulfur steel, there is no effective means for relieving this. For example, if such a charge is desulfurized with LF, the manufacturing process up to the continuous casting process will be disturbed, which will hinder continuous casting in the continuous casting process. For this reason, the cost is remarkably increased and it is not economically viable.

一方、普通鋼や低硫鋼のほとんどが、介在物の低減や合金成分の調整を目的としてRH真空脱ガス装置で処理される現状にあっては、RH脱ガス処理中に脱硫処理することは製造工程に撹乱を生じる心配はない。しかし、RH真空脱ガス装置において、特許文献2や特許文献3のような高脱硫能の脱硫用フラックスを使用することは、脱硫用フラックスコストや耐火物コストを増大させるという問題を起こす。   On the other hand, in the present situation where most of ordinary steel and low-sulfurized steel are processed with an RH vacuum degassing apparatus for the purpose of reducing inclusions and adjusting alloy components, desulfurization during RH degassing is not possible. There is no worry of disturbing the manufacturing process. However, in the RH vacuum degassing apparatus, using a desulfurization flux having a high desulfurization capability such as Patent Document 2 and Patent Document 3 causes a problem of increasing the desulfurization flux cost and the refractory cost.

また、上述のような普通鋼や低硫鋼の目標S濃度の上限外れを救済する程度であれば、脱硫用フラックスの使用量を削減しても十分に対処可能と考えられるが、少量の脱硫用フラックスで脱硫処理した際には、脱硫用フラックスの一部が真空脱ガス槽の側壁に付着したり取鍋壁に付着したりして、脱硫反応に寄与しない場合があり、脱硫効率に大きなバラツキが生じる。その結果、目標S濃度の上限外れを解消できない場合も発生する。   In addition, if the amount of relief of the target S concentration of ordinary steel or low-sulfur steel as described above is remedied, it can be sufficiently dealt with by reducing the amount of flux used for desulfurization. When the desulfurization treatment is performed with the flux for use, a part of the desulfurization flux may adhere to the side wall of the vacuum degassing tank or to the ladle wall, which may not contribute to the desulfurization reaction. Variations occur. As a result, a case where the target S concentration exceeds the upper limit cannot be solved.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、転炉出鋼時に普通鋼或いは低硫鋼のS含有量が、目標S濃度の上限を外れた場合、或いは、目標S濃度の上限ぎりぎりで、復硫によっては目標S濃度の上限を外れる恐れのある場合に、連続鋳造工程までの製造工程に撹乱を生ずることなく、且つ、製造コストの上昇を抑え、しかも安定してこれらのS含有量を目標上限値以下に低減することのできる有効な溶鋼の脱硫方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is when the S content of ordinary steel or low-sulfurized steel deviates from the upper limit of the target S concentration at the time of converter steelmaking, or the target If the upper limit of the S concentration is just below the limit of the target S concentration by resulfurization, the manufacturing process up to the continuous casting process is not disturbed, and the increase in manufacturing cost is suppressed and stable. The present invention is to provide an effective method for desulfurizing molten steel that can reduce the S content below the target upper limit value.

上記課題を解決するために、本発明は、溶銑の脱炭精錬により得た溶鋼を転炉から取鍋に出鋼し、取鍋内溶鋼の浴面上に存在するスラグの還元処理を行った後、溶鋼をRH真空脱ガス装置にて二次精錬するに当たり、RH真空脱ガス装置にて溶鋼中にAlを投入して溶鋼を脱酸した後、RH真空脱ガス装置に設けた上吹きランスから、真空脱ガス槽内の溶鋼浴面に向けて、脱硫用フラックスを吹き付けて溶鋼を脱硫する方法であって、前記脱硫用フラックスが、CaO粉及びAl 2 3 粉の混合物を加熱・溶融し、固化させた後に粉砕処理して得られる、CaOを48〜58mass%、Al23 を42〜52mass%含有し、CaF2 を含有しない脱硫用プリメルトフラックスであることを特徴とする、溶鋼の脱硫方法を提供する。その際に、前記上吹きランスから脱硫用プリメルトフラックスを吹き付ける前に、真空脱ガス槽内の溶鋼にMgOを投入することが好ましい。 In order to solve the above-mentioned problems, the present invention takes out molten steel obtained by decarburizing and refining hot metal from a converter to a ladle, and performs reduction treatment of slag present on the bath surface of molten steel in the ladle. Then, when secondary refining of molten steel with RH vacuum degassing equipment, Al was introduced into the molten steel with RH vacuum degassing equipment, the molten steel was deoxidized, and then the upper blow lance provided in the RH vacuum degassing equipment The desulfurization flux is heated and melted by spraying desulfurization flux onto the molten steel bath surface in the vacuum degassing tank, and the desulfurization flux heats and melts the mixture of CaO powder and Al 2 O 3 powder. And obtained by pulverizing after solidifying , 48 to 58 mass% of CaO, 42 to 52 mass% of Al 2 O 3, and a premelt flux for desulfurization that does not contain CaF 2 , A method for desulfurization of molten steel is provided. At that time, it is preferable to put MgO into the molten steel in the vacuum degassing tank before spraying the desulfurization premelt flux from the top blowing lance.

本発明によれば、転炉出鋼時に普通鋼や低硫鋼のS含有量が、目標S濃度の上限を外れた場合、或いは目標S濃度の上限ぎりぎりで、復硫によっては目標S濃度の上限を外れる恐れのある場合に、普通鋼や低硫鋼のほとんどが処理されるRH真空脱ガス装置を用いて脱硫処理を行うので、製造工程に撹乱を生じることなく、脱硫処理を実施することができる。   According to the present invention, when the S content of ordinary steel or low-sulfurized steel deviates from the upper limit of the target S concentration at the time of converter steelmaking, or just below the upper limit of the target S concentration, When there is a risk of exceeding the upper limit, desulfurization is performed using RH vacuum degassing equipment that can treat most of ordinary steel and low-sulfur steel, so that desulfurization should be performed without disturbing the manufacturing process. Can do.

また、本発明によれば、脱硫用フラックスとして、CaOを48〜58mass%、Al23 を42〜52mass%含有し、CaF2 を含有しないプリメルトフラックスを使用するので、つまり、CaF2(蛍石)を使用しないので、脱硫用フラックスコストは安価であるうえに、真空脱ガス槽の耐火物を溶損する心配がない。また、プリメルトフラックスであるので、生石灰よりも硬質であり、搬送中に粉化しにくく、真空脱ガス槽内に上吹きランスを介して吹き付けた際に、真空排気系へのキャリーオーバーが少なく、無駄なく溶鋼に侵入させることができるのみならず、一旦溶鋼に侵入すると溶解が速く且つ溶鋼の脱酸のためにRH真空脱ガス装置で投入したAlによる脱酸生成物を吸収して脱硫に最適なCaO・Al23 (CaOが34mass%、Al23 が66mass%に相当)の溶融相が生成し、これが速やかに溶鋼を脱硫する。 Further, according to the present invention, as the desulfurization flux, a premelt flux containing 48 to 58 mass% of CaO, 42 to 52 mass% of Al 2 O 3 and not containing CaF 2 is used, that is, CaF 2 ( Since fluorite is not used, the desulfurization flux cost is low, and there is no fear of melting the refractory in the vacuum degassing tank. In addition, since it is a pre-melt flux, it is harder than quick lime, it is difficult to pulverize during transportation, and when it is blown into the vacuum degassing tank through the top blowing lance, there is little carry over to the vacuum exhaust system, Not only can it penetrate into molten steel without waste, but once it penetrates into molten steel, it melts quickly and absorbs the deoxidation product of Al introduced in the RH vacuum degasser for deoxidation of molten steel, making it ideal for desulfurization A molten phase of CaO · Al 2 O 3 (CaO corresponds to 34 mass%, Al 2 O 3 corresponds to 66 mass%) is generated, and this quickly desulfurizes the molten steel.

また更に、プリメルトフラックスであるので、溶融の潜熱が小さく、CaOとAl23 とを単に混合したフラックスや焼結フラックスに比べて溶鋼の温度低下が小さい。この溶鋼の温度低下が小さいことと、CaF2を含有しないために耐火物溶損の心配がないこと及びCaF2 や金属Caを含有しないために安価であることから、比較的多くの量の脱硫用フラックスを使用することができ、このため脱硫反応効率が安定するという優れた効果が得られる。 Furthermore, since it is a pre-melt flux, the latent heat of melting is small, and the temperature drop of molten steel is small compared to a flux obtained by simply mixing CaO and Al 2 O 3 or a sintered flux. And the temperature drop of the molten steel is small, because it is inexpensive because it does not contain that and CaF 2 and metal Ca there is no fear of the refractory erosion for not containing CaF 2, a relatively large amount of desulfurization Therefore, an excellent effect that the desulfurization reaction efficiency is stabilized can be obtained.

また、脱硫用プリメルトフラックスを溶鋼に向けて吹き付ける以前に、真空脱ガス槽内の溶鋼にMgOを投入することにより、このMgOはRH真空脱ガス装置の下降管から溶鋼流に随伴されて取鍋内の溶鋼に入り、浮上して取鍋内溶鋼の浴面上に存在するスラグと溶鋼との間に高融点のバリア層を形成する。このバリア層によって取鍋内に存在するスラグ中のFeOやMnOなどの酸化性成分による溶鋼の再酸化が防止でき、脱硫に好適な低酸素ポテンシャルの雰囲気を維持することができるとともに、復硫も防止できる。   In addition, MgO is introduced into the molten steel in the vacuum degassing tank before the desulfurization premelt flux is sprayed toward the molten steel, so that this MgO is taken along with the molten steel flow from the downcomer of the RH vacuum degasser. The molten steel enters the molten steel in the pan, and floats to form a high melting point barrier layer between the molten steel and the slag present on the bath surface of the molten steel in the ladle. This barrier layer can prevent reoxidation of the molten steel due to oxidizing components such as FeO and MnO in the slag present in the ladle, can maintain an atmosphere with a low oxygen potential suitable for desulfurization, and can also be resulfurized. Can be prevented.

以下、本発明を具体的に実施するに当たっての好ましい形態を説明する。   Hereinafter, preferred embodiments for concretely implementing the present invention will be described.

本発明は、溶銑を転炉で脱炭精錬して普通鋼或いは低硫鋼を製造する際に、転炉脱炭精錬の終了時における溶鋼成分のS含有量が、目標S濃度の上限を外れた場合、或いは、目標S濃度の上限ぎりぎりで、復硫によっては目標S濃度の上限を外れる恐れのある場合に、以下のようにして溶鋼に脱硫処理を施し、溶鋼のS含有量を目標S濃度の上限値以下まで減少させる。   In the present invention, when producing normal steel or low-sulfur steel by decarburizing and refining hot metal in a converter, the S content of the molten steel component at the end of the converter decarburization retreats from the upper limit of the target S concentration. In the case where the upper limit of the target S concentration is exceeded, and there is a possibility that the upper limit of the target S concentration may be deviated depending on the resulfurization, the molten steel is desulfurized as follows, and the S content of the molten steel is set to the target S. Decrease to below the upper limit of concentration.

即ち、転炉脱炭精錬終了時の溶鋼成分分析値のS濃度が、目標S濃度の上限を外れた場合或いは外れそうな場合に、転炉では当該溶鋼に対して特別な処理を実施することなく、得られた溶鋼を予定通り転炉から取鍋へ出鋼し、この出鋼の末期或いは出鋼後に、転炉から取鍋内に流出したスラグにAlなどの強脱酸剤を還元剤として添加してスラグの還元処理を行い、その後、溶鋼をRH真空脱ガス装置に搬送し、RH脱ガス処理中の溶鋼にAlを投入して溶鋼を脱酸した後、真空脱ガス槽に設けた上吹きランスから、真空脱ガス槽内の溶鋼浴面に向けて脱硫用フラックスを吹き付けて溶鋼を脱硫する。   That is, when the S concentration of the molten steel component analysis value at the end of converter decarburization retreats or is likely to deviate from the upper limit of the target S concentration, the converter performs a special treatment on the molten steel. The resulting molten steel is discharged from the converter to the ladle as planned, and a strong deoxidizer such as Al is added to the slag that flows out of the converter into the ladle at the end or after the start of the steel discharge. Add slag to reduce the slag, then transport the molten steel to the RH vacuum degassing device, put Al into the molten steel during RH degassing treatment, deoxidize the molten steel, and then install it in the vacuum degassing tank The desulfurization flux is sprayed from the top blowing lance toward the molten steel bath surface in the vacuum degassing tank to desulfurize the molten steel.

ここで、低硫鋼とは、目標S濃度が数十ppmレベルの鋼で、普通鋼とは、目標S濃度が低硫鋼の目標S濃度以上であって、上限値がおよそ0.03mass%程度の鋼である。但し、普通鋼でも仕様に応じてS濃度の目標値は異なり、上限値が0.010mass%のものや0.015mass%のものなど、様々である。   Here, the low sulfur steel is a steel having a target S concentration of several tens of ppm, and the ordinary steel is a target S concentration equal to or higher than the target S concentration of the low sulfur steel, and the upper limit is about 0.03 mass%. About steel. However, even in ordinary steel, the target value of the S concentration varies depending on the specifications, and the upper limit value is various, such as 0.010 mass% and 0.015 mass%.

転炉脱炭精錬で使用する溶銑は、特に制限はないが、溶銑予備処理によってSやPを低減したものであることが好ましい。特に、溶銑脱硫処理によってSを低減しておくと、転炉脱炭精錬で得られる溶鋼のS含有量の目標上限外れが生じても、その超過分が小さく、RH真空脱ガス装置での脱硫負荷を小さくできるからである。また、脱炭精錬を行う転炉の形式には特に制限がなく、上吹き転炉、不活性ガス底吹き攪拌方式の上底吹き転炉、上吹きランスと底吹き羽口の両方から溶鋼に酸素を供給する酸素上底吹き転炉、底吹き転炉の何れであってもよい。   The hot metal used in converter decarburization refining is not particularly limited, but is preferably one in which S and P are reduced by hot metal pretreatment. In particular, if S is reduced by the hot metal desulfurization treatment, even if the S content of the molten steel obtained by converter decarburization refining exceeds the target upper limit, the excess amount is small, and desulfurization by the RH vacuum degassing device This is because the load can be reduced. There are no particular restrictions on the type of converter that performs decarburization and refining, and there are no restrictions on the top blowing converter, the top bottom blowing converter with the inert gas bottom blowing stirring method, and both the top blowing lance and bottom blowing tuyere are used for molten steel. Either an oxygen top-bottom converter or a bottom-blowing converter for supplying oxygen may be used.

本発明が対象とする鋼は、目標S濃度の上限が数十ppmの低硫鋼、及び、それより高S濃度まで許容できる普通鋼である。目標S濃度の上限が数ppmの極低硫鋼は、本発明では十分に脱硫するのは困難である場合が多いので、好ましくない。   The steels targeted by the present invention are low-sulfur steel whose upper limit of the target S concentration is several tens of ppm, and ordinary steel that can tolerate even higher S concentrations. An extremely low sulfur steel having an upper limit of the target S concentration of several ppm is not preferable because it is often difficult to sufficiently desulfurize in the present invention.

本発明においては、RH真空脱ガス装置での脱硫を確実に実施するために、転炉からの出鋼時に取鍋に流出した溶鋼浴面上のスラグに、Alなどの強脱酸剤を還元剤として添加し、スラグを還元することが必要である。スラグの還元剤としては、安価であることからAl灰(「アルミドロス」ともいう)が好適である。Al灰とは、金属Alを30〜50mass%含有した金属AlとAl23 との混合物であり、他の成分も含有している。 In the present invention, a strong deoxidizer such as Al is reduced to the slag on the surface of the molten steel that has flowed into the ladle when steel is discharged from the converter in order to reliably perform desulfurization in the RH vacuum degassing apparatus. It is necessary to add slag and reduce slag. As the slag reducing agent, Al ash (also referred to as “aluminum dross”) is preferable because of its low cost. Al ash is a mixture of metal Al containing 30 to 50 mass% of metal Al and Al 2 O 3, and also contains other components.

スラグの還元の目安としては、スラグ中のFeOとMnOとの合計含有量が5mass%以下程度とするのが望ましい。スラグ中のFeOとMnOとの合計含有量が5mass%よりも多いと、脱硫処理時或いは脱硫処理後にスラグによる溶鋼の再酸化が発生して、脱硫反応を阻害したり、復硫を生じさせたりする原因となる。一方、2mass%未満まで還元するには還元剤を多量に使用しなくてはならず、経済的ではない。尚、溶鋼を転炉から出鋼する際には、通常の精錬と同様に、Si、Mn、Alなどで溶鋼を粗く脱酸しても構わない。   As a standard of slag reduction, it is desirable that the total content of FeO and MnO in the slag is about 5 mass% or less. If the total content of FeO and MnO in the slag is greater than 5 mass%, reoxidation of the molten steel by the slag occurs during or after the desulfurization treatment, thereby inhibiting the desulfurization reaction or causing resulfurization. Cause. On the other hand, to reduce to less than 2 mass%, a large amount of reducing agent must be used, which is not economical. When the molten steel is removed from the converter, the molten steel may be roughly deoxidized with Si, Mn, Al, etc., as in normal refining.

RH真空脱ガス装置では、溶鋼のRH脱ガス処理中に、真空脱ガス槽内の溶鋼にAlを投入して溶鋼を脱酸した後、真空脱ガス槽に設けた上吹きランスから、真空脱ガス槽内の溶鋼浴面に向けて脱硫用フラックスを吹き付けて添加する。ここで溶鋼中へのAl投入量は、各鋼種の目標とする成分組成(鋼種により異なる)に依存するので一概には決められないが、通常のアルミキルド鋼では、total.Alにして0.050〜0.100mass%が目標組成となることが多いので、RH脱ガス処理前の溶鋼成分を分析し、それに応じて不足分を投入すればよい。尚、total.Alとは、溶鋼に溶解しているAlと、Al23 などの酸化物形態で溶鋼中に存在しているAlとの合計値であり、また、粉粒体を吹き付けて添加することは「投射」とも呼ばれている。 In the RH vacuum degassing apparatus, during the RH degassing treatment of molten steel, Al is introduced into the molten steel in the vacuum degassing tank to deoxidize the molten steel, and then the vacuum degassing is performed from an upper blow lance provided in the vacuum degassing tank. Add desulfurization flux by spraying toward the molten steel bath surface in the gas tank. Here, the amount of Al input into the molten steel depends on the target component composition (varies depending on the steel type) of each steel type, and thus cannot be unconditionally determined. However, in a normal aluminum killed steel, the total Al is 0.050. Since .about.0.100 mass% is often the target composition, the molten steel components before the RH degassing treatment are analyzed, and the deficiency may be added accordingly. The total.Al is the total value of Al dissolved in the molten steel and Al existing in the molten steel in the form of oxides such as Al 2 O 3 , Adding is also called “projection”.

この投射用の上吹きランスは真空脱ガス槽内に上方から垂直に挿入する場合や、真空脱ガス槽の側壁から斜めに挿入する方式などが知られており、特に制限はないが、脱硫用フラックスのキャリーオーバーを少なくする観点からは垂直に挿入するのが好ましい。   The top blow lance for projection is known to be inserted into the vacuum degassing tank vertically from above or obliquely inserted from the side wall of the vacuum degassing tank. From the viewpoint of reducing the carry-over of the flux, it is preferably inserted vertically.

脱硫用フラックスとしては、CaO粉及びAl23 粉の混合物を加熱・溶融し、固化させた後に粉砕処理して得られる、CaOを48〜58mass%、Al23 を42〜52mass%含有し、CaF2 を含有していないプリメルトフラックスを使用する。脱硫用フラックスとして、CaO粉とAl23 粉との単なる混合物を使用すると、フラックスの搬送中に粉化(とくにCaOの粉化)が発生しやすく、その結果、微粉成分が溶鋼浴面に到達する前に真空脱ガス槽の排気系に吸引(所謂「キャリーオーバー」)されやすいうえに、溶鋼中に侵入してからの溶解も遅く、脱硫が速やかに進行しないが、CaOとAl23 とをプリメルトすることにより、これらの問題は全て解消される。脱硫用フラックスにはCaF2 を含有させないが、これは耐火物の溶損を極力防止するため及び脱硫用フラックスコストを安価にするために、必要なことである。 As a flux for desulfurization, a mixture of CaO powder and Al 2 O 3 powder is heated, melted, solidified and then pulverized, and contains 48 to 58 mass% CaO and 42 to 52 mass% Al 2 O 3 And a premelt flux not containing CaF 2 is used. If a simple mixture of CaO powder and Al 2 O 3 powder is used as the desulfurization flux, pulverization (particularly CaO pulverization) is likely to occur during the conveyance of the flux. It is easy to be sucked into the exhaust system of the vacuum degassing tank before it reaches (so-called “carry over”), and the dissolution after entering the molten steel is slow and desulfurization does not proceed rapidly, but CaO and Al 2 O All of these problems can be solved by premelting 3 . The desulfurization flux does not contain CaF 2 , but this is necessary to prevent the refractory from being melted as much as possible and to reduce the desulfurization flux cost.

脱硫用フラックス中のCaOを48〜58mass%、Al23 を42〜52mass%とする理由は、溶鋼中に脱硫用フラックスが侵入した際に、脱酸生成物である溶鋼中のAl23を吸収して脱硫に最適なCaO・Al23 組成の液相が容易に生成するようにするためである。CaOが48mass%よりも少ないか、Al23 が52mass%よりも多い場合には、脱硫能が乏しく、好ましくない。また、CaOが58mass%よりも多いか、Al23 が42mass%よりも少ない場合には、脱硫用フラックスの融点が高く、溶鋼中に侵入しても速やかに溶解しないので脱硫が遅滞し、好ましくない。 48~58Mass% of CaO in the desulfurization flux, reason why the Al 2 O 3 and 42~52Mass%, when desulfurizing flux into the molten steel invades, Al 2 O in the molten steel is deoxidized product This is because a liquid phase having a CaO · Al 2 O 3 composition optimum for desulfurization by absorbing 3 is easily generated. Or CaO is less than 48Mass%, when Al 2 O 3 is greater than 52Mass% are poor desulfurization performance is not preferable. Also, if CaO is greater than 58mass%, Al 2 when O 3 is less than 42Mass% has a high melting point of the desulfurization flux, and desulfurization delay does not dissolve quickly be penetrated in the molten steel, It is not preferable.

プリメルトフラックスの粒度は、反応効率の観点から粒径1mm未満、望ましくは粒径150μm未満が質量比率で90%以上であることが好ましい。一方、キャリーオーバーを少なくする観点からは微粉分は少ない方が望ましく、従って、粒径10μm未満が質量比率で10%未満であるのが好ましく、粒径50μm未満が10%未満であるのがより好ましい。尚、脱硫用フラックス中には不純物として5mass%までのSiO2 は許容できる。これよりもSiO2 が多いと、脱硫能が低下するので好ましくない。 The particle size of the premelt flux is preferably 90% or more in terms of mass ratio with a particle size of less than 1 mm, desirably less than 150 μm, from the viewpoint of reaction efficiency. On the other hand, from the viewpoint of reducing carryover, it is desirable that the amount of fine powder is small. Therefore, the particle size of less than 10 μm is preferably less than 10% by mass, and the particle size of less than 50 μm is less than 10%. preferable. In the desulfurization flux, SiO 2 up to 5 mass% is acceptable as an impurity. If there is more SiO 2 than this, the desulfurization ability decreases, which is not preferable.

更に、脱硫時の溶鋼の酸素ポテンシャルを低位に維持するとともに、脱硫後の復硫を効果的に防止するために、RH真空脱ガス装置にて脱硫用プリメルトフラックスを吹き付け添加する前に、真空脱ガス槽内の溶鋼にMgOを投入することが好ましい。MgOの投入方法としては、真空脱ガス槽の上部に設けられた副原料投入シュートから投入する方法、或いは、脱硫用フラックスを投射する上吹きランスから投射する方法のどちらであっても構わないが、キャリーオーバーを少なくし、塊状のマグネシアクリンカーなども使用できる点からは、前者の方法を採用することが好ましい。   Furthermore, in order to maintain the oxygen potential of the molten steel at the time of desulfurization at a low level, and to effectively prevent desulfurization after desulfurization, before adding the premelt flux for desulfurization by spraying with a RH vacuum degasser, a vacuum is applied. It is preferable to put MgO into the molten steel in the degassing tank. As a method of charging MgO, either a method of charging from an auxiliary material charging chute provided at the upper part of the vacuum degassing tank or a method of projecting from an upper blowing lance that projects a desulfurization flux may be used. The former method is preferably employed from the viewpoint that carry-over is reduced and a massive magnesia clinker can be used.

このMgOはRH真空脱ガス装置の下降管から溶鋼流に随伴されて取鍋内の溶鋼に入り、溶鋼中を浮上して、取鍋内溶鋼の浴面上に存在するスラグと溶鋼との間に高融点のバリア層を形成する。このバリア層によって取鍋スラグ中のFeOやMnOなどの酸化性成分による溶鋼の再酸化が防止でき、脱硫に好適な低酸素ポテンシャルの雰囲気を維持することができるとともに、復硫も防止できる。MgO源としてはマグネシアクリンカーのほかマグネシア系耐火物屑なども使用できる。上記効果を発揮させるための好ましいMgOの投入量は、溶鋼トン当たり1kg(以下「kg/t」と記す)以上、より好ましくは1.5kg/t以上である。但し、多量に投入すると溶鋼の温度降下をきたすので、好ましくは上限を5kg/tとし、より好ましくは3kg/tとする。   This MgO is accompanied by the molten steel flow from the downcomer of the RH vacuum degassing device, enters the molten steel in the ladle, floats in the molten steel, and between the slag present on the bath surface of the molten steel in the ladle and the molten steel A barrier layer having a high melting point is formed. This barrier layer can prevent reoxidation of the molten steel due to oxidizing components such as FeO and MnO in the ladle slag, can maintain a low oxygen potential atmosphere suitable for desulfurization, and can also prevent resulfurization. In addition to magnesia clinker, magnesia-based refractory waste can be used as the MgO source. A preferable input amount of MgO for exhibiting the above effect is 1 kg (hereinafter referred to as “kg / t”) or more, more preferably 1.5 kg / t or more per ton of molten steel. However, since a temperature drop of the molten steel is caused when a large amount is added, the upper limit is preferably 5 kg / t, more preferably 3 kg / t.

上記のように構成された本発明によれば、転炉出鋼時に目標S濃度の上限を外れたか、或いは、目標S濃度の上限ぎりぎりで復硫によっては代表成分において目標S濃度の上限を外れる恐れのある普通鋼や低硫鋼を効果的に脱硫処理することができる。しかも、近年、普通鋼や低硫鋼のほとんどが、介在物の低減や合金成分の調整を目的としてRH真空脱ガス装置で処理されるようになったので、RH脱ガス精錬に脱硫処理を追加実施しても製造工程に撹乱を生じる心配はない。   According to the present invention configured as described above, the upper limit of the target S concentration is deviated during converter steelmaking, or the upper limit of the target S concentration is deviated from the upper limit of the target S concentration. It is possible to effectively desulfurize ordinary steel and low-sulfur steel with fear. In addition, in recent years, most of ordinary steel and low-sulfur steel have been treated with RH vacuum degassing equipment for the purpose of reducing inclusions and adjusting alloy components, so desulfurization treatment has been added to RH degassing refining. Even if it implements, there is no worry that the manufacturing process will be disturbed.

[本発明例1]
目標S濃度の上限が0.0024mass%である低炭アルミキルドの低硫鋼の精錬に本発明を適用した。当該低硫鋼を製造するに当たり、使用した溶銑は脱硫処理の施された溶銑であるが、溶銑のS含有量から判断して前記目標S濃度を安定して達成することは困難であったので、本発明を適用することとした。
[Invention Example 1]
The present invention was applied to the refining of low-carbon aluminum killed low-sulfur steel with an upper limit of the target S concentration of 0.0024 mass%. In producing the low-sulfur steel, the hot metal used was desulfurized hot metal, but it was difficult to stably achieve the target S concentration judging from the S content of the hot metal. The present invention was applied.

脱硫処理の施された溶銑を転炉にて脱炭精錬して約300トンの溶鋼を得て、この溶鋼を取鍋に出鋼した。取鍋内の溶鋼のS含有量は0.0026mass%であった。取鍋内のスラグにアルミ灰(金属Al分30mass%)を添加してスラグを還元処理し、スラグ中のFeOとMnOとの合計含有量を2.8mass%とした後、溶鋼をRH真空脱ガス装置に搬送した。   The desulfurized hot metal was decarburized and refined in a converter to obtain about 300 tons of molten steel, and the molten steel was taken out into a ladle. The S content of the molten steel in the ladle was 0.0026 mass%. Aluminum ash (metal Al content: 30 mass%) is added to the slag in the ladle to reduce the slag, and the total content of FeO and MnO in the slag is 2.8 mass%. It was conveyed to the gas device.

RH真空脱ガス装置で溶鋼の環流を開始後、真空脱ガス槽内の溶鋼にAlを投入して脱酸処理した。脱酸処理後、CaO:51mass%、Al23 :45mass%、SiO2 :1mass%の脱硫用プリメルトフラックス(粒径10〜250μm)を、Arガスをキャリアガスとして、真空脱ガス槽の上方から挿入した上吹きランスを通じて真空脱ガス槽内の溶鋼浴面に向けて投射した。投射時の真空脱ガス槽内の圧力は2.6〜3.9kPa(20〜30torr)であり、投射速度を約80kg/min(0.27kg/min・t)、キャリアガス流量を8Nm3 /min(0.027Nm3 /min・t)として10分間投射した。投射した脱硫用プリメルトフラックスは750kg(2.5kg/t)であった。脱硫処理後の溶鋼中S含有量は0.0019mass%、脱硫率は26.9%であった。 After starting the recirculation of the molten steel with the RH vacuum degassing apparatus, Al was introduced into the molten steel in the vacuum degassing tank for deoxidation treatment. After the deoxidation treatment, a premelt flux for desulfurization (particle size: 10 to 250 μm) of CaO: 51 mass%, Al 2 O 3 : 45 mass%, SiO 2 : 1 mass%, Ar gas as a carrier gas, and vacuum degassing tank It projected toward the molten steel bath surface in a vacuum degassing tank through the upper blowing lance inserted from the upper part. The pressure in the vacuum degassing tank at the time of projection is 2.6 to 3.9 kPa (20 to 30 torr), the projection speed is about 80 kg / min (0.27 kg / min · t), and the carrier gas flow rate is 8 Nm 3 / Projection was performed for 10 minutes as min (0.027 Nm 3 / min · t). The projected premelt flux for desulfurization was 750 kg (2.5 kg / t). The S content in the molten steel after the desulfurization treatment was 0.0019 mass%, and the desulfurization rate was 26.9%.

脱硫処理後、この溶鋼に必要な合金材を投入して溶鋼成分の最終調整を実施した後、RH脱ガス処理を終了した。次いで、溶鋼を連続鋳造設備に搬送して連続鋳造し、連続鋳造中にタンディッシュから代表溶鋼サンプルを採取した。この代表溶鋼サンプルのS濃度を分析した結果、S濃度は0.0021mass%であり、目標S濃度の上限値を満足した。   After the desulfurization treatment, an alloy material necessary for the molten steel was added and final adjustment of the molten steel components was performed, and then the RH degassing treatment was finished. Next, the molten steel was conveyed to a continuous casting facility and continuously cast, and a representative molten steel sample was collected from the tundish during continuous casting. As a result of analyzing the S concentration of this representative molten steel sample, the S concentration was 0.0021 mass%, which satisfied the upper limit of the target S concentration.

目標S濃度の上限が0.0024mass%である低炭アルミキルドの低硫鋼の9チャージについて上記と同様の処理を行った。その結果、脱硫用プリメルトフラックスの平均原単位が2.2kg/tで、平均脱硫率は26.1%、脱硫率のバラツキは±6.5%であり、狭い範囲にS含有量を調整することができた。   The same treatment as above was performed for 9 charges of low-carbon aluminum killed low-sulfur steel with an upper limit of the target S concentration of 0.0024 mass%. As a result, the average basic unit of the premelt flux for desulfurization was 2.2 kg / t, the average desulfurization rate was 26.1%, and the variation in desulfurization rate was ± 6.5%, and the S content was adjusted in a narrow range. We were able to.

[本発明例2]
本発明例1と同様に、目標S濃度の上限が0.0024mass%である低炭アルミキルドの低硫鋼の精錬に本発明を適用した。当該低硫鋼を製造するに当たり、使用した溶銑は脱硫処理の施された溶銑であるが、溶銑のS含有量から判断して前記目標S濃度を安定して達成することは困難であったので、本発明を適用することとした。
[Invention Example 2]
In the same manner as in Example 1 of the present invention, the present invention was applied to refining a low-carbon aluminum killed low-sulfur steel having an upper limit of the target S concentration of 0.0024 mass%. In producing the low-sulfur steel, the hot metal used was desulfurized hot metal, but it was difficult to stably achieve the target S concentration judging from the S content of the hot metal. The present invention was applied.

脱硫処理の施された溶銑を転炉にて脱炭精錬して約300トンの溶鋼を得て、この溶鋼を取鍋に出鋼した。取鍋内の溶鋼のS含有量は0.0027mass%であった。取鍋内のスラグにアルミ灰(金属Al分30mass%)を添加してスラグを還元処理し、スラグ中のFeOとMnOとの合計含有量を3.0mass%とした後、溶鋼をRH真空脱ガス装置に搬送した。   The desulfurized hot metal was decarburized and refined in a converter to obtain about 300 tons of molten steel, and the molten steel was taken out into a ladle. The S content of the molten steel in the ladle was 0.0027 mass%. Aluminum ash (metal Al content: 30 mass%) is added to the slag in the ladle to reduce the slag, and the total content of FeO and MnO in the slag is 3.0 mass%. It was conveyed to the gas device.

RH真空脱ガス装置で溶鋼の環流を開始後、真空脱ガス槽内の溶鋼にAlを投入して脱酸処理した。Al投入から2分経過した時点で、真空脱ガス槽の上方にある副原料投入シュートからマグネシアクリンカー540kg(1.8kg/t)を真空脱ガス槽内の溶鋼浴面上に添加した。その後2分経過し、真空脱ガス槽内の溶鋼浴面上にマグネシアクリンカーが存在しなくなった以降、CaO:51mass%、Al23 :45mass%、SiO2 :1mass%の脱硫用プリメルトフラックス(粒径10〜250μm)を、Arガスをキャリアガスとして、真空脱ガス槽の上方から挿入した上吹きランスを通じて真空脱ガス槽内の溶鋼浴面に向けて投射した。投射時の真空脱ガス槽内の圧力は2.6〜3.9kPa(20〜30torr)であり、投射速度を約75kg/min(0.25kg/min・t)、キャリアガス流量を7.5Nm3 /min(0.025Nm3 /min・t)として10分間投射した。投射した脱硫用プリメルトフラックスは720kg(2.4kg/t)であった。脱硫処理後の溶鋼中S含有量は0.0020mass%、脱硫率は25.9%であった。 After starting the recirculation of the molten steel with the RH vacuum degassing apparatus, Al was introduced into the molten steel in the vacuum degassing tank for deoxidation treatment. When 2 minutes had elapsed from the introduction of Al, 540 kg (1.8 kg / t) of magnesia clinker was added onto the molten steel bath surface in the vacuum degassing tank from the auxiliary material charging chute located above the vacuum degassing tank. Then after two minutes, after which magnesia clinker to the molten steel bath surface on the vacuum degassing vessel is no longer present, CaO: 51mass%, Al 2 O 3: 45mass%, SiO 2: 1mass% of desulfurization premelt flux (A particle size of 10 to 250 μm) was projected toward the molten steel bath surface in the vacuum degassing tank through an upper blowing lance inserted from above the vacuum degassing tank using Ar gas as a carrier gas. The pressure in the vacuum degassing tank at the time of projection is 2.6 to 3.9 kPa (20 to 30 torr), the projection speed is about 75 kg / min (0.25 kg / min · t), and the carrier gas flow rate is 7.5 Nm. 3 was projected /min(0.025Nm 3 / min · t) as a 10 min. The projected pre-melt flux for desulfurization was 720 kg (2.4 kg / t). The S content in the molten steel after the desulfurization treatment was 0.0020 mass%, and the desulfurization rate was 25.9%.

脱硫処理後、この溶鋼に必要な合金材を投入して溶鋼成分の最終調整を実施した後、RH脱ガス処理を終了した。次いで、溶鋼を連続鋳造設備に搬送して連続鋳造し、連続鋳造中にタンディッシュから代表溶鋼サンプルを採取した。この代表溶鋼サンプルのS濃度を分析した結果、S濃度は0.0020mass%であり、目標S濃度の上限値を満足した。   After the desulfurization treatment, an alloy material necessary for the molten steel was added and final adjustment of the molten steel components was performed, and then the RH degassing treatment was finished. Next, the molten steel was conveyed to a continuous casting facility and continuously cast, and a representative molten steel sample was collected from the tundish during continuous casting. As a result of analyzing the S concentration of this representative molten steel sample, the S concentration was 0.0020 mass%, which satisfied the upper limit of the target S concentration.

目標S濃度の上限が0.0024mass%である低炭アルミキルドの低硫鋼の9チャージについて上記と同様の処理を行った。その結果、脱硫用プリメルトフラックスの平均原単位が2.2kg/tで、平均脱硫率は25.9%、脱硫率のバラツキは±2.5%であり、狭い範囲にS含有量を調整することができた。   The same treatment as above was performed for 9 charges of low-carbon aluminum killed low-sulfur steel with an upper limit of the target S concentration of 0.0024 mass%. As a result, the average unit of premelt flux for desulfurization was 2.2 kg / t, the average desulfurization rate was 25.9%, and the variation in desulfurization rate was ± 2.5%, and the S content was adjusted within a narrow range. We were able to.

[比較例]
本発明例1,2と同様に、目標S濃度の上限が0.0024mass%である低炭アルミキルドの低硫鋼を製造するに当たり、使用した溶銑は脱硫処理の施された溶銑であるが、溶銑のS含有量から判断して前記目標S濃度を安定して達成することは困難であったので、従来のCaF2を含有する高価な脱硫用フラックスを使用してRH真空脱ガス装置で脱硫処理をすることとした。
[Comparative example]
As in Examples 1 and 2 of the present invention, the hot metal used in producing the low-sulfur steel of low-carbon aluminum killed with an upper limit of the target S concentration of 0.0024 mass% is the hot metal subjected to desulfurization treatment. Since it was difficult to stably achieve the target S concentration as judged from the S content of desulfurization, desulfurization treatment was performed by an RH vacuum degassing apparatus using a conventional desulfurization flux containing CaF 2. I decided to do it.

脱硫処理の施された溶銑を転炉にて脱炭精錬して約300トンの溶鋼を得て、この溶鋼を取鍋に出鋼した。取鍋内の溶鋼のS含有量は0.0026mass%であった。取鍋内のスラグにアルミ灰(金属Al分30mass%)を添加してスラグを還元処理し、スラグ中のFeOとMnOとの合計含有量を2.9mass%とした後、溶鋼をRH真空脱ガス装置に搬送した。   The desulfurized hot metal was decarburized and refined in a converter to obtain about 300 tons of molten steel, and the molten steel was taken out into a ladle. The S content of the molten steel in the ladle was 0.0026 mass%. Aluminum ash (metal Al content: 30 mass%) is added to the slag in the ladle to reduce the slag to a total content of FeO and MnO in the slag of 2.9 mass%. It was conveyed to the gas device.

RH真空脱ガス装置で溶鋼の環流を開始後、真空脱ガス槽内の溶鋼にAlを投入して脱酸処理した。Al投入から2分経過した時点で、真空脱ガス槽の上方にある副原料投入シュートからマグネシアクリンカー550kg(1.83kg/t)を真空脱ガス槽内の溶鋼浴面上に添加した。その後2分経過し、真空脱ガス槽内の溶鋼浴面上にマグネシアクリンカーが存在しなくなった以降、CaO:57mass%、CaF2 :39mass%、SiO2 :2mass%の脱硫用プリメルトフラックス(粒径10〜250μm)を、Arガスをキャリアガスとして、真空脱ガス槽の上方から挿入した上吹きランスを通じて真空脱ガス槽内の溶鋼浴面に向けて投射した。投射時の真空脱ガス槽内の圧力は2.6〜3.9kPa(20〜30torr)であり、投射速度を約75kg/min(0.25kg/min・t)、キャリアガス流量を7.5Nm3 /min(0.025Nm3 /min・t)として7分間投射した。投射した脱硫用プリメルトフラックスは540kg(1.8kg/t)であった。脱硫処理後の溶鋼中S含有量は0.0019mass%、脱硫率は26.9%であった。 After starting the recirculation of the molten steel with the RH vacuum degassing apparatus, Al was introduced into the molten steel in the vacuum degassing tank for deoxidation treatment. When 2 minutes had elapsed since the introduction of Al, 550 kg (1.83 kg / t) of magnesia clinker was added onto the molten steel bath surface in the vacuum degassing tank from the auxiliary material charging chute located above the vacuum degassing tank. Then after two minutes, after which magnesia clinker is not on the molten steel bath surface in the vacuum degassing vessel, CaO: 57mass%, CaF 2 : 39mass%, SiO 2: 2mass% of desulfurization premelt flux (grain 10 to 250 μm in diameter) was projected toward the molten steel bath surface in the vacuum degassing tank through an upper blowing lance inserted from above the vacuum degassing tank using Ar gas as a carrier gas. The pressure in the vacuum degassing tank at the time of projection is 2.6 to 3.9 kPa (20 to 30 torr), the projection speed is about 75 kg / min (0.25 kg / min · t), and the carrier gas flow rate is 7.5 Nm. The projection was performed for 7 minutes at 3 / min (0.025 Nm 3 / min · t). The projected premelt flux for desulfurization was 540 kg (1.8 kg / t). The S content in the molten steel after the desulfurization treatment was 0.0019 mass%, and the desulfurization rate was 26.9%.

脱硫処理後、この溶鋼に必要な合金材を投入して溶鋼成分の最終調整を実施した後、RH脱ガス処理を終了した。次いで、溶鋼を連続鋳造設備に搬送して連続鋳造し、連続鋳造中にタンディッシュから代表溶鋼サンプルを採取した。この代表溶鋼サンプルのS濃度を分析した結果、S濃度は0.0020mass%であり、目標S濃度の上限値を満足した。   After the desulfurization treatment, an alloy material necessary for the molten steel was added and final adjustment of the molten steel components was performed, and then the RH degassing treatment was finished. Next, the molten steel was conveyed to a continuous casting facility and continuously cast, and a representative molten steel sample was collected from the tundish during continuous casting. As a result of analyzing the S concentration of this representative molten steel sample, the S concentration was 0.0020 mass%, which satisfied the upper limit of the target S concentration.

目標S濃度の上限が0.0024mass%である低炭アルミキルドの低硫鋼の15チャージについて上記と同様の処理を行った。その結果、脱硫用プリメルトフラックスの平均原単位が1.5kg/tで、平均脱硫率は25.5%であったが、脱硫率のバラツキは±15.1%であり、脱硫後のS含有量は大幅にばらついた。   The same treatment as described above was performed for 15 charges of low-sulfur aluminum-killed low-sulfur steel whose upper limit of the target S concentration was 0.0024 mass%. As a result, the average basic unit of the premelt flux for desulfurization was 1.5 kg / t and the average desulfurization rate was 25.5%, but the variation in the desulfurization rate was ± 15.1%. The content varied greatly.

Claims (3)

溶銑の脱炭精錬により得た溶鋼を転炉から取鍋に出鋼し、取鍋内溶鋼の浴面上に存在するスラグの還元処理を行った後、溶鋼をRH真空脱ガス装置にて二次精錬するに当たり、RH真空脱ガス装置にて溶鋼中にAlを投入して溶鋼を脱酸した後、脱硫用フラックスとして、CaO粉及びAl 2 3 粉の混合物を加熱・溶融し、固化させた後に粉砕処理して得られる、CaOを48〜58mass%、Al 2 3 を42〜52mass%含有し、CaF 2 を含有しない脱硫用プリメルトフラックスのみを使用し、RH真空脱ガス装置に設けた上吹きランスから、真空脱ガス槽内の溶鋼浴面に向けて、前記脱硫用プリメルトフラックスを吹き付けて溶鋼を脱硫することを特徴とする、溶鋼の脱硫方法。 The molten steel obtained by decarburizing and refining the hot metal is discharged from the converter to the ladle, and after reducing the slag present on the bath surface of the molten steel in the ladle, the molten steel is removed with an RH vacuum degasser. In the next refining, after dehydrating the molten steel by introducing Al into the molten steel with an RH vacuum degassing device , the mixture of CaO powder and Al 2 O 3 powder is heated and melted and solidified as a desulfurization flux. After using pulverization treatment, 48 to 58 mass% of CaO, 42 to 52 mass% of Al 2 O 3 , and using only a pre-melt flux for desulfurization that does not contain CaF 2 are provided in the RH vacuum degassing apparatus. over lance it was, toward the molten steel bath surface in the vacuum degassing vessel, wherein characterized the desulfurization pre-melt flux to desulfurize the molten steel by blowing Turkey, desulfurization process of the molten steel. 前記上吹きランスから脱硫用プリメルトフラックスを吹き付ける前に、真空脱ガス槽内の溶鋼にMgOを投入することを特徴とする、請求項1に記載の溶鋼の脱硫方法。   2. The desulfurization method for molten steel according to claim 1, wherein MgO is introduced into the molten steel in a vacuum degassing tank before the premelt flux for desulfurization is sprayed from the upper blowing lance. 前記脱硫用プリメルトフラックスの粒度は、粒径1mm未満が質量比率で90%以上であり、且つ、粒径10μm未満が質量比率で10%未満であることを特徴とする、請求項1または請求項2に記載の溶鋼の脱硫方法。The particle size of the pre-melt flux for desulfurization is 90% or more when the particle size is less than 1 mm, and less than 10% when the particle size is less than 10 μm. Item 3. A method for desulfurizing molten steel according to Item 2.
JP2006245555A 2006-09-11 2006-09-11 Desulfurization method for molten steel Active JP5343308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245555A JP5343308B2 (en) 2006-09-11 2006-09-11 Desulfurization method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006245555A JP5343308B2 (en) 2006-09-11 2006-09-11 Desulfurization method for molten steel

Publications (2)

Publication Number Publication Date
JP2008063647A JP2008063647A (en) 2008-03-21
JP5343308B2 true JP5343308B2 (en) 2013-11-13

Family

ID=39286607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245555A Active JP5343308B2 (en) 2006-09-11 2006-09-11 Desulfurization method for molten steel

Country Status (1)

Country Link
JP (1) JP5343308B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993976B (en) * 2009-08-10 2013-09-04 鞍钢股份有限公司 Aluminium killed steel refined deoxidizing and desulfurizing synthetic slag
JP5515651B2 (en) * 2009-11-10 2014-06-11 Jfeスチール株式会社 Desulfurization method for molten steel
JP2012017479A (en) * 2010-07-06 2012-01-26 Nippon Steel Corp Molten steel desulfurization method
JP5891826B2 (en) * 2011-02-14 2016-03-23 Jfeスチール株式会社 Desulfurization method for molten steel
EP2722405B1 (en) 2011-08-12 2018-10-10 JFE Steel Corporation Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
CN102424895A (en) * 2011-12-27 2012-04-25 攀枝花钢城集团瑞钢工业有限公司 Desulfurizer for molten steel processing, preparation method and application method thereof
JP6330559B2 (en) * 2014-08-04 2018-05-30 新日鐵住金株式会社 Denitrification refining method
JP6323688B2 (en) * 2015-07-22 2018-05-16 Jfeスチール株式会社 Desulfurization method for molten steel
EP3572534B1 (en) * 2017-01-19 2021-04-28 JFE Steel Corporation Desulfurization processing method of molten steel, and desulfurization agent
CN115044743B (en) * 2022-05-26 2023-09-15 江阴兴澄特种钢铁有限公司 Method for controlling desulfurization rate of low-carbon sulfur-containing steel in VD furnace

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301814A (en) * 1988-05-30 1989-12-06 Kawasaki Steel Corp Refining method of high-cleanliness steel
JP3627755B2 (en) * 1993-01-07 2005-03-09 Jfeスチール株式会社 Method for producing high cleanliness ultra low carbon steel with extremely low S content
JP3241910B2 (en) * 1993-02-26 2001-12-25 日新製鋼株式会社 Manufacturing method of extremely low sulfur steel
JP2976852B2 (en) * 1994-10-25 1999-11-10 住友金属工業株式会社 Manufacturing method of low sulfur steel with reduced killing time.
JPH09217110A (en) * 1996-02-14 1997-08-19 Sumitomo Metal Ind Ltd Method for melting extra-low sulfur steel
JP3460595B2 (en) * 1998-10-06 2003-10-27 住友金属工業株式会社 Melting method for extremely low sulfur steel
JP2001089135A (en) * 1999-09-27 2001-04-03 Aichi Steel Works Ltd Calcium aluminate excellent in homogeneity
JP2004263285A (en) * 2003-03-04 2004-09-24 Nippon Steel Corp Agent and method for desulfurizing molten steel and method for producing calcium aluminate source

Also Published As

Publication number Publication date
JP2008063647A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP5343308B2 (en) Desulfurization method for molten steel
JP2007211298A (en) Method for denitrifying molten steel
EP2331715B2 (en) Low cost making of a low carbon, low sulfur, and low nitrogen steel using conventional steelmaking equipment
JP2007224367A (en) Method for producing high-nitrogen steel
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
EP2663662B1 (en) Method of desulfurizing steel
JP2007051350A (en) Method for producing low sulfur steel
JP5891826B2 (en) Desulfurization method for molten steel
TWI685577B (en) Smelting method of high manganese steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP2004169147A (en) Refining process for clean steel containing extremely low amount of non-metallic inclusion
JP5888194B2 (en) Desulfurization method for molten steel
JP2015042780A (en) Dephosphorization treatment method for molten iron in converter
JP4581751B2 (en) Prevention of dust from hot metal transport container
JPH0472009A (en) Method for refining high cleanliness steel
JP7302749B2 (en) Molten iron dephosphorization method
JP6500476B2 (en) How to smelt molten metal
JP2006274329A (en) Method for decarburize-refining molten iron
JP2016079462A (en) Method for refining hot pig iron
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
JP5803866B2 (en) Desulfurizing agent for molten steel and desulfurization method using the same
JP3339982B2 (en) Converter steelmaking method
JP3327062B2 (en) Melting method of ultra-low carbon / ultra low sulfur steel
JP7167704B2 (en) Hot metal desulfurization method
JP2005154877A (en) Method for melting bearing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5343308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250