JP6311466B2 - Method of dephosphorizing molten steel using vacuum degassing equipment - Google Patents

Method of dephosphorizing molten steel using vacuum degassing equipment Download PDF

Info

Publication number
JP6311466B2
JP6311466B2 JP2014118984A JP2014118984A JP6311466B2 JP 6311466 B2 JP6311466 B2 JP 6311466B2 JP 2014118984 A JP2014118984 A JP 2014118984A JP 2014118984 A JP2014118984 A JP 2014118984A JP 6311466 B2 JP6311466 B2 JP 6311466B2
Authority
JP
Japan
Prior art keywords
molten steel
dephosphorization
cao
vacuum degassing
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014118984A
Other languages
Japanese (ja)
Other versions
JP2015232157A (en
Inventor
武 谷垣
武 谷垣
陽俊 吉田
陽俊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014118984A priority Critical patent/JP6311466B2/en
Publication of JP2015232157A publication Critical patent/JP2015232157A/en
Application granted granted Critical
Publication of JP6311466B2 publication Critical patent/JP6311466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、真空脱ガス設備を用いる溶鋼の脱燐処理方法に関し、転炉や電気炉等で精錬して取鍋へ出鋼した溶鋼を、溶鋼還流型の真空脱ガス設備(RH)を用いて脱燐処理する方法に関する。   The present invention relates to a molten steel dephosphorization method using a vacuum degassing facility, and uses molten steel recirculation type vacuum degassing facility (RH) for refining molten steel that has been refined in a converter, electric furnace, or the like and delivered to a ladle. The present invention relates to a dephosphorization method.

製鋼法では、一般に、溶銑やスクラップ等の主原料と生石灰等の副原料とを転炉や電気炉に装入して酸素を吹付け、脱炭や脱燐等の酸化精錬を施して溶鋼とした後、取鍋へ出鋼して、出鋼時に溶鋼にAlや合金鉄を添加して脱酸および成分調整を行う。その後、多くの場合、さらに真空脱ガス設備(RH)等の二次精錬設備を用いて、脱ガス処理や成分調整、介在物除去等の二次精錬を施している。   In the steelmaking method, in general, main raw materials such as hot metal and scrap and auxiliary raw materials such as quick lime are charged into a converter or electric furnace, and oxygen is blown, and oxidative refining such as decarburization and dephosphorization is performed to obtain molten steel and After that, the steel is taken out into a ladle, and deoxidation and component adjustment are performed by adding Al or alloyed iron to the molten steel at the time of steeling. Thereafter, in many cases, secondary refining such as degassing treatment, component adjustment, inclusion removal, etc. is performed using secondary refining equipment such as vacuum degassing equipment (RH).

しかし、近年は鉄鋼製品の用途が拡大し、高品質化への要求が強くなっている。その一方で、近年は低品位鉄鉱石の使用などにより溶銑中のP濃度が上昇しているために、溶銑に予備脱燐処理を施してから、さらに転炉で脱炭及び脱燐等の酸化精錬を施して溶鋼とする処理が、広く行われるようになっている。しかし、それでもなお、その酸化精錬後の溶鋼中P濃度が、その最終製品のP濃度をその規格濃度以下とするのに十分なレベルまで低下できていない場合も発生している。このような事情は、鉄鋼製品への高品質化の要求が背景にあるため、電気炉による酸化精錬でも転炉による場合と同様に存在する。   However, in recent years, the use of steel products has expanded, and the demand for higher quality has increased. On the other hand, in recent years, the concentration of P in hot metal has risen due to the use of low-grade iron ore. The process of refining to form molten steel has been widely performed. However, there are still cases where the P concentration in the molten steel after oxidative refining has not been reduced to a level sufficient to bring the P concentration of the final product below the specified concentration. Such a situation lies in the background of the demand for higher quality of steel products, so that oxidation refining using an electric furnace also exists as in the case of using a converter.

転炉によるか電気炉によるかを問わず、酸化精錬後の溶鋼中P濃度が十分なレベルまで低下できていない場合、出鋼する前に再度脱燐処理を行うことが多いが、酸化精錬後に取鍋へ出鋼した後に、溶鋼中P濃度が最終製品の規格濃度を超えていると分かる場合もある。その場合には、その溶鋼をP濃度の規格を満たすことのできる製品に向先を振り替えるか、再度転炉に装入して脱燐処理をやり直す等の通常操業を乱す対応が必要になり、製造コストが悪化する。   Regardless of whether using a converter or an electric furnace, if the P concentration in the molten steel after oxidative refining has not been reduced to a sufficient level, dephosphorization is often performed again before steelmaking. In some cases, it is known that the P concentration in the molten steel exceeds the standard concentration of the final product after the steel is taken out to the ladle. In that case, it is necessary to take measures to disturb the normal operation such as switching the destination of the molten steel to a product that can meet the P concentration standard, or charging the molten steel again into the converter and performing the dephosphorization treatment again. Manufacturing costs worsen.

代わりに、転炉や電気炉の次工程にある真空脱ガス設備(RH)等の二次精錬設備を用いて追加の脱燐処理を効率よく行うことができれば、前記した通常操業を乱す対応が必要無くなる。さらに、そのような対応を要しないようにと、転炉や電気炉で過剰に使用している生石灰等の副原料の使用量を削減することもできる。   Instead, if additional dephosphorization treatment can be efficiently performed using secondary refining equipment such as vacuum degassing equipment (RH) in the next process of converters and electric furnaces, the above-mentioned normal operation may be disturbed. No longer needed. Furthermore, the amount of auxiliary raw materials such as quick lime used excessively in converters and electric furnaces can be reduced so as not to require such measures.

例えば、特許文献1,2には、真空脱ガス槽内の未脱酸溶鋼(フリー酸素>100ppm)に脱燐剤を吹込んで脱燐する発明が開示されている。ただし、その脱燐剤としては「65質量%CaO・35質量%CaF」のものを4kg/t用いた例と、「80質量%CaO・20質量%CaF」のものを6kg/t用いた例と、「65質量%CaO・35質量%CaF」のものを3kg/t用いた例とが、それぞれの実施例として開示されているだけである。 For example, Patent Documents 1 and 2 disclose inventions in which dephosphorization is performed by blowing a dephosphorizing agent into undeoxidized molten steel (free oxygen> 100 ppm) in a vacuum degassing tank. However, as the dephosphorizing agent, an example using 4 kg / t of “65% by mass CaO · 35% by mass CaF 2 ” and an example of “80% by mass CaO · 20% by mass CaF 2 ” for 6 kg / t are used. Examples of the above and examples using 3 kg / t of “65 mass% CaO · 35 mass% CaF 2 ” are merely disclosed as respective examples.

特許文献1により開示された発明では、特許文献2により開示された発明の短所である「脱燐反応と脱炭反応とが溶鋼中のフリー酸素を互いに奪い合って脱燐反応速度が低下する事態」を避ける手段として、溶鋼中C濃度レベルに応じた槽内真空度の制御を行っていることから、これらのいずれの発明においても、脱燐反応を促進するために同時に酸素を供給する技術思想は存在していなかったと解される。また、いずれの発明も、脱燐剤の吹込みは真空脱ガス槽内下部に設けた粉体吹き込み羽口を通して行っている。したがって、吹込み羽口の損耗防止に特別な注意を必要とする。   In the invention disclosed in Patent Document 1, the disadvantage of the invention disclosed in Patent Document 2 is “a situation where the dephosphorization reaction and the decarburization reaction compete with each other for free oxygen in the molten steel and the dephosphorization reaction rate decreases”. As a means to avoid this, since the degree of vacuum in the tank is controlled according to the C concentration level in the molten steel, in any of these inventions, the technical idea of simultaneously supplying oxygen to promote the dephosphorization reaction is It is understood that it did not exist. In any of the inventions, the dephosphorizing agent is blown through the powder blowing tuyere provided in the lower part of the vacuum degassing tank. Therefore, special care is required to prevent wear of the blowing tuyere.

一方、特許文献3には、真空脱ガス槽内の鋼浴上に、脱燐剤として石灰系フラックスとしてCaOを含む粉体、特に70質量%CaOと30質量%CaFの粉体と、脱燐のための酸素を酸素ガスまたは固体酸化物を含む粉末、特にFeの粉末とを上吹きランスを通じて吹き込むことによって極低炭素鋼を製造する方法が開示されている。しかし、その脱燐のために上記の石灰系フラックスを1〜4kg/t添加すると記載されている以外には、フラックス添加条件に関する記載が乏しい。 On the other hand, Patent Document 3 discloses a powder containing CaO as a lime-based flux as a dephosphorizing agent, particularly a powder of 70% by mass CaO and 30% by mass CaF 2 on a steel bath in a vacuum degassing tank. A method for producing ultra-low carbon steel by blowing oxygen for phosphorus with oxygen gas or a powder containing solid oxide, particularly Fe 2 O 3 powder, through an upper blowing lance is disclosed. However, other than the description that 1 to 4 kg / t of the above lime-based flux is added for the dephosphorization, there is little description regarding the flux addition conditions.

特許文献4には、転炉から取鍋への出鋼時に溶鋼を脱燐処理する方法が開示されており、脱燐剤としてカルシウムフェライトの組成を有する低融点焼結鉱等の添加条件が開示されている。   Patent Document 4 discloses a method of dephosphorizing molten steel at the time of steel removal from a converter to a ladle, and the conditions for adding a low melting point sintered ore having a composition of calcium ferrite as a dephosphorizing agent are disclosed. Has been.

特開平2−122013号公報JP-A-2-122013 特開昭62−205221号公報JP 62-205221 A 特表2002−544376号公報JP-T-2002-544376 特開昭61−217519号公報JP 61-217519 A

特許文献1〜3により開示された発明は、いずれも、脱燐剤として一般的なCaOを用いるが、融点が高く溶融性(滓化性)が悪いCaOの溶融性をスラグ撹拌力の弱い二次精錬設備において確保するために、ホタル石(CaF)を同時に投入する。しかし、これにより生成するスラグからのフッ素の溶出が土壌環境基準等の地球環境保護の観点から問題となり、スラグがフッ素(F)を土壌環境基準以上に含有する場合にはスラグを路盤材等にリサイクル使用できなくなる。このため、ホタル石を用いない製鋼法が求められる。 The inventions disclosed in Patent Documents 1 to 3 all use general CaO as a dephosphorizing agent, but the melting point of CaO having a high melting point and a poor melting property (hatchability) is reduced. In order to secure it in the next refining equipment, fluorite (CaF 2 ) is introduced at the same time. However, elution of fluorine from the slag produced by this becomes a problem from the viewpoint of protecting the global environment such as soil environmental standards, and when the slag contains fluorine (F) above the soil environmental standards, the slag is used for roadbed materials, etc. Can not be recycled. For this reason, the steelmaking method which does not use a fluorite is calculated | required.

特許文献4により開示された発明は、出鋼時の撹拌を利用し、さらに取鍋内で底吹きバブリングを加えて溶鋼と溶鋼上の脱燐剤とを反応させる技術であって、真空脱ガス装置へ溶鋼が到着した後に補助的に脱燐処理する方法とは、基本的な反応処理形態が異なる。   The invention disclosed in Patent Document 4 is a technique that uses stirring during steelmaking and further adds bottom blowing bubbling in a ladle to react the molten steel with a dephosphorizing agent on the molten steel, and vacuum degassing. The basic reaction treatment form is different from the method of auxiliary dephosphorization after the molten steel arrives at the apparatus.

本発明は、従来の技術が有するこのような課題に鑑みてなされたものであり、CaFを添加せず、かつ新たに溶鋼バブリング処理や粉体インジェクション処理を必要とせずに、転炉や電気炉の次工程にある真空脱ガス設備(RH)を用いて追加の脱燐処理を効率よくかつ簡便に行う方法を提供することを目的とする。 The present invention has been made in view of such problems of the prior art, and does not add CaF 2 and does not require new molten steel bubbling treatment or powder injection treatment. An object of the present invention is to provide a method for efficiently and simply performing an additional dephosphorization process using a vacuum degassing facility (RH) in the next step of the furnace.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、以下に列記の知見A〜Eを得て、本発明を完成した。   As a result of intensive studies in order to solve the above problems, the present inventors have obtained knowledge A to E listed below and completed the present invention.

(A)溶鋼の脱燐反応をイオン式で書くと、
[P]+(5/2)[O]+(3/2)O2−=PO 3−
となり、脱燐反応にはスラグ塩基度が高いこと(すなわちCaOが存在すること)と、スラグ中酸素ポテンシャル(T.Fe)の上昇が必要である。従来は、ホタル石(CaF)の使用によりスラグ塩基度を上昇させて脱燐を行っていた。ホタル石を使用せずにスラグ塩基度を高位にすることは困難である。
(A) When dephosphorization reaction of molten steel is written in ionic formula,
[P] + (5/2) [O] + (3/2) O 2− = PO 4 3−
Thus, the dephosphorization reaction requires a high slag basicity (ie, the presence of CaO) and an increase in oxygen potential (T.Fe) in the slag. Conventionally, dephosphorization has been performed by increasing the slag basicity by using fluorite (CaF 2 ). It is difficult to increase the slag basicity without using fluorite.

そこで、本発明者らはスラグ中の酸素ポテンシャルを高位に維持することを検討した。スラグ中の酸素ポテンシャルを高位に維持するには溶鋼中の酸素活量を高位にしておく必要がある。よって、一度脱酸をしてしまうと脱燐反応は進行しなくなるため、二次精錬において脱燐を行うには未脱酸出鋼を行うことが前提となる。転炉や電気炉で低炭素領域(C=0.02〜0.08質量%)まで吹酸すれば、溶鋼中の酸素活量は300〜500ppm程度に高まる。   Therefore, the present inventors examined maintaining the oxygen potential in the slag at a high level. In order to keep the oxygen potential in the slag high, it is necessary to keep the oxygen activity in the molten steel high. Therefore, once deoxidation is performed, the dephosphorization reaction does not proceed. Therefore, in order to perform dephosphorization in the secondary refining, it is assumed that undeoxidized steel is performed. If the acid is blown into a low carbon region (C = 0.02 to 0.08 mass%) in a converter or electric furnace, the oxygen activity in the molten steel increases to about 300 to 500 ppm.

本発明者らは、この状態でCaOを投入すれば平衡上はスラグT.Feも上昇し、CaO−FeOの生成によりスラグも溶融し、脱燐反応が進行すると期待したが、実際に投入試験を行ったところ脱燐反応はうまく進行しなかった。さらに、RHで上方から酸素吹きを行い、溶鋼中の酸素活量をさらに500〜900ppm程度まで上昇させたが、同じ結果であった。   If the present inventors put CaO in this state, slag T.P. Fe was also expected to rise, slag was melted due to the formation of CaO-FeO, and dephosphorization reaction proceeded. However, when an input test was actually performed, dephosphorization reaction did not proceed well. Furthermore, oxygen was blown from above with RH, and the oxygen activity in the molten steel was further increased to about 500 to 900 ppm, with the same result.

これは、RHは、真空反応容器であってスラグ−溶鋼間の撹拌に適した機講ではないため、溶鋼の酸素がスラグへ十分移行せず、CaO−FeOの生成によるスラグ溶解が進行しなかったためと考えられる。   This is because RH is a vacuum reaction vessel and is not a machine suitable for stirring between slag and molten steel, so the oxygen in the molten steel does not sufficiently transfer to slag, and slag melting due to the formation of CaO-FeO does not proceed. It is thought that it was because of.

(B)そこで、脱燐フラックスとして、予め酸素源を含有し、かつ融点が低いものを用いる必要があると考え、そのような脱燐フラックスであるカルシウムフェライト(CaO:25〜50質量%、Fe:30〜50質量%)の投入試験を行った。その試験の結果、全投入脱燐フラックス中にCaO換算でカルシウムフェライトの割合が35%以上であれば、ホタル石を使用しなくとも脱燐率は安定して高位となることが判明した。 (B) Therefore, as a dephosphorization flux, it is thought that it is necessary to use an oxygen source in advance and a melting point is low, and such a dephosphorization flux is calcium ferrite (CaO: 25 to 50% by mass, Fe 2 O 3 : 30 to 50% by mass). As a result of the test, it was found that if the proportion of calcium ferrite in CaO conversion is 35% or more in the total dephosphorization flux, the dephosphorization rate becomes stable and high without using fluorite.

カルシウムフェライトは、融点が低く、投入後速やかに溶け高酸素かつ高塩基度の溶融スラグを生成できるためと考えられる。例えば、脱燐フラックスとして生石灰とスケール(FeO)の混合品を用いると、生石灰の融点が高いだけでなくFeOとの接触頻度も影響するため、素早く溶融スラグを生成できないために脱燐効率が悪い。   It is thought that calcium ferrite has a low melting point and can be melted quickly after being added to produce high oxygen and high basicity molten slag. For example, when a mixture of quicklime and scale (FeO) is used as the dephosphorization flux, not only the melting point of quicklime is high, but also the contact frequency with FeO is affected. .

(C)脱燐フラックスを投入する際の溶鋼中の酸素活量(フリー酸素濃度)が400ppm未満であると、脱燐率が低下する。溶鋼中の酸素活量が低過ぎるとスラグ中の酸素活量を高位に保てないためであると考えられる。   (C) When the oxygen activity (free oxygen concentration) in the molten steel at the time of introducing the dephosphorization flux is less than 400 ppm, the dephosphorization rate decreases. This is probably because if the oxygen activity in the molten steel is too low, the oxygen activity in the slag cannot be kept high.

(D)さらに、ホタル石(CaF)をカルシウムフェライトと併用することにより、脱燐率をさらに高位に維持することができる。スラグからのフッ素の溶出が問題とならない程度であれば、この方法を選択してもよい。 (D) Furthermore, by using fluorite (CaF 2 ) in combination with calcium ferrite, the dephosphorization rate can be maintained at a higher level. This method may be selected as long as the elution of fluorine from the slag does not cause a problem.

(E)脱燐フラックスの投入から脱酸材の投入までの還流時間は2分間以上確保することが望ましい。これは、RHの槽内スラグが取鍋上に排出される前に、槽内スラグを脱酸してしまうため復燐が起こることを防ぐためである。還流回数を用いて換言すると、還流回数={還流処理時間T(min))/(当該溶鋼の全質量M(t)/溶鋼還流量Q(t/min))≧2を満足することが望ましい。   (E) It is desirable to secure a reflux time of 2 minutes or more from the introduction of the dephosphorization flux to the introduction of the deoxidizer. This is to prevent dephosphorization since the slag in the tank is deoxidized before the RH slag is discharged onto the ladle. In other words, using the number of reflux times, it is desirable that the number of reflux times = {refluxing treatment time T (min)) / (total mass M (t) of the molten steel / Q amount of molten steel Q (t / min)) ≧ 2. .

本発明は以下に列記のとおりである。   The present invention is listed below.

(1)転炉または電気炉から取鍋へ出鋼されたフリー酸素濃度が400ppm以上である溶鋼を、真空脱ガス設備(RH)を用いて脱燐処理する方法であって、
脱燐剤として、CaOおよびカルシウムフェライトからなり、該脱燐剤中に含まれる全CaO質量のうち35%以上76%以下がカルシウムフェライト(CaO:25〜50質量%、Fe:30〜50質量%)として含まれているものを、真空脱ガス槽内に挿入した上吹きランスから溶鋼の浴面へ向けて吹付ける方法、および、真空脱ガス槽内の溶鋼に合金鉄を投入する投入孔から添加する方法のうちのいずれか一方または両方の方法によって、前記溶鋼の還流中に添加し、
当該脱燐剤の添加を終えた後に溶鋼を還流して脱燐反応させた後、例えば、溶鋼にAlを添加してAl含有濃度を0.003質量%以上とすることによって、脱酸を行うことを特徴とする真空脱ガス設備(RH)を用いる脱燐処理方法。
(1) A method of dephosphorizing a molten steel having a free oxygen concentration of 400 ppm or more discharged from a converter or an electric furnace to a ladle using a vacuum degassing facility (RH),
As a dephosphorizing agent, it consists of CaO and calcium ferrite , and 35% or more and 76% or less of the total CaO mass contained in the dephosphorizing agent is calcium ferrite (CaO: 25-50 mass%, Fe 2 O 3 : 30-30 50 mass%), and a method of spraying the molten steel contained in the vacuum degassing tank from the upper blowing lance toward the molten steel bath surface, and introducing the alloy iron into the molten steel in the vacuum degassing tank Addition during reflux of the molten steel by either or both of the methods of adding from the charging hole,
After the addition of the dephosphorizing agent, the molten steel is refluxed to cause a dephosphorization reaction, and then deoxidation is performed by adding Al to the molten steel to make the Al content concentration 0.003% by mass or more, for example. A dephosphorization processing method using a vacuum degassing facility (RH).

(2)前記脱燐剤として、前記脱燐剤中に含まれる全CaO質量に対して、当該質量の20〜50%のCaFを外数として含有する脱燐剤を用いる(1)項に記載の脱燐処理方法。 (2) As the dephosphorizing agent, a dephosphorizing agent containing 20 to 50% of CaF 2 as an external number with respect to the total CaO mass contained in the dephosphorizing agent is used as the item (1). The dephosphorization processing method of description.

(3)前記溶鋼の還流時間は2分間以上である(1)項または(2)項に記載の脱燐処理方法。   (3) The dephosphorization method according to (1) or (2), wherein the molten steel has a reflux time of 2 minutes or more.

本発明により、CaFを添加せず、粉体インジェクション設備の導入といった大幅な設備改造を必要とせずに、かつ溶鋼バブリング処理といった新たなプロセスを追加する必要がないために処理時間の短縮および熱エネルギーロスの抑制を図りながら、転炉や電気炉の次工程にある真空脱ガス設備(RH)を用いて、追加の脱燐処理を効率よくかつ簡便に行うことができるようになり、これにより、従来よりも安定して溶鋼の脱燐処理を行うことができるようになる。 According to the present invention, CaF 2 is not added, no major equipment modification such as introduction of powder injection equipment is required, and no new process such as molten steel bubbling treatment is required, thereby reducing processing time and heat. Using the vacuum degassing equipment (RH) in the next process of the converter and electric furnace while suppressing energy loss, the additional dephosphorization process can be performed efficiently and simply. Thus, the dephosphorization of molten steel can be performed more stably than in the prior art.

図1は、CaO原単位と脱P率の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the CaO basic unit and the P removal rate. 図2は、カルシウムフェライトCaO比率とCaO脱燐効率との関係を示すグラフ(ホタル石なし)である。FIG. 2 is a graph (no fluorite) showing the relationship between the calcium ferrite CaO ratio and the CaO dephosphorization efficiency. 図3は、カルシウムフェライトCaO比率とCaO脱燐効率との関係を示すグラフ(ホタル石あり)との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the calcium ferrite CaO ratio and the graph (with fluorite) showing the relationship between the CaO dephosphorization efficiency.

本発明を、添付図面を参照しながら説明する。以降の説明では、濃度に関する「%」は特に断りがない限り「質量%」を意味する。   The present invention will be described with reference to the accompanying drawings. In the following description, “%” relating to concentration means “% by mass” unless otherwise specified.

1.処理対象
本発明では、基本的に、転炉または電気炉から取鍋へ出鋼されたフリー酸素濃度が400ppm以上である溶鋼を、真空脱ガス設備(RH)を用いて脱燐処理する。転炉または電気炉を用いて、[C]≦0.06%に脱炭することにより、溶鋼中フリー酸素は400ppm以上となる。
1. Process Object In the present invention, basically, molten steel with a free oxygen concentration of 400 ppm or more discharged from a converter or electric furnace to a ladle is dephosphorized using a vacuum degassing facility (RH). By decarburizing to [C] ≦ 0.06% using a converter or an electric furnace, free oxygen in the molten steel becomes 400 ppm or more.

このようにフリー酸素濃度が高い条件では、転炉または電気炉で生成されるスラグ中の酸化鉄濃度(T.Fe%)も高くなるため、脱燐反応の促進には好都合である。   In such a condition where the free oxygen concentration is high, the iron oxide concentration (T.Fe%) in the slag produced in the converter or electric furnace also becomes high, which is advantageous for promoting the dephosphorization reaction.

ただし、本発明は、RH到着後の溶鋼を脱燐処理することから、転炉や電気炉から取鍋への出鋼時にAlを投入して脱酸する鋼種には実質的に適用できない。転炉や電気炉から取鍋への出鋼時にAlを投入しない鋼種としては、RHで脱炭処理する鋼種、すなわち極低炭素鋼を始めとする低炭素鋼がある。   However, since the present invention dephosphorizes the molten steel after arrival at the RH, the present invention is not substantially applicable to a steel type that is deoxidized by introducing Al when steel is discharged from a converter or an electric furnace to a ladle. As a steel type in which Al is not charged at the time of steel removal from a converter or an electric furnace to a ladle, there are steel types that are decarburized with RH, that is, low-carbon steels including ultra-low carbon steels.

本発明では、RHで脱炭処理するそのような鋼種への適用を想定し、かつ、出鋼時のスラグフォーミングの抑制や、少量のMn等の合金鉄の添加も考慮して、溶鋼中フリー酸素濃度が400ppm以上であることを前提とする。   In the present invention, it is assumed that it is applied to such a steel type that is decarburized with RH, and it is free in molten steel in consideration of suppression of slag forming during steel production and addition of a small amount of alloy iron such as Mn. It is assumed that the oxygen concentration is 400 ppm or more.

2.脱燐剤
従来は、特許文献1,2に記載されている脱燐剤、すなわち生石灰を主たるCaO源とし、それに20〜35%のCaFを混合したものを用いていた。ただし、上吹きランスから吹付けるために、最大粒径はいずれも0.15mm以下にした粉体である。
2. Dephosphorizing agent Conventionally, a dephosphorizing agent described in Patent Documents 1 and 2, that is, a mixture containing quick lime as a main CaO source and 20 to 35% of CaF 2 was used. However, in order to spray from the top blowing lance, the maximum particle size is a powder having a maximum of 0.15 mm or less.

これに対し、本発明では、脱燐剤として、脱燐剤中に含まれる全CaO質量のうち35%以上がカルシウムフェライト(CaO:25〜50%、Fe:30〜50%)として含まれているものを用いる。カルシウムフェライトは、融点が低く、投入後速やかに溶け、高酸素かつ高塩基度の溶融スラグを生成できるため、ホタル石を使用しなくとも脱燐率は安定して高位となる。 In contrast, in the present invention, 35% or more of the total CaO mass contained in the dephosphorizing agent is calcium ferrite (CaO: 25 to 50%, Fe 2 O 3 : 30 to 50%) as the dephosphorizing agent. Use what is included. Calcium ferrite has a low melting point, dissolves quickly after charging, and can produce molten slag with high oxygen and basicity, so that the dephosphorization rate is stably high without using fluorite.

この脱燐剤を用いることにより、溶鋼中のフリー酸素と取鍋内溶鋼上のスラグ中酸素とを利用することに併せて、溶鋼中の脱燐反応サイトに供給される脱燐剤が脱燐処理の促進に必要なCaO源(CaO)と酸素源(Fe)とを有するため、RHでの脱燐反応を促進することが可能になる。 By using this dephosphorizing agent, in addition to using free oxygen in the molten steel and oxygen in the slag on the molten steel in the ladle, the dephosphorizing agent supplied to the dephosphorization reaction site in the molten steel is dephosphorized. Since it has a CaO source (CaO) and an oxygen source (Fe 2 O 3 ) necessary for promoting the treatment, the dephosphorization reaction with RH can be promoted.

さらに、脱燐剤として、脱燐剤中に含まれる全CaO質量に対してこの質量の20〜50%のCaFを外数として含有する脱燐剤を用いてもよい。フッ素の溶出が問題とならない程度であれば、この方法を選択して脱燐率を高位に維持してもよい。 Furthermore, as the dephosphorizing agent, a dephosphorizing agent containing 20 to 50% of CaF 2 as an external number with respect to the total CaO mass contained in the dephosphorizing agent may be used. If the elution of fluorine does not cause a problem, this method may be selected to maintain a high dephosphorization rate.

3.脱燐剤の添加方法
特許文献1,2に記載されている発明では、羽口を使用して脱燐剤を吹き込んでいた。しかし、羽口は脱燐剤の吹き込みに伴う損耗の防止や、脱燐剤を吹き込まない間の閉塞防止のために特別な注意を必要とし、かつ、維持コストも嵩む。
3. Method of adding a dephosphorizing agent In the inventions described in Patent Documents 1 and 2, the dephosphorizing agent was blown in using tuyere. However, the tuyere requires special care to prevent wear caused by blowing the dephosphorizing agent, and to prevent clogging while the dephosphorizing agent is not blown, and the maintenance cost increases.

これに対し、本発明では、上述の脱燐剤を用いることから、羽口からの吹き込みでなくとも脱燐反応を促進することができる。本発明では、近年では多くのRHに装着されている、真空脱ガス槽内に挿入した上吹きランスから溶鋼の浴面へ向けて吹付けること、および、真空脱ガス槽内の溶鋼に合金鉄を投入する投入孔から添加することのうちのいずれか一方または両方の方法によって、溶鋼の還流中に上述の脱燐剤を添加する。   On the other hand, in the present invention, since the above-described dephosphorizing agent is used, the dephosphorization reaction can be promoted without blowing from the tuyere. In the present invention, in recent years, a large number of RHs are equipped with spraying from an upper blowing lance inserted into a vacuum degassing tank toward a bath surface of molten steel, and alloy iron on the molten steel in the vacuum degassing tank. The above-mentioned dephosphorizing agent is added during the reflux of the molten steel by either or both of the methods of adding from the charging hole.

4.還流処理
RHでは、処理対象の溶鋼が収容された取鍋が到着した後、真空槽の下部の浸漬管を溶鋼に浸漬し、真空槽内を減圧して溶鋼の還流処理を開始する。
4). Reflux treatment In RH, after the ladle containing the molten steel to be treated arrives, the dip tube at the bottom of the vacuum chamber is immersed in the molten steel, and the vacuum chamber is decompressed to start the molten steel reflux treatment.

本発明は、溶鋼中のフリー酸素と取鍋内溶鋼上のスラグ中酸素とを利用し、さらに、脱燐処理の促進に必要なCaO源と酸素源とを脱燐剤の中に含有させて溶鋼中の脱燐反応サイトに供給し、脱燐反応を促進する。   The present invention uses free oxygen in molten steel and oxygen in slag on molten steel in a ladle, and further contains a CaO source and an oxygen source necessary for promoting dephosphorization treatment in the dephosphorizing agent. The dephosphorization reaction is promoted by supplying the dephosphorization reaction site in the molten steel.

したがって、本発明では、Alを添加したり合金鉄を添加したりといった溶鋼中のフリー酸素濃度を低減させる処理に先立って、本発明の実施を開始する。   Therefore, in this invention, implementation of this invention is started prior to the process which reduces the free oxygen concentration in molten steel, such as adding Al or adding alloy iron.

本発明では、上述の脱燐剤を溶鋼に添加した後に、溶鋼を還流して脱燐反応させる。溶鋼の還流時間は2分間以上であることが、RHの槽内スラグが取鍋上に排出される前に、槽内スラグを脱酸してしまうため復燐が起こることを防ぐために、有効である。   In the present invention, after the above-described dephosphorizing agent is added to the molten steel, the molten steel is refluxed to cause a dephosphorization reaction. The reflux time of the molten steel is 2 minutes or more, in order to prevent dephosphorization from occurring because the slag in the tank is deoxidized before the RH slag is discharged onto the ladle. is there.

このようにしてRHで脱燐反応を行わせた後、例えば、溶鋼にAlを添加してAl含有濃度を0.003%以上とすることによって、脱酸を行う。   After the dephosphorization reaction is performed with RH in this manner, deoxidation is performed, for example, by adding Al to the molten steel so that the Al content concentration is 0.003% or more.

本発明では、このようにして、CaFを添加せず、粉体インジェクション設備の導入といった大幅な設備改造を必要とせずに、かつ溶鋼バブリング処理といった新たなプロセスを追加する必要がないために処理時間の短縮および熱エネルギーロスの抑制を図りながら、真空脱ガス設備(RH)を用いて、溶鋼に対する追加の脱燐処理を効率よくかつ簡便に行うことができる。 In the present invention, since no CaF 2 is added in this way, no major equipment modification such as introduction of powder injection equipment is required, and no additional process such as molten steel bubbling is required. An additional dephosphorization process for molten steel can be performed efficiently and simply using a vacuum degassing facility (RH) while shortening the time and suppressing thermal energy loss.

例えば、転炉でC=0.05%、P≦0.013%を目標として酸化精錬した後、260トンの溶鋼を出鋼中AlやSiを投入することなく取鍋へ出鋼し、その含有成分を分析して確認した。   For example, after oxidative refining with the goal of C = 0.05% and P ≦ 0.013% in a converter, 260 tons of molten steel is discharged into a ladle without adding Al or Si in the discharged steel. The contained components were analyzed and confirmed.

脱燐剤として、脱燐剤中に含まれる全CaO質量のうち35%以上がカルシウムフェライトとして含まれているものを、RH槽内に挿入した上吹きランスから溶鋼の浴面へ向けて吹付けること、または、RH槽内の溶鋼に合金鉄を投入する投入孔から添加することのいずれかの添加方法により、溶鋼に添加した。また、処理前酸素活量は400ppm以上となるよう上吹きランスからの送酸で調整した。   As a dephosphorizing agent, a powder containing 35% or more of the total CaO mass contained in the dephosphorizing agent as calcium ferrite is sprayed from the upper blowing lance inserted in the RH tank toward the bath surface of the molten steel. In addition, it was added to the molten steel by any one of the addition methods of adding the alloy iron to the molten steel in the RH tank from the charging hole. In addition, the oxygen activity before treatment was adjusted by sending acid from the top blowing lance so that it became 400 ppm or more.

その後、RHの浸漬管をその溶鋼中に浸漬し、還流用Arガスを1.6〜2.5Nm/min流して直ちに溶鋼還流を開始した。この還流用ガス流量は、溶鋼還流量Qとしては130〜149t/minに相当する。なお、溶鋼還流量Qの計算には、「桑原達朗ら:鉄と鋼、73(1987),S176」に示されている公知の式(1)を用いて算出した。
Q=11.4×D4/3×G1/3×(ln(P1/P0))1/3 ・・・(1)
(1)式において、
Q:溶鋼還流量[t/min]
D:浸漬管の内径[m]
G:還流ガス流量[Nl/min]
P0:真空脱ガス設備内の圧力[torr]
P1:ガス吹き込み点の圧力[torr]
である。ここで、D=0.65m,P0=5torr,P1=760torrを用いた。
Thereafter, the RH dip tube was immersed in the molten steel, and refluxing Ar gas was allowed to flow at 1.6 to 2.5 Nm 3 / min to immediately start the molten steel reflux. This reflux gas flow rate corresponds to 130 to 149 t / min as the molten steel reflux amount Q. The molten steel reflux amount Q was calculated using a known formula (1) shown in “Tatsuro Kuwahara et al .: Iron and Steel, 73 (1987), S176”.
Q = 11.4 × D4 / 3 × G1 / 3 × (ln (P1 / P0)) 1/3 (1)
In the formula (1),
Q: Molten steel reflux [t / min]
D: Inner diameter of dip tube [m]
G: Flow rate of reflux gas [Nl / min]
P0: Pressure in vacuum degassing equipment [torr]
P1: Gas blowing point pressure [torr]
It is. Here, D = 0.65 m, P0 = 5 torr, and P1 = 760 torr were used.

なお、この対象鋼種においてはフリー酸素濃度が400ppm未満であることは基本的には殆ど無いが、万一400ppm未満であった場合には、次に予定する脱燐剤を投入する前に酸素源を溶鋼に添加してフリー酸素濃度を高める操作を加えればよい。   In this target steel type, the free oxygen concentration is basically rarely less than 400 ppm, but in the unlikely event that it is less than 400 ppm, the oxygen source should be What is necessary is just to add operation which raises free oxygen concentration by adding to molten steel.

一例としては、還流開始から3分間経過後、脱燐剤としてCaO:0〜100%,カルシウムフェライト:0〜100%,CaO換算濃度:30〜100%の組成を有する粉を、RH槽内の上吹きランスから槽内の溶鋼表面へ4〜10分間吹き付けた。   As an example, after 3 minutes from the start of reflux, a powder having a composition of CaO: 0 to 100%, calcium ferrite: 0 to 100%, CaO equivalent concentration: 30 to 100% as a dephosphorizing agent is placed in the RH tank. It sprayed on the molten steel surface in a tank for 4 to 10 minutes from the top blowing lance.

この脱燐剤の吹付けを完了した後、本発明例としては溶鋼還流時間2分間以上を満たすように3分間の溶鋼還流処理を継続し、その後にAlを添加してsol.Al濃度を0.020〜0.050%に調整したほか、製品規格として必要な合金成分を添加した。   After the spraying of the dephosphorizing agent is completed, the molten steel reflux treatment is continued for 3 minutes so as to satisfy the molten steel reflux time of 2 minutes or more. In addition to adjusting the Al concentration to 0.020 to 0.050%, alloy components necessary for product specifications were added.

本実施例における脱P結果を表1にまとめて示すとともに、図1〜3にグラフで示す。   The removal P results in this example are summarized in Table 1 and graphically shown in FIGS.

Figure 0006311466
Figure 0006311466

図1は、CaO原単位と脱P率の関係を示すグラフであり、図2は、カルシウムフェライトCaO比率とCaO脱燐効率との関係を示すグラフ(ホタル石なし)であり、図3は、カルシウムフェライトCaO比率とCaO脱燐効率との関係を示すグラフ(ホタル石あり)との関係を示すグラフである。   FIG. 1 is a graph showing the relationship between the CaO basic unit and the P removal rate, FIG. 2 is a graph showing the relationship between the calcium ferrite CaO ratio and the CaO dephosphorization efficiency (without fluorite), and FIG. It is a graph which shows the relationship between the graph (with fluorite) which shows the relationship between a calcium ferrite CaO ratio and CaO dephosphorization efficiency.

ここで、図1〜3における脱P率=([P]i−[P]f)/([P]i)×100であり、換算CaO投入量=(投入した脱燐剤量)×(それぞれのCaO濃度)であり、カルシウムフェライトCaO比率=(カルシウムフェライト投入量×カルシウムフェライトCaO濃度)/(全換算CaO)であり、CaO脱P効率=(脱P率)/(換算CaO投入量)である。なお、[P]i:処理前[P]であり、[P]f:処理後[P]である。また、図1,3では、CaO:CaF=1:0.2〜0.5である。   Here, the P removal rate in FIGS. 1 to 3 = ([P] i− [P] f) / ([P] i) × 100, and the converted CaO input amount = (the amount of dephosphorization agent added) × ( Respective CaO concentrations), calcium ferrite CaO ratio = (calcium ferrite input amount × calcium ferrite CaO concentration) / (total converted CaO), and CaO de-P efficiency = (de-P rate) / (converted CaO input amount) It is. [P] i: [P] before processing, [P] f: [P] after processing. Moreover, in FIG.1, 3, it is CaO: CaF = 1: 0.2-0.5.

表1における比較例1,2は、脱燐剤としてCaOとCaFの粉体を用いた例であり、CaO脱燐効率およびスラグリサイクル性のいずれもが不芳である。 Comparative Examples 1 and 2 in Table 1 are examples in which powders of CaO and CaF 2 are used as a dephosphorization agent, and both CaO dephosphorization efficiency and slag recyclability are unsatisfactory.

比較例3,4は、脱燐剤としてCaOとカルシウムフェライトの粉体を用いた例であり、スラグリサイクル性は優れるが、脱燐剤中に含まれる全CaO質量のうち14,7%がカルシウムフェライトとして含まれているため、CaOの溶融不良とスラグの酸素不足を生じ、CaO脱燐効率が不芳であった。   Comparative Examples 3 and 4 are examples using CaO and calcium ferrite powders as a dephosphorizing agent, and although slag recyclability is excellent, 14.7% of the total CaO mass contained in the dephosphorizing agent is calcium. Since it is contained as ferrite, CaO poor melting and oxygen deficiency in slag occurred, and CaO dephosphorization efficiency was unsatisfactory.

比較例5,6は、脱燐剤としてCaOとカルシウムフェライトの粉体を用いた例であり、スラグリサイクル性は優れるが、出鋼された溶鋼のフリー酸素濃度が300,350ppmであるため、CaO脱燐効率が不芳であった。   Comparative Examples 5 and 6 are examples using CaO and calcium ferrite powder as a dephosphorization agent, and although the slag recyclability is excellent, the free oxygen concentration of the molten steel produced is 300,350 ppm. The dephosphorization efficiency was unsatisfactory.

これに対し、発明例1〜8は、いずれも脱P効率が良好である。特に発明例5,6では脱P効率が高位であるが、ホタル石を使用しているため、もしリサイクル上問題ない頻度や環境であるならば、これらの条件を選択すればよい。   On the other hand, all of Invention Examples 1 to 8 have good P removal efficiency. In particular, Invention Examples 5 and 6 have high P removal efficiency, but since fluorite is used, these conditions may be selected if the frequency and environment are satisfactory for recycling.

発明例1〜8の結果から、
(I)本発明における脱燐剤は、RH槽内に挿入した上吹きランスから溶鋼の浴面へ向けて吹付けることにより投入してもよいし、RH槽内の溶鋼に合金鉄を投入する投入孔から添加することにより投入してもよいこと、
(II)脱燐剤として、脱燐剤中に含まれる全CaO質量のうち35%以上がカルシウムフェライトとして含まれているものを用いればよいこと、
(III)RHでの脱燐処理の対象である溶鋼のフリー酸素濃度は400ppm以上であればよいこと
が理解される。
From the results of Invention Examples 1 to 8,
(I) The dephosphorizing agent in the present invention may be introduced by spraying from an upper blowing lance inserted into the RH tank toward the bath surface of the molten steel, or alloy iron is introduced into the molten steel in the RH tank. That it may be charged by adding from the charging hole,
(II) What is necessary is just to use what contains 35% or more as calcium ferrite among the total CaO mass contained in a dephosphorizing agent as a dephosphorizing agent,
(III) It is understood that the free oxygen concentration of the molten steel to be subjected to the dephosphorization treatment with RH may be 400 ppm or more.

さらに、図1に示すグラフより、カルシウムフェライトを使用すれば、ホタル石を使用せずとも、CaOの投入量に応じた脱燐率が安定して得られること、および、ホタル石とカルシウムフェライトを併用すれば一層高位な脱P率が得られることがわかる。この関係に基づいて、処理前[P]の値に応じてカルシウムフェライトやホタル石の投入量を決定することにより、目的の[P]まで低下させることが可能となる。   Furthermore, from the graph shown in FIG. 1, if calcium ferrite is used, a dephosphorization rate according to the amount of CaO input can be stably obtained without using fluorite, and fluorite and calcium ferrite can be obtained. It can be seen that a higher P removal rate can be obtained when used in combination. Based on this relationship, by determining the amount of calcium ferrite or fluorite input according to the value of [P] before treatment, it is possible to lower the target [P].

また、図2、3のグラフより、安定な脱燐率を得るためのカルシウムフェライトの必要量は、CaO換算で35%以上であることがわかる。   2 and 3 that the necessary amount of calcium ferrite for obtaining a stable dephosphorization rate is 35% or more in terms of CaO.

Claims (3)

転炉または電気炉から取鍋へ出鋼されたフリー酸素濃度が400ppm以上である溶鋼を、真空脱ガス設備を用いて脱燐処理する方法であって、
脱燐剤として、CaOおよびカルシウムフェライトからなり、該脱燐剤中に含まれる全CaO質量のうち35%以上76%以下がカルシウムフェライトとして含まれているものを、真空脱ガス槽内に挿入した上吹きランスから溶鋼の浴面へ向けて吹付ける方法、および、真空脱ガス槽内の溶鋼に合金鉄を投入する投入孔から添加する方法のうちのいずれか一方または両方の方法によって、前記溶鋼の還流中に添加し、当該脱燐剤の添加を終えた後に溶鋼を還流して脱燐反応させた後、脱酸を行うこと
を特徴とする真空脱ガス設備を用いる脱燐処理方法。
A method of dephosphorizing a molten steel having a free oxygen concentration of 400 ppm or more discharged from a converter or an electric furnace to a ladle using a vacuum degassing equipment,
As a dephosphorizing agent, a material composed of CaO and calcium ferrite and containing 35% or more and 76% or less as calcium ferrite out of the total CaO mass contained in the dephosphorizing agent was inserted into a vacuum degassing tank. According to any one or both of a method of spraying from the top blowing lance toward the bath surface of the molten steel and a method of adding from the introduction hole for introducing the alloy iron to the molten steel in the vacuum degassing tank, the molten steel A dephosphorization method using a vacuum degassing facility, wherein the dephosphorization is performed after the molten steel is refluxed and dephosphorized after the addition of the dephosphorizing agent is completed.
前記脱燐剤として、前記脱燐剤中に含まれる全CaO質量に対して、当該質量の20〜50%のCaFを外数として含有する脱燐剤を用いる請求項1に記載の脱燐処理方法。 2. The dephosphorization agent according to claim 1, wherein a dephosphorization agent containing 20 to 50% of CaF 2 as an external number with respect to the total CaO mass contained in the dephosphorization agent is used as the dephosphorization agent. Processing method. 前記溶鋼の還流時間は2分間以上である請求項1または請求項2に記載の脱燐処理方法。   The dephosphorization method according to claim 1 or 2, wherein the molten steel has a reflux time of 2 minutes or more.
JP2014118984A 2014-06-09 2014-06-09 Method of dephosphorizing molten steel using vacuum degassing equipment Active JP6311466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014118984A JP6311466B2 (en) 2014-06-09 2014-06-09 Method of dephosphorizing molten steel using vacuum degassing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014118984A JP6311466B2 (en) 2014-06-09 2014-06-09 Method of dephosphorizing molten steel using vacuum degassing equipment

Publications (2)

Publication Number Publication Date
JP2015232157A JP2015232157A (en) 2015-12-24
JP6311466B2 true JP6311466B2 (en) 2018-04-18

Family

ID=54933784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014118984A Active JP6311466B2 (en) 2014-06-09 2014-06-09 Method of dephosphorizing molten steel using vacuum degassing equipment

Country Status (1)

Country Link
JP (1) JP6311466B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803155B (en) * 2016-05-12 2017-09-29 北京科技大学 A kind of Arc Furnace Steel-making Dephosphoration method
CN107502702B (en) * 2017-08-10 2018-05-22 北京科技大学 A kind of purifying quick smelting process of full steel scrap electric arc furnaces
JP7052585B2 (en) * 2018-06-18 2022-04-12 日本製鉄株式会社 Dephosphorization method for molten steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62205221A (en) * 1986-03-04 1987-09-09 Nippon Steel Corp Method for degassing and dephosphorizing molten steel
JP2808197B2 (en) * 1991-06-19 1998-10-08 新日本製鐵株式会社 Vacuum refining of molten steel using large diameter immersion tube
JPH07109511A (en) * 1993-10-08 1995-04-25 Sumitomo Metal Ind Ltd Method for dephosphorizing molten steel
CN102876844A (en) * 2012-06-28 2013-01-16 辽宁天和科技股份有限公司 Method for producing ultra-low phosphorus steel by using premelted calcium ferrite to refine molten steel outdoors by RH process

Also Published As

Publication number Publication date
JP2015232157A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
EP3239308A1 (en) Method for reclaiming iron and phosphorus from steelmaking slag
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JP2008063647A (en) Method for desulfurizing molten steel
JP5386825B2 (en) Method for melting Mn-containing ultra-low carbon steel
JP2007051350A (en) Method for producing low sulfur steel
JP5594183B2 (en) Method for recovering iron and phosphorus from steelmaking slag and raw material for phosphate fertilizer
JP6311466B2 (en) Method of dephosphorizing molten steel using vacuum degassing equipment
CN111670258B (en) Method for dephosphorizing molten iron
JP2011208170A (en) Method of producing manganese-containing low carbon steel
KR101430377B1 (en) Method of same processing for desiliconizing and dephosphorizing hot metal
JP2015042777A (en) Method for smelting high nitrogen steel
JP5553167B2 (en) How to remove hot metal
JP4977870B2 (en) Steel making method
KR102189097B1 (en) Pre-treatment method of molten iron and manufacturing method of ultra-low-tough steel
KR102315999B1 (en) A method for refining a high manganese steel and amanufacturing of a high manganese steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
CN103225009A (en) Method for producing high-cleanness steel
JP2015042780A (en) Dephosphorization treatment method for molten iron in converter
JP5326310B2 (en) Method of melting high Mn ultra-low carbon steel
JP2008150710A (en) Method for melting low carbon high manganese steel
JP2000109924A (en) Method for melting extra-low sulfur steel
JP2019151535A (en) Method of producing phosphate slag fertilizer
KR20050060816A (en) Refining method of ultra low carbon steel used in manufacturing two piece can
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JP2006152368A (en) Method for melting low carbon high manganese steel

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R151 Written notification of patent or utility model registration

Ref document number: 6311466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350