JP3460595B2 - Melting method for extremely low sulfur steel - Google Patents

Melting method for extremely low sulfur steel

Info

Publication number
JP3460595B2
JP3460595B2 JP28402798A JP28402798A JP3460595B2 JP 3460595 B2 JP3460595 B2 JP 3460595B2 JP 28402798 A JP28402798 A JP 28402798A JP 28402798 A JP28402798 A JP 28402798A JP 3460595 B2 JP3460595 B2 JP 3460595B2
Authority
JP
Japan
Prior art keywords
desulfurization
steel
low
flux
tapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28402798A
Other languages
Japanese (ja)
Other versions
JP2000109924A (en
Inventor
伸秀 青木
正俊 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28402798A priority Critical patent/JP3460595B2/en
Publication of JP2000109924A publication Critical patent/JP2000109924A/en
Application granted granted Critical
Publication of JP3460595B2 publication Critical patent/JP3460595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、用途によって靱性
の改善が強く求められること等からニーズが増大してい
る極低硫鋼を、経済的かつ高能率で溶製する極低硫鋼、
特に低燐・極低硫鋼の溶製方法に関する。
TECHNICAL FIELD The present invention relates to an extremely low-sulfur steel which is economically and highly efficiently produced from extremely low-sulfur steel whose needs are increasing due to strong demands for improvement of toughness depending on its use.
In particular, it relates to a method for producing low phosphorus / ultra low sulfur steel.

【0002】[0002]

【従来の技術】最近、高強度耐サワーラインパイプに代
表されるような極低硫鋼の需要が増大し、要求条件も益
々厳しくなっている。
2. Description of the Related Art Recently, the demand for extra-low-sulfur steel, represented by high-strength sour-resistant line pipes, has increased, and the requirements have become stricter.

【0003】従来にあっても、極低硫鋼の溶製法とし
て、例えば、特開平6−207212号公報や「鉄と鋼'83-S1
83」で公開されている方法が提案されている。例えば、
特開平6−207212号公報は、溶銑に対して脱硫・脱燐処
理を行い、S:0.003 %以下、P:0.030 %以下の溶銑
としてから、転炉における脱炭処理を行い、次いで取鍋
への出鋼中および/または出鋼後にスラグ改質剤を添加
してスラグ成分が(T.Fe)+(MnO) ≦7%を満足するよう
に調整し、次いで、RH真空処理装置において、Al脱酸処
理を行うとともに、CaO を主成分とするフラックスを、
CaO 換算で4kg/t以上、RH真空槽内の溶鋼に添加する脱
硫処理を施し、S:0.0020%以下に調整する方法につい
て開示している。一方、「鉄と鋼'83-S183」は、取鍋内
にホタル石混合生石灰粉を吹込むことで、[S] ≦10ppm
が達成可能と述べている。
Conventionally, as a method for melting ultra-low sulfur steel, for example, JP-A-6-207212 and "Iron and Steel '83 -S1" have been used.
The method published in "83" is proposed. For example,
In Japanese Patent Laid-Open No. 6-207212, hot metal is desulfurized and dephosphorized to make S: 0.003% or less and P: 0.030% or less, and then decarburization in a converter, and then to a ladle. During and / or after tapping, the slag modifier is added to adjust the slag component to satisfy (T.Fe) + (MnO) ≤ 7%, and then, in an RH vacuum treatment device, Along with deoxidizing, the flux containing CaO as the main component
It discloses a method of performing desulfurization treatment of adding 4 kg / t or more in terms of CaO to molten steel in an RH vacuum tank and adjusting S: 0.0020% or less. On the other hand, "Iron and Steel '83 -S183" is [S] ≤ 10ppm by blowing fluorite mixed quicklime powder into the ladle.
States that it is achievable.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
極低硫鋼溶製方法では二次精錬負荷が大きく、連続鋳造
とのマッチングの問題、溶鋼脱硫の高コスト (熱的コス
ト・フラックスコスト・耐火物コスト) 等がまだ十分に
検討されていない課題であった。
However, in the conventional ultra-low-sulfur steel melting process, the secondary refining load is large, the problem of matching with continuous casting, high cost of molten steel desulfurization (thermal cost, flux cost, fire resistance) It was an issue that has not yet been fully examined.

【0005】ここに、本発明の目的は、二次精錬負荷を
軽減しつつ、経済的、効率的に極低硫鋼を溶製する方法
を提供することである。より具体的には、本発明の目的
は、二次精錬の負荷を軽減することにより、取鍋・RH真
空処理装置等の耐火物の溶損を抑制しつつ省資源・省エ
ネルギーも図ることのできる極低硫鋼の溶製方法を提供
することである。
An object of the present invention is to provide a method for economically and efficiently producing extremely low-sulfur steel while reducing the secondary refining load. More specifically, an object of the present invention is to reduce the load of secondary refining, thereby suppressing resource loss and energy saving while suppressing melting damage of refractory materials such as ladle and RH vacuum processing equipment. An object of the present invention is to provide a method for melting ultra low sulfur steel.

【0006】[0006]

【課題を解決するための手段】従来技術の項でも述べた
ように、上述の両報告で提案されている方法はいずれも
[S] ≦0.002 %への脱硫が可能である。しかし、これら
の従来技術においては出鋼脱硫を活用する思想はない。
効率よく出鋼脱硫できれば、出鋼というプロセスに脱硫
という機能を加え、二次精錬の役割を軽減できるという
技術思想について何らの示唆も見られない。
As described in the section of the prior art, each of the methods proposed in both of the above reports is
Desulfurization to [S] ≤ 0.002% is possible. However, in these conventional techniques, there is no idea of utilizing tapping desulfurization.
There is no suggestion about the technical idea that if the desulfurization of tapping steel can be efficiently performed, the function of desulfurization can be added to the process of tapping steel to reduce the role of secondary refining.

【0007】従って、従来にあっては、出鋼後の二次精
錬の負荷が大きく、極端に出鋼温度を高めたり出鋼後の
熱補償 (電力投入、Al等の酸化昇熱) が必須であり、能
率阻害が生じたり、耐火物延命の観点からも改善が要望
されていた。
Therefore, in the prior art, the load of secondary refining after tapping is large, and it is essential to raise the tapping temperature extremely or to compensate the heat after tapping (power input, oxidative heating of Al, etc.). Therefore, improvement in efficiency has been demanded, and improvements have been demanded from the viewpoint of extending the life of refractory materials.

【0008】本発明ではその改良として、具体的には出
鋼中に脱硫能力の高いスラグを形成することで、さらに
経済的かつ高効率な極低硫鋼の溶製を可能とするもので
ある。
In the present invention, as an improvement thereof, specifically, by forming a slag having a high desulfurization ability in the tapped steel, it becomes possible to melt the economical and highly efficient ultra-low sulfur steel. .

【0009】ここに、本発明者らは、かかる目的を達成
すべく、次のような検討を行った。つまり、先ず、出鋼
時に脱硫能力の高いスラグを速やかに形成すべく、添加
フラックス条件を状態図等で検討し、その効果を試験で
確認した結果、出鋼時に融点が1500℃以下の組成をもつ
フラックスを2〜10kg/t投入することが効果的であるこ
とが判明した。
Here, the present inventors have conducted the following studies in order to achieve such an object. That is, first, in order to quickly form a slag with a high desulfurization capacity at the time of tapping, the added flux conditions were examined by a phase diagram, etc., and the effect was confirmed by a test. It turned out that it is effective to add 2 to 10 kg / t of flux.

【0010】溶鋼中[Al]レベルは、3CaO+2[Al]+3[S]=3
(CaS)+Al2O3の反応を考慮すると、脱硫は[Al]が高い程
促進されるので、[Al]規格とAlの酸化による発熱に起因
する出鋼後の昇熱量を勘案して[Al]レベルを設定し、出
鋼後の取鍋内の溶鋼中[Al]≧0.060 %とした。
[Al] level in molten steel is 3CaO + 2 [Al] +3 [S] = 3
Considering the reaction of (CaS) + Al 2 O 3 , desulfurization is promoted as the amount of [Al] is higher. Therefore, considering the [Al] standard and the amount of heat rise after tapping due to the heat generated by the oxidation of Al. The [Al] level was set so that [Al] ≥ 0.060% in the molten steel in the ladle after tapping.

【0011】ここに、本発明は次の通りである。 (1) 溶銑に予備脱硫を行って[S] ≦0.003 %とするとと
もに、予備脱燐を行って[P] ≦0.040 %とすること、得
られた脱硫・脱燐溶銑の転炉吹錬を行うこと、転炉出鋼
時に、融点が1500℃以下の組成を持つプリメルト品では
粒径30mm以下、混合品では粒径3mm以下の脱硫フラック
スを溶鋼トン当たり2〜10kgとAlとを溶鋼に投入し、取
鍋中の溶鋼中[Al]≧0.060 %とすることで、出鋼脱硫を
促進すること、次いで二次精錬のRH処理もしくは取鍋処
理で仕上げ脱硫を行って[S] ≦0.002 %とすることを含
む、極低硫鋼の経済的かつ高能率な溶製方法。
The present invention is as follows. (1) Perform preliminary desulfurization of hot metal to achieve [S] ≤ 0.003% and preliminary dephosphorization to achieve [P] ≤ 0.040%, and to perform converter blowing of the obtained desulfurized and dephosphorized hot metal. What to do: When pre-melted with a composition having a melting point of 1500 ° C or less, a desulfurizing flux with a particle size of 30 mm or less and a mixed product of 3 mm or less is used at the time of tapping of the converter in the amount of 2 to 10 kg / ton of molten steel and Al. Was added to the molten steel and [Al] ≧ 0.060% in the molten steel in the ladle to accelerate the desulfurization of the tapping steel, and then the secondary refining RH treatment or ladle treatment was used to perform final desulfurization. ] Economic and highly efficient smelting method for ultra-low sulfur steel, including ≤ 0.002%.

【0012】(2) 上記(1) に記載の極低硫鋼の溶製方法
において、溶銑の前記予備脱硫をKR法で行い、好まし
くは前記脱硫・脱燐溶銑の転炉吹錬は上底吹き型の複合
転炉を用いる2段の向流精錬方式で行い、さらに前記仕
上げ脱硫をRH処理で粉体上吹き方式で行い、仕上げ脱硫
後のスラグ中のCaO およびAl2O3 の組成比を 1.0≦CaO/
Al2O3 ≦1.8 とすることを特徴とする、[P] ≦0.012 %
かつ[S] ≦0.001 %である低燐・極低硫鋼の溶製方法。
(2) In the method for smelting ultra-low sulfur steel according to the above (1), the preliminary desulfurization of hot metal is performed by a KR method, and preferably the desulfurization / dephosphorization hot metal is blown in a converter from the bottom. The composition ratio of CaO and Al 2 O 3 in the slag after the final desulfurization is performed by a two-stage countercurrent refining method using a blow-type composite converter, and further, the final desulfurization is performed by a powder top blowing method by RH treatment. 1.0 ≦ CaO /
[P] ≤ 0.012%, characterized by Al 2 O 3 ≤ 1.8
And the method for melting low phosphorus and ultra low sulfur steel with [S] ≤ 0.001%.

【0013】(3) 上記(1) に記載の極低硫鋼の溶製方法
において、溶銑の前記予備脱硫をKR法で行い、前記脱
硫・脱燐溶銑の転炉吹錬は上底吹き型の複合転炉を用い
る2段の向流精錬方式で行い、さらに前記仕上げ脱硫を
取鍋溶鋼内への粉体インジェクションまたはバブリング
方式で行い、仕上げ脱硫後のスラグ中のCaO およびAl2O
3 の組成比を 1.0≦CaO/Al2O3 ≦1.8 とすることを特徴
とする、[P] ≦0.012 %かつ[S] ≦0.001 %である低燐
・極低硫鋼の溶製方法。
(3) In the method for melting ultra-low-sulfur steel according to (1) above, the preliminary desulfurization of the hot metal is performed by the KR method, and the desulfurization / dephosphorization hot metal is blown in a converter from the bottom. The two-stage countercurrent refining method using the composite converter of No. 1 and the above-mentioned final desulfurization is performed by powder injection into the ladle molten steel or bubbling method, and CaO and Al 2 O in the slag after the final desulfurization.
A method for melting low-phosphorus / extremely low-sulfur steel with [P] ≤ 0.012% and [S] ≤ 0.001%, characterized in that the composition ratio of 3 is 1.0 ≤ CaO / Al 2 O 3 ≤ 1.8.

【0014】(4) 目的とする脱硫率に対して下記の( 出
鋼+仕上げ) 脱硫フラックス原単位と(出鋼+仕上げ)
脱硫率との関係式で規定される量の脱硫フラックスを添
加する、請求項2または請求項3に記載の低燐・極低硫
鋼の溶製方法。
(4) For the target desulfurization rate, the following (demolition steel + finishing) desulfurization flux basic unit and (demolition steel + finishing)
The method for melting low-phosphorus / extremely low-sulfur steel according to claim 2 or 3, wherein an amount of desulfurization flux defined by a relational expression with a desulfurization rate is added.

【0015】20 −{5[70−脱硫率(%)]}0.5 ≦フラッ
クス原単位(kg/t)≦20−{5[90−脱硫率(%)]}0.5 ここで (出鋼+仕上げ) 脱硫率は次式で定義する: { (出鋼前[S] −仕上げ脱硫後[S])/出鋼前[S] }×10
0(%)
20- {5 [70-desulfurization rate (%)]} 0.5 ≤ flux basic unit (kg / t) ≤ 20- {5 [90-desulfurization rate (%)]} 0.5 where (steel + finish ) Desulfurization rate is defined by the following formula: {(Before tapping [S] -After finishing desulfurization [S]) / Before tapping [S]} × 10
0 (%)

【0016】[0016]

【発明の実施の形態】本発明において処理条件を上述の
ように限定した理由とその作用についてそれぞれ説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the processing conditions in the present invention as described above and the operation thereof will be described respectively.

【0017】先ず、溶銑予備処理で [S]≦0.003 %とす
るのは、転炉での[S] 上昇が0.001%の場合でも出鋼時
の[S] を0.004 %以下にしたいからである。通常、溶鋼
脱硫率は極低硫鋼を対象にした場合、50〜90%であり、
[S] ≦0.002 %を目的にしているので転炉出鋼時[S] は
0.004 %以下が必要となる。また、溶銑脱硫コストと溶
鋼脱硫コストを比較すると、一般的に溶鋼脱硫の方が数
倍から10倍費用がかかる。これは、熱力学的に[C] が高
いほど脱硫しやすいこと、溶銑処理の方が溶鋼処理に比
べ300 ℃程度処理温度が低く耐火物の損傷防止という面
でも有利である等による。
First, the reason why [S] ≦ 0.003% is set in the hot metal pretreatment is that the [S] at tapping should be 0.004% or less even if the [S] rise in the converter is 0.001%. . Usually, the molten steel desulfurization rate is 50 to 90% when targeting extremely low sulfur steel,
Since [S] ≤ 0.002% is aimed,
0.004% or less is required. Further, when comparing the hot metal desulfurization cost and the molten steel desulfurization cost, generally, the molten steel desulfurization costs several times to 10 times. This is because thermodynamically, the higher [C] is, the easier it is to desulfurize, and the hot metal treatment has a lower treatment temperature of about 300 ° C than the molten steel treatment, which is advantageous in preventing damage to refractories.

【0018】従って、本発明においては溶銑予備処理で
[S] を極力低くする、すなわち[S]≦0.002 %にするの
が望ましく、転炉での[S] のピックアップも極力抑制す
べく、転炉付着地金・スラグの影響 (汚染) にも留意す
る。このためには、例えば、鋳込計画で高[S] 鋼のすぐ
後の極低硫鋼の溶製は避ける。[S] ≦0.003 %は経済的
な生石灰系脱硫剤を用いてKR法、インジェクション法等
で可能である。
Therefore, in the present invention, the hot metal pretreatment is used.
It is desirable to keep [S] as low as possible, that is, [S] ≤ 0.002%. In order to suppress [S] pickup in the converter as much as possible, the influence (contamination) of metal attached to converter and slag pay attention to. To do this, for example, avoid smelting extra low sulfur steels immediately after high [S] steels in the casting scheme. [S] ≤ 0.003% can be achieved by the KR method, the injection method, etc. using an economical quicklime desulfurizing agent.

【0019】次に、溶銑予備処理で[P] ≦0.040 %とす
ることは、極低硫・低燐鋼の溶製、ならびに極低硫化に
伴うスラグ・安価合金鉄からの復P (成品[Mn]=1.00%
レベルで通常0.004 %程度の復P) を勘案した結果であ
る。Mn合金を節減すべく、高出鋼[Mn]を意識した低燐鋼
吹錬での脱燐率は普通40%〜80%である。
[P] ≤ 0.040% in the hot metal pretreatment means melting of extremely low sulfur / low phosphorus steel, and recovery P from slag / inexpensive alloy iron accompanying extremely low sulfurization (product [ Mn] = 1.00%
This is the result of taking into account the normal P) of about 0.004% at the level. In order to save Mn alloys, the dephosphorization rate in low phosphorus steel blowing, which is conscious of high output steel [Mn], is usually 40% to 80%.

【0020】経済的に出鋼[Mn]を極力高くすべく、塩基
度3〜5で吹錬し、脱燐率80%を想定して成品[P] ≦0.
012 %の低燐鋼を溶製するには、転炉出鋼 [P]≦0.008%
[0.008%←0.012% (成品) −0.004% (復P)]が必要であ
り、溶銑予備処理で [P]≦0.040 % [0.040%←0.008%/
(1−0.8)] が要求条件になる。
In order to economically raise the steel output [Mn] as much as possible, the product [P] ≦ 0.
To smelt 012% low-phosphorus steel, the steel from the converter [P] ≤ 0.008%
[0.008% ← 0.012% (product) −0.004% (reconstitution P)] is required, and [P] ≦ 0.040% [0.040% ← 0.008% /
(1-0.8)] is the required condition.

【0021】Mn歩留り向上のためには、図1に示すMn分
配比 (=(MnO)/[Mn]) が低い方がよく、3以上の塩基度
とする。塩基度が5を越えると脱燐効果は飽和してくる
(滓化の観点からも、塩基度が高くなる程困難にな
る)。経済性も考慮し、脱硫・脱燐溶銑、転炉吹錬時の
塩基度3〜5がよい。スラグ中(T.Fe)が低いほどMn歩留
は高くなるが、脱燐との兼ね合いで(T.Fe)は大部分のヒ
ートが12〜20%である。
In order to improve the Mn yield, it is preferable that the Mn distribution ratio (= (MnO) / [Mn]) shown in FIG. 1 is low, and the basicity is 3 or more. When the basicity exceeds 5, the dephosphorization effect becomes saturated
(From the viewpoint of slag formation, the higher the basicity, the more difficult it becomes). In consideration of economic efficiency, desulfurization / dephosphorization hot metal and basicity of 3 to 5 at the time of blowing in a converter are preferable. The lower the content of slag (T.Fe), the higher the Mn yield, but in consideration of dephosphorization (T.Fe), most heat is 12 to 20%.

【0022】出鋼脱硫に関し、ポイントは早期に脱硫能
のあるスラグを形成することであり、脱硫フラックスの
添加条件を状態図等で検討し、そのときの効果を種々の
試験で確認した。
Regarding the desulfurization of tapping steel, the point is to form a slag having a desulfurization ability at an early stage. The conditions for adding desulfurization flux were examined with a phase diagram and the effect at that time was confirmed by various tests.

【0023】その結果、融点が1500℃以下の組成を持つ
粒径30mm以下の脱硫フラックスを溶鋼トン当たり、2〜
10kg( 以下、Kg/tと記載する) 用いることが重要である
ことが分かった。このときの脱硫フラックスは1種また
は2種以上の組成の異なるフラックスを配合したもので
あってもよい。
As a result, a desulfurization flux having a composition with a melting point of 1500 ° C. or less and a particle size of 30 mm or less is used for 2 tons of molten steel per ton.
It has been found that it is important to use 10 kg (hereinafter referred to as Kg / t). At this time, the desulfurization flux may be a mixture of one kind or two or more kinds of fluxes having different compositions.

【0024】融点が1500℃を越えるフラックス組成で
は、出鋼中の滓化が不十分で所望の成果が得られなかっ
た。つまり、脱硫率は20%未満であった。具体的な組成
としては例えば、図2のCaO-Al2O3 系状態図で最も融点
が低くなる CaO:Al2O3 のモル比が12:7(重量比で約4
8:52) の融点が1413℃の組成があり、また、重量比で
CaO:CaF2:SiO2=60%:30%:10%の融点1350℃のフ
ラックス等が挙げられる。
With a flux composition having a melting point of more than 1500 ° C., the desired result could not be obtained due to insufficient slag formation during tapping. That is, the desulfurization rate was less than 20%. As a specific composition, for example, in the CaO-Al 2 O 3 system phase diagram of FIG. 2 , the molar ratio of CaO: Al 2 O 3 , which has the lowest melting point, is 12: 7 (about 4 by weight ratio).
8:52) with a melting point of 1413 ° C and a weight ratio of
CaO: CaF 2 : SiO 2 = 60%: 30%: 10% melting point 1350 ° C flux and the like.

【0025】脱硫フラックスの粒度は溶融処理したフラ
ックス (以下プリメルト品と称する) で30mm以下、混合
品では3mm以下でないと十分な効果が得られないことも
分かった。望ましくはプリメルト品で直径5mm以下のフ
ラックスが脱硫面からは望ましい。プリメルト品を5kg
/tの量だけ添加したテスト例では、直径ほぼ30mm、10m
m、3mmの各サイズ同一組成のフラックスを用いて脱硫
を実施したところ、出鋼脱硫率はそれぞれ38%、43%、
49%であった。混合品であって直径ほぼ3mmサイズ品の
場合、出鋼脱硫率は28%であった。
It was also found that a sufficient effect cannot be obtained unless the particle size of the desulfurization flux is 30 mm or less for the melt-processed flux (hereinafter referred to as a premelt product) and 3 mm or less for the mixed product. It is desirable to use a premelted product with a flux having a diameter of 5 mm or less from the desulfurization surface. 5 kg pre-melted product
In the test example in which only the amount of / t was added, the diameter was approximately 30 mm and 10 m
When desulfurization was carried out using fluxes with the same composition of m and 3 mm in size, the desulfurization rate of the steel output was 38%, 43%,
It was 49%. In the case of a mixed product having a diameter of about 3 mm, the desulfurization rate of steel output was 28%.

【0026】一旦脱硫能のあるスラグが2kg/t以上早期
に形成されると、その後は出鋼前[S] 値、鋼種・要求
[S] の各条件に対応して、1500℃を越える脱硫フラック
ス、例えば生石灰を使うことも可能である。すなわち、
脱硫能のあるスラグが形成され、同時に添加するAlがAl
2O3 を形成してスラグ中に含有されると、添加される生
石灰は図2のように融点を下げる方向に働くからであ
る。脱硫フラックスのみのコストを考えると一般的に生
石灰が安く、滓化し易いように融点降下剤を入れた混合
品、プリメルト品の順に高くなる。
Once the slag capable of desulfurization is formed at an early stage of 2 kg / t or more, after that, the [S] value before tapping, steel type and demand
It is also possible to use desulfurization flux exceeding 1500 ° C, for example quicklime, corresponding to each condition of [S]. That is,
A slag with desulfurization ability is formed, and Al added at the same time is Al
This is because, when 2 O 3 is formed and contained in the slag, the added quick lime acts to lower the melting point as shown in FIG. Considering the cost of desulfurization flux only, quick lime is generally cheaper, and it is higher in the order of the mixed product and the pre-melted product in which a melting point depressant is added so as to easily form slag.

【0027】従って、例えば、出鋼中に計10kg/tのフラ
ックスを使う場合、先ず融点1500℃以下のプリメルト品
フラックスを3kg/t添加し、それから2分以内にCaO-Ca
F2 (例、重量比70%:30%) 系フラックスを7kg/t投入
するとか、あるいは融点1500℃以下のプリメルト品フラ
ックスを10kg/t添加するとか等、ケースバイケースで使
い分けて良い。
Therefore, for example, when using a total flux of 10 kg / t during tapping, first add 3 kg / t of a premelted product flux having a melting point of 1500 ° C. or less, and within 2 minutes after that, CaO-Ca.
F 2 (eg, 70%: 30% by weight) type flux may be added in a case-by-case manner such as adding 7 kg / t or adding 10 kg / t of a premelted product flux having a melting point of 1500 ° C or less.

【0028】融点1500℃以下のフラックスの添加量を2
〜10kg/tに限定した理由は、図3に融点1500℃以下のフ
ラックス原単位と出鋼脱硫率の関係で例示するように、
2kg/t未満では出鋼脱硫の効果が得られない (出鋼脱硫
率は20%未満) からであり、10kg/tで出鋼脱硫効果が飽
和してくるからである。
The addition amount of the flux having a melting point of 1500 ° C. or less is 2
The reason for limiting to ~ 10 kg / t is as shown in Fig. 3 by the relationship between the basic unit of flux having a melting point of 1500 ° C or less and the desulfurization rate of tapped steel.
This is because the effect of desulfurization on tapping steel cannot be obtained at less than 2 kg / t (the desulfurization rate of tapping steel is less than 20%), and the desulfurization effect on tapping steel becomes saturated at 10 kg / t.

【0029】ところで、脱硫反応は、3CaO+2[Al]+3[S]=
3(CaS)+Al2O3の反応式で示され、溶鋼の条件としては[A
l]が高いこと、スラグ組成の観点からは低級酸化物の
和、すなわち(FeO)+(MnO) が低い程 (取鍋内脱硫の場
合、例えば3%以下、さらに望ましくは1%以下で) 進
行することは良く知られている。
By the way, the desulfurization reaction is 3CaO + 2 [Al] +3 [S] =
It is shown by the reaction formula of 3 (CaS) + Al 2 O 3 , and the conditions for molten steel are [A
l] is high, and from the viewpoint of slag composition, the lower the sum of lower oxides, that is, (FeO) + (MnO), is (for desulfurization in a ladle, for example, 3% or less, more preferably 1% or less) It is well known to progress.

【0030】従って、出鋼はAl完全脱酸出鋼とし、その
適正[Al]レベルを検討・試験したところ、(FeO)+(MnO)
≦3%を満たすには[Al]≧0.060 %であることが分かっ
た。[Al]は高い程、脱硫に好都合であるが、[Al]規格な
らびにその後のAl酸化による昇温を考慮し、[Al]≧0.06
0 %と定めた。なお、必要に応じ、出鋼末期および/ま
たは出鋼直後にスラグ改質剤を用いて(FeO)+(MnO) の低
下を図っても、もちろん良い。
[0030] Therefore, the output steel was Al completely deoxidized steel, and the proper [Al] level was examined and tested. As a result, (FeO) + (MnO)
It was found that [Al] ≧ 0.060% to satisfy ≦ 3%. The higher [Al] is, the more convenient it is for desulfurization. However, considering the [Al] standard and the subsequent temperature increase due to Al oxidation, [Al] ≧ 0.06
It was set at 0%. It is of course possible to use a slag modifier at the end of tapping and / or immediately after tapping to reduce (FeO) + (MnO), if necessary.

【0031】仕上げ脱硫としては、出鋼後の鍋中[S] 値
と目標[S] 値に応じ、RH処理もしくは取鍋処理で実施す
る。上記方法で、8割以上の確率で出鋼脱硫後[S] ≦0.
002%が得られるので、二次精錬での脱硫負荷は大幅に
軽減され、[S] ≦0.002 %の鋼をより経済的に安定して
量産できるようになる。
The finish desulfurization is carried out by RH treatment or ladle treatment depending on the [S] value in the pot after tapping and the target [S] value. With the above method, after desulfurization of tapping steel with a probability of 80% or more, [S] ≤ 0.
Since 002% can be obtained, the desulfurization load in the secondary refining will be greatly reduced, and steel with [S] ≤ 0.002% can be mass-produced more economically and stably.

【0032】仕上げ脱硫方法としては、RH真空処理槽内
での塊状フラックス添加または/および脱硫剤粉体吹き
付けとか、取鍋溶鋼内への粉体インジェクションまたは
バブリング方法等各種の手段が適用可能である。
As the finishing desulfurization method, various means such as adding a lump flux in the RH vacuum treatment tank and / or spraying a desulfurizing agent powder, a powder injection into a ladle molten steel or a bubbling method can be applied. .

【0033】本発明の1実施態様にあっては、KR→脱P
炉→脱C炉→出鋼脱硫→RH (好ましくは RH-PB脱硫) の
各工程を経て低燐・極低硫鋼が溶製される。現在の溶銑
脱硫プロセスとして粉体インジェクション法等と比べて
ランニングコストが安く、極低硫化も有利なKR法で[S]
≦0.003 %まで脱硫する。
In one embodiment of the present invention, KR → P removal
Low phosphorus / extremely low sulfur steel is melted through the steps of furnace → de-C furnace → steel desulfurization → RH (preferably RH-PB desulfurization). The current hot metal desulfurization process uses the KR method, which has a lower running cost than the powder injection method and is advantageous for extremely low sulfurization [S]
Desulfurize to ≤0.003%.

【0034】上述の脱P炉→脱C炉プロセスは、例えば
本件出願人の提案にかかる特公平3−77246 号公報に開
示された方法であって、これはSRP(Simple Refining Pr
ocess)と呼ばれている、複合吹錬転炉を用いる2段の向
流精錬方式であってもよく、これは、低燐鋼溶製にも優
れた方法であり採用するのが好ましい。出鋼に際しての
脱硫はすでに説明したと同様にして行えばよい。
The above-mentioned de-P furnace → de-C furnace process is, for example, the method disclosed in Japanese Patent Publication No. 3-77246, which is proposed by the applicant of the present invention, and is the SRP (Simple Refining Pr
It may be a two-stage countercurrent refining method using a composite blowing converter called "ocess", which is also an excellent method for melting low phosphorus steel and is preferably adopted. Desulfurization during tapping may be performed in the same manner as described above.

【0035】出鋼脱硫後の仕上げ脱硫は、例えば本件出
願人の提案にかかる特公昭61−59376 号公報に開示され
た方法であって、RH-PB(RH-Powder Blowing)と呼ばれて
いる減圧下粉体上吹き法を用いてもよい。二次精錬はRH
処理のみでもよい。
Finishing desulfurization after tapping desulfurization is a method disclosed in, for example, Japanese Patent Publication No. 61-59376, which is proposed by the present applicant, and is called RH-PB (RH-Powder Blowing). A powder top blowing method under reduced pressure may be used. Secondary refining is RH
Only the processing may be performed.

【0036】このようなRH処理に際しての粉体上吹きに
よる仕上げ脱硫後、スラグ主成分(CaO、Al2O3)重量組成
比を 1.0≦CaO/Al2O3 ≦1.8 とする。数値限定の理由は
図2に示すように比較的低融点組成領域 (実際のスラグ
は二元系でなくSiO2やMgO 、少量のFeO やMnO やS等を
含むが組成比CaO/Al2O3 が重要である) かつ脱硫能 (滓
化が確保できる条件ではCaO/Al2O3 が大きいほど良い)
を考慮して定めた。
After finishing desulfurization by blowing powder on the RH treatment, the weight composition ratio of slag main components (CaO, Al 2 O 3 ) is set to 1.0 ≦ CaO / Al 2 O 3 ≦ 1.8. The reason for the numerical limitation is as shown in Fig. 2 where the composition is in a relatively low melting point region (the actual slag is not a binary system but contains SiO 2 and MgO, and a small amount of FeO, MnO and S, but the composition ratio CaO / Al 2 O 3 is important) and desulfurization capacity (Under conditions where slag formation can be secured, the larger CaO / Al 2 O 3 is, the better)
Was decided in consideration.

【0037】すなわち、CaO/Al2O3 が1.0 未満では脱硫
能が大幅に低下するからであり (重量組成比1.0 は滓化
性良好) 、CaO/Al2O3 が1.8 を越えると、脱硫能は高く
良好であるが、滓化が困難になり安定性が損なわれるか
らである。
That is, if CaO / Al 2 O 3 is less than 1.0, the desulfurization ability is significantly reduced (a weight composition ratio of 1.0 is good in slagification property), and if CaO / Al 2 O 3 exceeds 1.8, desulfurization is performed. This is because the performance is high and good, but it becomes difficult to slag and the stability is impaired.

【0038】かくして、本発明によれば、高級、高強度
耐サワーパイプに要求される極低硫・低燐鋼、具体的に
は[S] ≦0.002 %かつ[P] ≦0.012 %鋼の経済的かつ安
定的量産が可能になる。
Thus, according to the present invention, the economy of ultra-low sulfur / low phosphorus steel required for high-grade, high-strength sour resistant pipes, specifically [S] ≤ 0.002% and [P] ≤ 0.012% steel And stable mass production becomes possible.

【0039】さらに本発明の別の実施態様によれば、仕
上げ脱硫を取鍋溶鋼内への粉体インジェクションまたは
バブリング方式で行う。これは、脱ガスが必要な鋼種に
おいては、上述の方式でRH処理のみで脱ガス・脱硫がで
きるが、脱ガスが必要なく仕上げ脱硫が求められる場合
は、取鍋溶鋼内への粉体インジェクションまたはバブリ
ングを行うだけで溶製可能だからである。また、既存設
備の利用 (バブリング装置はその構造が簡単であり20年
以上前から広く普及していた) 、ローカルコンディショ
ン (減圧用蒸気の調達難易差他) 等によりRH真空処理装
置と機能分担してもよい。
According to yet another embodiment of the present invention, the final desulfurization is performed by powder injection or bubbling into molten steel ladle. This is because for steel grades that require degassing, degassing and desulfurization can be performed only by RH treatment using the method described above, but if final desulfurization is required without degassing, powder injection into ladle molten steel is required. Alternatively, it is possible to melt by just bubbling. In addition, the function is shared with the RH vacuum treatment device by using existing equipment (the bubbling device has a simple structure and has been widely used for more than 20 years), local conditions (difficulty in procurement of pressure reducing steam, etc.), etc. May be.

【0040】図4に脱硫フラックス原単位と (出鋼+仕
上げ) 脱硫率の関係を示す。ここで (出鋼+仕上げ) 脱
硫率は次式で定義する:{ (出鋼前[S] −仕上げ脱硫後
[S])/出鋼前[S] } ×100(%) 本発明者等は、融点1500℃以下の脱硫用フラックス2〜
5kg/tかつ出鋼前[S]=0.0024%〜0.0044%の条件で多
数のデータを整理し、 (出鋼+仕上げ) 脱硫フラックス
原単位と (出鋼+仕上げ) 脱硫率との関係を調査したと
ころ、近似式であるが精度よく、以下の関係式を得た。
FIG. 4 shows the relationship between the desulfurization flux basic unit and the desulfurization rate (steel + finish). Here, the desulfurization rate of (steel + finish) is defined by the following formula: {(before steel [S] -after finish desulfurization
[S]) / Before tapping [S]} × 100 (%) The present inventors have found that the desulfurization flux 2 having a melting point of 1500 ° C. or less
A large amount of data was arranged under the conditions of 5 kg / t and before tapping [S] = 0.0024% to 0.0044%, and the relationship between (decasting + finishing) desulfurization flux basic unit and (decasting + finishing) desulfurization rate was investigated. As a result, the following relational expression was obtained with good accuracy although it was an approximate expression.

【0041】70−0.2[20−脱硫フラックス原単位(kg/
t)]2≦脱硫率(%) ≦90−0.2[20−脱硫フラックス原単位
(kg/t)]2 すなわち、20−{5[70−脱硫率(%)]}0.5 ≦脱硫フラッ
クス原単位(kg/t)≦20−{5[90−脱硫率(%)]}0.5 したがって、目的とする脱硫率が決定されると、それに
基づいて上記式で規定される脱硫フラックス原単位を用
い、これまで説明してきたいずれかの方法で極低硫・低
燐鋼を溶製することができる。かかる態様によれば、目
的とする脱硫率に対して必要かつ十分な量の脱硫フラッ
クス量を用いることができる。
70-0.2 [20-Desulfurization flux basic unit (kg /
t)] 2 ≤ desulfurization rate (%) ≤ 90−0.2 [20− desulfurization flux basic unit
(kg / t)] 2 That is, 20- {5 [70-desulfurization rate (%)]} 0.5 ≤ desulfurization flux basic unit (kg / t) ≤ 20- {5 [90-desulfurization rate (%)]} 0.5 Therefore, when the target desulfurization rate is determined, the desulfurization flux basic unit defined by the above formula is used based on the desulfurization rate, and the ultra-low-sulfur and low-phosphorus steel is melted by any of the methods described so far. be able to. According to this aspect, it is possible to use a desulfurization flux amount that is necessary and sufficient for the desired desulfurization rate.

【0042】[0042]

【実施例】本例では、KR→脱P炉→脱C炉→出鋼脱硫→
取鍋脱硫(-PH脱ガス) またはRH(RH-PB脱硫) の各工程か
ら低燐・極低硫鋼を溶製した。
[Example] In this example, KR → de-P furnace → de-C furnace → tap steel desulfurization →
Low-phosphorus / ultra-low-sulfur steel was melted from each process of ladle desulfurization (-PH degassing) or RH (RH-PB desulfurization).

【0043】(実施例1)実施例1は、4kg/tの低融点フ
ラックス(粒径: 5mm以下、組成: CaO:Al2O3 =50:
42、融点:1472℃)と2.3kg/t のAlと、後半に4kg/tの
生石灰を添加して出鋼脱硫し、RH真空処理装置の負荷を
大幅に軽減した45℃昇温後に、塊状生石灰を4kg/t投入
し、次いでCaO(80%)−CaF2(20%) 粉(100メッシュアンダ
ー) 4kg/tを真空度2torrの条件で吹き付けた(RH-PB)
。このような仕上げ脱硫後、[S]=0.0005%が得られ
た。RH真空処理装置の下部槽の溶損も軽減でき処理時間
も短縮できたので、RH処理が律速であるという従来法に
おける欠点を解消でき、その結果、連続鋳造において、
12回の連鋳ができた。
Example 1 In Example 1, a low melting point flux of 4 kg / t (particle size: 5 mm or less, composition: CaO: Al 2 O 3 = 50:
42, melting point: 1472 ° C), 2.3kg / t Al and 4kg / t quicklime added in the latter half to desulfurize the steel, and greatly reduce the load on the RH vacuum treatment equipment. Quicklime was added at 4 kg / t, and then CaO (80%)-CaF 2 (20%) powder (100 mesh under) 4 kg / t was sprayed under the condition of a vacuum degree of 2 torr (RH-PB).
. After such finish desulfurization, [S] = 0.0005% was obtained. Since the melting loss of the lower tank of the RH vacuum processing device can be reduced and the processing time can also be shortened, the disadvantage of the conventional method that the RH processing is rate limiting can be solved, and as a result, in continuous casting,
12 times continuous casting was completed.

【0044】これに対する従来例1は、出鋼中に生石灰
を6kg/t投入し、RH真空処理装置にて80℃昇温後に、塊
状生石灰を6kg/t投入し、次いでCaO(80%)−CaF2(20%)
粉(100メッシュアンダー) 6kg/tを真空度2torrの条件
で吹き付けた(RH-PB) 。かかる仕上げ脱硫後、[S] =0.
0005%が得られた。しかし、RH処理がネックとなって連
続鋳造は3連鋳しかできなかった。結果は表1にまとめ
て示す。
On the other hand, in Conventional Example 1, 6 kg / t of quick lime was put into the tapped steel, and after heating to 80 ° C. in an RH vacuum treatment device, 6 kg / t of massive quick lime was put, and then CaO (80%)- CaF 2 (20%)
6 kg / t of powder (100 mesh under) was sprayed under the condition of vacuum degree of 2 torr (RH-PB). After such finishing desulfurization, [S] = 0.
0005% was obtained. However, RH treatment was a bottleneck, and continuous casting could only be performed three times continuously. The results are summarized in Table 1.

【0045】(実施例2)実施例2、従来例2は取鍋脱硫
の例を示すもので、本例は、RH処理に代えて取鍋脱硫を
行った点を除いて実施例1を繰り返した。従来例の二次
精錬最高使用温度が本発明の場合より35℃も高く、ラン
スと取鍋蓋の溶損 (蓋の密着度が悪くなると[N] ピック
アップも顕著になる) などの支障が生じて連続鋳造は2
連鋳しかできなかった。結果は表1にまとめて示す。
Example 2 Example 2 and Conventional Example 2 are examples of ladle desulfurization. In this example, Example 1 was repeated except that ladle desulfurization was performed instead of RH treatment. It was The secondary refining maximum operating temperature of the conventional example is higher than that of the present invention by 35 ° C, and problems such as melting damage of the lance and ladle lid ([N] pickup becomes remarkable when the lid adhesion is poor) occur. 2 continuous casting
Only continuous casting was possible. The results are summarized in Table 1.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【発明の効果】本発明によれば、出鋼脱硫を効率的に活
用することにより、二次精錬の負荷を大幅に軽減でき、
経済的かつ高能率で極低硫鋼あるいは極低硫・低燐鋼の
溶製が可能になった。本発明による効果は次のようにま
とめることができる。
According to the present invention, the load of secondary refining can be significantly reduced by effectively utilizing the tapping desulfurization.
It has become possible to produce ultra-low sulfur steel or ultra-low sulfur / low phosphorus steel economically and with high efficiency. The effects of the present invention can be summarized as follows.

【0048】(i) 出鋼脱硫により、仕上げ脱硫が容易に
なり二次精錬の昇温量が30℃程度軽減できた。 (ii)そのため、Al酸化による昇熱の場合、Al、酸素の節
減のみならず、耐火物の損耗をほぼ半減できた。耐火物
損耗抑制は、二次精錬最高温度低減と処理時間短縮によ
る。
(I) Desulfurization of tapping steel facilitated finish desulfurization, and the temperature rise in secondary refining could be reduced by about 30 ° C. (ii) Therefore, in the case of heating by Al oxidation, not only the Al and oxygen were saved but also the wear of the refractory could be reduced by almost half. The suppression of refractory wear is due to the reduction of the secondary refining maximum temperature and the processing time.

【0049】(iii) 従来の約2/3 の二次精錬処理時間で
極低硫鋼溶製ができるので、連続鋳造とのマッチングが
改善できて、連々指数を2倍以上に増大できた。すなわ
ち、本発明によれば、RH真空処理装置においてA槽 (6
ヒート処理) からB槽 (6ヒート処理) へと槽交換して
も連々鋳が可能で、合計12連鋳できた。
(Iii) Since it is possible to melt ultra-low-sulfur steel in a secondary refining treatment time of about 2/3 of the conventional time, matching with continuous casting can be improved and the index can be increased to more than double. That is, according to the present invention, the A tank (6
Even if the tank was changed from the heat treatment) to the B tank (6 heat treatments), continuous casting was possible and a total of 12 continuous castings were possible.

【0050】(iv)出鋼脱硫、仕上げ脱硫によって極低硫
化を図るので、目標[S] レベルに対して精度良く、安定
して脱硫可能である。 (v) 高強度耐サワーラインパイプ等にニーズの拡大して
いる、[S] ≦0.001 %、[P] ≦0.0012%の低燐・極低硫
鋼の効率的量産を実現し、地球環境の保護面でも省エネ
ルギー・省資源の製造方法である。
(Iv) Since extremely low sulfurization is achieved by tapping desulfurization and finish desulfurization, desulfurization can be performed accurately and stably with respect to the target [S] level. (v) Demand for high-strength sour-resistant line pipes, etc. is expanding, realizing efficient mass production of [S] ≤ 0.001% and [P] ≤ 0.0012% low phosphorus / ultra-low sulfur steel, and In terms of protection, it is also a manufacturing method that saves energy and resources.

【図面の簡単な説明】[Brief description of drawings]

【図1】塩基度とMn分配比の関係を示すグラフである。FIG. 1 is a graph showing the relationship between basicity and Mn distribution ratio.

【図2】Al2O3 −CaO 系状態図である。FIG. 2 is a phase diagram of an Al 2 O 3 —CaO system.

【図3】融点1500℃以下の脱硫フラックス原単位と出鋼
脱硫率の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a desulfurization flux basic unit having a melting point of 1500 ° C. or less and a desulfurization rate of tapped steel.

【図4】(出鋼+仕上げ) における脱硫フラックス原単
位と (出鋼+仕上げ) における脱硫率との関係を示すグ
ラフである。
FIG. 4 is a graph showing a relationship between a basic unit of desulfurization flux in (steel + finish) and a desulfurization rate in (steel + finish).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−73923(JP,A) 特開 平9−217110(JP,A) 特開 平6−207212(JP,A) 特開 平10−219335(JP,A) 特開 平8−246030(JP,A) 特開 平5−171247(JP,A) 特開 平11−209817(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21C 7/064 C21C 7/10 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-8-73923 (JP, A) JP-A-9-217110 (JP, A) JP-A-6-207212 (JP, A) JP-A-10- 219335 (JP, A) JP 8-246030 (JP, A) JP 5-171247 (JP, A) JP 11-209817 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21C 7/064 C21C 7/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶銑に予備脱硫を行って[S] ≦0.003 %
とするとともに、予備脱燐を行って[P] ≦0.040 %とす
ること、得られた脱硫・脱燐溶銑の転炉吹錬を行うこ
と、転炉出鋼時に、融点が1500℃以下の組成を持つプリ
メルト品では粒径30mm以下、混合品では粒径3mm以下
脱硫フラックスを溶鋼トン当たり2〜10kgとAlとを溶鋼
に投入し、取鍋中の溶鋼中[Al]≧0.060 %とすることで
出鋼脱硫を促進すること、次いで二次精錬のRH処理もし
くは取鍋処理で仕上げ脱硫を行って[S] ≦0.002 %とす
ることを含む極低硫鋼の経済的かつ高能率な溶製方法。
1. [S] ≤ 0.003% by subjecting hot metal to pre-desulfurization
In addition, perform preliminary dephosphorization to make [P] ≤ 0.040%, blow the obtained desulfurized and dephosphorized hot metal into a converter, and have a composition with a melting point of 1500 ° C or less when tapping the converter. Having a pre
By adding 2 to 10 kg of desulfurization flux with a particle size of 30 mm or less for molten products and 3 mm or less for mixed products to molten steel per ton of molten steel, and making [Al] ≧ 0.060% in molten steel in the ladle. Economical and highly efficient smelting method of ultra-low-sulfur steel, including accelerating desulfurization of tapping steel, and then performing final desulfurization by RH treatment or ladle treatment of secondary refining to make [S] ≤ 0.002% .
【請求項2】 請求項1に記載の極低硫鋼の溶製方法に
おいて、溶銑の前記予備脱硫をKR法で行い、さらに前
記仕上げ脱硫をRH処理で粉体上吹き方式で行い、仕上げ
脱硫後のスラグ中のCaO およびAl2O3 の組成比を 1.0≦
CaO/Al2O3 ≦1.8 とすることを特徴とする、[P] ≦0.01
2 %かつ[S] ≦0.001 %である低燐・極低硫鋼の溶製方
法。
2. The method for producing ultra-low-sulfur steel according to claim 1, wherein the preliminary desulfurization of hot metal is performed by a KR method, and the final desulfurization is performed by an RH treatment by a powder top-blowing method. The composition ratio of CaO and Al 2 O 3 in the slag after 1.0 ≦
CaO / Al 2 O 3 ≤1.8, [P] ≤0.01
2% and [S] ≤ 0.001%, low-phosphorus / ultra-low-sulfur steel melting method.
【請求項3】 請求項1に記載の極低硫鋼の溶製方法に
おいて、溶銑の前記予備脱硫をKR法で行い、さらに前
記仕上げ脱硫を取鍋溶鋼内への粉体インジェクションま
たはバブリング方式で行い、仕上げ脱硫後のスラグ中の
CaO およびAl2O3 の組成比を 1.0≦CaO/Al2O3 ≦1.8 と
することを特徴とする、[P] ≦0.012%かつ[S] ≦0.001
%である低燐・極低硫鋼の溶製方法。
3. The method for producing ultra-low-sulfur steel according to claim 1, wherein the preliminary desulfurization of the hot metal is performed by the KR method, and further the final desulfurization is performed by powder injection or bubbling into the ladle molten steel. Perform and finish desulfurization of slag
The composition ratio of CaO and Al 2 O 3 is 1.0 ≦ CaO / Al 2 O 3 ≦ 1.8, [P] ≦ 0.012% and [S] ≦ 0.001
% Low-phosphorus / ultra-low-sulfur steel melting method.
【請求項4】 目的とする脱硫率に対して下記の( 出鋼
+仕上げ) 脱硫フラックス原単位と (出鋼+仕上げ) 脱
硫率との関係式で規定される量の脱硫フラックスを添加
する、請求項2または請求項3に記載の低燐・極低硫鋼
の溶製方法。 20 −{5[70−脱硫率(%)]}0.5 ≦フラックス原単位(kg
/t)≦20−{5[90−脱硫率(%)]}0.5 ここで (出鋼+仕上げ) 脱硫率は次式で定義する: { (出鋼前[S] −仕上げ脱硫後[S])/出鋼前[S] }×10
0(%)
4. A desulfurization flux of an amount defined by a relational expression between the following (demolition steel + finishing) desulfurization flux basic unit and (demolition steel + finishing) desulfurization rate is added to a target desulfurization rate, The method for producing a low-phosphorus / extremely low-sulfur steel according to claim 2 or 3. 20- {5 [70-desulfurization rate (%)]} 0.5 ≤ flux basic unit (kg
/ t) ≤ 20- {5 [90-desulfurization rate (%)]} 0.5 where (dealing steel + finishing) Desulfurization rate is defined by the following formula: {(before tapping [S] -after finishing desulfurization [S ]) / Before tapping [S]} × 10
0 (%)
JP28402798A 1998-10-06 1998-10-06 Melting method for extremely low sulfur steel Expired - Fee Related JP3460595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28402798A JP3460595B2 (en) 1998-10-06 1998-10-06 Melting method for extremely low sulfur steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28402798A JP3460595B2 (en) 1998-10-06 1998-10-06 Melting method for extremely low sulfur steel

Publications (2)

Publication Number Publication Date
JP2000109924A JP2000109924A (en) 2000-04-18
JP3460595B2 true JP3460595B2 (en) 2003-10-27

Family

ID=17673366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28402798A Expired - Fee Related JP3460595B2 (en) 1998-10-06 1998-10-06 Melting method for extremely low sulfur steel

Country Status (1)

Country Link
JP (1) JP3460595B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343308B2 (en) * 2006-09-11 2013-11-13 Jfeスチール株式会社 Desulfurization method for molten steel
JP5014876B2 (en) * 2007-05-16 2012-08-29 株式会社神戸製鋼所 Secondary refining method of low-sulfur steel to suppress sulfurization phenomenon in vacuum degassing process
JP5391842B2 (en) * 2009-06-03 2014-01-15 新日鐵住金株式会社 Melting method of high clean steel
JP5888194B2 (en) * 2012-09-19 2016-03-16 新日鐵住金株式会社 Desulfurization method for molten steel
CN112961961B (en) * 2021-02-08 2022-11-18 首钢集团有限公司 Method for producing ultra-low sulfur steel by adopting LF + VD duplex process
CN114574660B (en) * 2022-02-21 2023-02-03 山东钢铁股份有限公司 KR intelligent control method based on-demand desulfurization

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3040227B2 (en) * 1991-12-20 2000-05-15 新日本製鐵株式会社 Manufacturing method of high carbon silicon killed high clean molten steel
JP3627755B2 (en) * 1993-01-07 2005-03-09 Jfeスチール株式会社 Method for producing high cleanliness ultra low carbon steel with extremely low S content
JPH0873923A (en) * 1994-06-29 1996-03-19 Sumitomo Metal Ind Ltd Production of clean steel having excellent hydrogen induced crack resistance
JP3365129B2 (en) * 1995-03-06 2003-01-08 日本鋼管株式会社 Manufacturing method of low sulfur steel
JPH09217110A (en) * 1996-02-14 1997-08-19 Sumitomo Metal Ind Ltd Method for melting extra-low sulfur steel
JPH10219335A (en) * 1997-01-31 1998-08-18 Nkk Corp Method for refining high clean extra-low sulfur steel
JPH11209817A (en) * 1998-01-28 1999-08-03 Mitsuo Hanada Flux for steelmaking, production thereof and steelmaking method using it

Also Published As

Publication number Publication date
JP2000109924A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
CN114807730A (en) Nickel-free copper-phosphorus series weather-resistant steel casting blank
CN101956044B (en) Refining method for improving clean class of steel
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JP5386825B2 (en) Method for melting Mn-containing ultra-low carbon steel
CN106119464A (en) A kind of dephosphorization method of converter band oxygen tapping
JP3428628B2 (en) Stainless steel desulfurization refining method
JP3460595B2 (en) Melting method for extremely low sulfur steel
JP3312536B2 (en) Hot metal dephosphorization method
CN115418429B (en) Method for smelting 200-series stainless steel by AOD furnace
JP4311097B2 (en) Method for preventing slag flow in converter
JP2947063B2 (en) Stainless steel manufacturing method
CN112226566B (en) Production method for smelting low-phosphorus steel by vanadium-containing molten iron
RU2105072C1 (en) Method for production of steel naturally alloyed with vanadium in conversion of vanadium iron in oxygen steel-making converters by monoprocess with scrap consumption up to 30%
CN111074037B (en) Process method for upgrading structure of manganese-rich slag smelting product
US5425797A (en) Blended charge for steel production
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JP3158912B2 (en) Stainless steel refining method
JPS6358203B2 (en)
CN115652184B (en) Method for smelting ultra-pure ferrite stainless steel by using slag melting agent in AOD converter
JP3419254B2 (en) Hot metal dephosphorization method
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2587286B2 (en) Steelmaking method
JP2000087125A (en) Method for dephosphorize-refining molten iron
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JPH01312020A (en) Method for dephosphorizing molten iron by heating

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees