JP6806288B2 - Steel manufacturing method - Google Patents

Steel manufacturing method Download PDF

Info

Publication number
JP6806288B2
JP6806288B2 JP2020527600A JP2020527600A JP6806288B2 JP 6806288 B2 JP6806288 B2 JP 6806288B2 JP 2020527600 A JP2020527600 A JP 2020527600A JP 2020527600 A JP2020527600 A JP 2020527600A JP 6806288 B2 JP6806288 B2 JP 6806288B2
Authority
JP
Japan
Prior art keywords
steel
ladle
molten steel
molten
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020527600A
Other languages
Japanese (ja)
Other versions
JPWO2020004501A1 (en
Inventor
敦 岡山
敦 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2020004501A1 publication Critical patent/JPWO2020004501A1/en
Application granted granted Critical
Publication of JP6806288B2 publication Critical patent/JP6806288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Coating With Molten Metal (AREA)

Description

本開示は、鋼の製造方法に関するものである。 The present disclosure relates to a method for producing steel.

鋼材に要求される材料特性が高度化しており、鋼材の靱性をはじめとする特性値の向上が求められている。特に、ガス成分である窒素が鋼材に含まれると、一般的には靱性低下が生じる。このため、鋼材中の窒素を無害化するため、Ti、Nb、V、Zr、Alといった窒化物形成元素を添加することで無害化が図られているが、鋼材に合金を添加すると合金コストが増加することに加え、材料強度といった他の特性にも影響を及ぼす。このため、製造段階で可能な限り低窒素化することが望ましい。 The material properties required for steel materials are becoming more sophisticated, and improvement of characteristic values such as toughness of steel materials is required. In particular, when nitrogen, which is a gas component, is contained in the steel material, the toughness generally decreases. Therefore, in order to detoxify nitrogen in the steel material, it is detoxified by adding nitride forming elements such as Ti, Nb, V, Zr, and Al, but adding an alloy to the steel material increases the alloy cost. In addition to the increase, it also affects other properties such as material strength. Therefore, it is desirable to reduce nitrogen as much as possible at the production stage.

高炉−転炉法で鋼を製造する場合、高炉で溶製された、炭素を4〜5%(本明細書中では特に説明がない限り、元素又は化合物の量を示す「%」及び「ppm」は全て質量比を意味する。)の溶銑を転炉に装入し、転炉内で脱炭する。その際、転炉内では上吹きランスから溶鋼に大量の酸素が吹き付けられ、転炉内は脱炭反応で生じたCOガスで満たされ、雰囲気中の窒素分圧が低下するとともに上吹きガスジェットで溶鋼が激しく攪拌するため、脱窒反応が進む。転炉内では底吹きにより溶鋼が強攪拌されることもあり、転炉吹錬終了時の溶鋼中窒素濃度は10ppm程度まで低下する。しかしながら、次工程に溶鋼を搬送するため、溶鋼は転炉から取鍋に出鋼されるが、出鋼の際に出鋼流が大気を巻き込むことで、溶鋼中の窒素濃度が上昇してしまう。 When steel is produced by the blast furnace-converter method, 4 to 5% of carbon melted in the blast furnace (unless otherwise specified herein, "%" and "ppm" indicating the amount of an element or compound. "" Means the mass ratio.) The hot metal is charged into the converter and decarburized in the converter. At that time, a large amount of oxygen is blown from the top-blown lance to the molten steel in the converter, and the inside of the converter is filled with CO gas generated by the decarburization reaction, the partial pressure of nitrogen in the atmosphere decreases, and the top-blown gas jet Since the molten steel is vigorously agitated at, the denitrification reaction proceeds. In the converter, the molten steel may be strongly agitated by bottom blowing, and the nitrogen concentration in the molten steel at the end of the converter blowing drops to about 10 ppm. However, since the molten steel is transported to the next process, the molten steel is discharged from the converter to the ladle, but the nitrogen concentration in the molten steel rises because the steel discharge flow entrains the atmosphere during the steel ejection. ..

次工程として、真空脱ガス装置を使って溶鋼を減圧処理する場合、減圧処理中に溶鋼中窒素濃度が低下するが、溶鋼中窒素濃度の低下速度は遅いことに加え、高速処理が求められる状況では減圧処理に依存することはできず、真空脱ガス装置だけを使って低窒素鋼を経済的、安定的に製造するには至っていない。 When the molten steel is decompressed using a vacuum degassing device as the next step, the nitrogen concentration in the molten steel decreases during the decompression process, but the rate of decrease in the nitrogen concentration in the molten steel is slow and high-speed processing is required. However, it is not possible to rely on decompression treatment, and it has not been possible to economically and stably produce low nitrogen steel using only a vacuum degassing device.

このため、低窒素鋼を経済的、安定的に製造するには、転炉で10ppm程度まで窒素濃度を低減した溶鋼を、吸窒させることなく取鍋に出鋼し、真空脱ガス装置では吸窒を抑制した状態を維持し、次工程である連続鋳造に移るのが理想である。 Therefore, in order to produce low nitrogen steel economically and stably, molten steel whose nitrogen concentration has been reduced to about 10 ppm in a converter is discharged to a ladle without sucking nitrogen, and sucked by a vacuum degassing device. Ideally, the state of suppressing nitrogen is maintained and the next process, continuous casting, is started.

低窒素鋼を製造する観点から、以下に示すように、出鋼時の吸窒を抑制する手法が提案されている。出鋼時の溶鋼の吸窒を抑制するには、(1)吸窒が生じている部分を大気から遮断する、(2)大気中の窒素分圧を下げる、(3)吸窒反応を遅らせる、(4)反応界面積を低減する、といった手法が考えられる。 From the viewpoint of producing low nitrogen steel, a method of suppressing nitrogen absorption at the time of steel ejection has been proposed as shown below. To suppress the nitrogen absorption of molten steel at the time of steel ejection, (1) shut off the part where nitrogen absorption occurs from the atmosphere, (2) reduce the partial pressure of nitrogen in the atmosphere, and (3) delay the nitrogen absorption reaction. , (4) A method of reducing the reaction boundary area can be considered.

これらのなかで、(1)および(2)は出鋼時に非窒素ガスを出鋼流もしくは取鍋内に導入する技術であり、下記特許文献1〜3で提案されている。
特許文献1では、脱窒された低窒素溶鋼を不活性ガスでシールしながら出鋼する技術が提案されている。
特許文献2では、蓋を有する受鋼用取鍋内において、酸素富化空気によって燃料を燃焼させ受鋼取鍋を予熱し、且つ燃焼排ガスで置換することにより受鋼用取鍋内の雰囲気中の窒素を低下せしめた後に、転炉出鋼時に受鋼用取鍋の蓋に設けられた溶鋼流を囲む円環状に配設されたノズルからアルゴンガスを溶鋼流に吹き付けることを特徴とする技術が提案されている。
特許文献3では、炭酸カルシウムを入れた取鍋内に溶鋼を出鋼し、出鋼時及び出鋼中の取鍋内の雰囲気をCOガス雰囲気として、溶鋼が空気と接触するのを抑制する方法が開示されている。
Among these, (1) and (2) are techniques for introducing non-nitrogen gas into the steel ejection flow or the ladle at the time of steel ejection, and are proposed in the following Patent Documents 1 to 3.
Patent Document 1 proposes a technique for ejecting denitrified low-nitrogen molten steel while sealing it with an inert gas.
In Patent Document 2, in a steel ladle having a lid, fuel is burned by oxygen-enriched air to preheat the steel ladle, and the steel ladle is replaced with combustion exhaust gas to create an atmosphere in the steel ladle. A technique characterized by blowing argon gas onto the molten steel flow from a nozzle arranged in an annular shape surrounding the molten steel flow provided on the lid of the steel ladle at the time of steelmaking from the converter after reducing the nitrogen content of the steel. Has been proposed.
In Patent Document 3, molten steel is ejected into a ladle containing calcium carbonate, and the atmosphere in the ladle at the time of steel ejection and during steel ejection is set as a CO 2 gas atmosphere to prevent the molten steel from coming into contact with air. The method is disclosed.

また、(3)は特許文献4にも記載されている通り出鋼時に未脱酸もしくは半脱酸状態として出鋼する方法であり、多くの先行技術文献に見られる一般的な手法である。 Further, (3) is a method of ejecting steel in a non-deoxidized or semi-deoxidized state at the time of steel ejection as described in Patent Document 4, and is a general method found in many prior art documents.

転炉から取鍋への出鋼時において、溶鋼への吸窒が生じている場所は、非特許文献1に記載されているように、溶鋼が転炉から取鍋内に出鋼される際に生じる滝壷部であると考えられる。しかしながら、(4)反応界面積を低減させる手法、それも滝壷部における反応界面積低減に着目した発明に関しては、特許文献5を除いては見あたらない。特許文献5では、出鋼流を、傾斜させた取鍋の壁に沿わせて取鍋に受鋼するとともに、転炉等の製鋼炉の出鋼口に不活性ガスを供給して出鋼流に不活性ガスを混入させる技術が提案されている。 When the molten steel is discharged from the converter to the ladle, the place where the nitrogen absorption to the molten steel occurs is when the molten steel is discharged from the converter into the ladle, as described in Non-Patent Document 1. It is considered to be the waterfall basin that occurs in. However, (4) a method for reducing the reaction boundary area, which is also an invention focusing on the reduction of the reaction boundary area in the waterfall basin, is not found except for Patent Document 5. In Patent Document 5, the steel output flow is received by the ladle along the wall of the inclined ladle, and an inert gas is supplied to the steel output port of a steelmaking furnace such as a converter to supply the steel output flow. A technique has been proposed in which an inert gas is mixed into the steel.

特開昭60−26611号公報Japanese Unexamined Patent Publication No. 60-26611 特開平2−285020号公報Japanese Unexamined Patent Publication No. 2-285020 特開2003−293022号公報Japanese Unexamined Patent Publication No. 2003-293022 特開昭59−190314号公報JP-A-59-190314 特開昭61−166911号公報Japanese Unexamined Patent Publication No. 61-166911

長隆郎ら著「転炉出鋼時の溶鋼の酸素および窒素吸収の推算」、鉄と鋼、69(1983)、p.767−774Chotakaro et al., "Estimation of Oxygen and Nitrogen Absorption of Molten Steel at the Time of Steelmaking from Converter", Iron and Steel, 69 (1983), p. 767-774 岡山敦ら著「注入流のガス吸収挙動に関する水モデル実験」、鉄と鋼、102(2016)、p.607−613Atsushi Okayama et al., "Water Model Experiment on Gas Absorption Behavior of Injection Flow", Iron and Steel, 102 (2016), p. 607-613

特許文献5に開示されている技術は、出鋼流の滝壷自体のサイズを低減する方法である。滝壷のサイズを小さくすると吸窒が生じる反応界面積も低減するため、吸窒抑制効果が得られるが、出鋼流を取鍋の壁に沿わせるのは耐火物の溶損リスク等が大きい。このため、滝壷が生成したとしても、その滝壷内で吸窒が生じる界面積を低減させることが可能な、異なる切り口の技術が必要である。 The technique disclosed in Patent Document 5 is a method of reducing the size of the waterfall basin itself of the Izushi style. If the size of the basin is reduced, the area of the reaction boundary where nitrogen absorption occurs is also reduced, so the effect of suppressing nitrogen absorption can be obtained, but there is a large risk of melting of refractories along the wall of the ladle. For this reason, even if a waterfall basin is generated, there is a need for a different cutting technique that can reduce the boundary area where nitrogen absorption occurs in the waterfall basin.

本開示は、溶鋼を取鍋に出鋼する際に出鋼流によって形成される滝壷部での吸窒を効果的に抑制することのできる、鋼の製造方法を提供することを目的とする。 It is an object of the present disclosure to provide a method for producing steel capable of effectively suppressing nitrogen absorption at a waterfall basin formed by a steel discharge flow when molten steel is discharged into a ladle.

即ち、本開示の要旨とするところは以下のとおりである。
<1> 溶鋼炉から出鋼された溶鋼を取鍋に受鋼する工程と、
前記取鍋に受鋼した前記溶鋼を前記取鍋から排出して鋳造する工程と、を含み、
前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する際、前記取鍋に受鋼された前記溶鋼との接触により溶融可能であり、下記(1)式によって算出されるスラグ厚みTが0.02m以上を満たす量Wの酸化物からなる副原料を、前記溶鋼の受鋼開始前に前記取鍋内の底部に入れ置きし前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する、鋼の製造方法。
T=(W/ρ)/((π・D)/4) (1)
T:スラグ厚み(m)
D:取鍋直径(m)
ρ:溶融酸化物密度(=3000kg/m
W:副原料の量(kg)
<2> 前記副原料が、CaO、Al 、SiO 及びMgOを含む、<1>に記載の鋼の製造方法。
> 前記副原料の組成が、
CaO/Al:0.8〜4.0 (2)
5%≦SiO≦10% (3)
MgO≦10% (4)
CaO+Al+SiO+MgO≧90% (5)
を満たしている、<1>又は<2>に記載の鋼の製造方法。
ただし、(2)〜(5)式中の分子記号は当該分子の含有量(質量%)を意味する。
> 前記副原料の量Wが、前記(1)式によって算出される前記スラグ厚みTが0.1m以下を満たす量である、<1>のいずれか1つに記載の鋼の製造方法。
<5> 前記取鍋内に入れ置きした前記副原料を予熱し、前記副原料の温度が800℃以上の状態で前記溶鋼を前記取鍋に受鋼する、<4>に記載の鋼の製造方法。
That is, the gist of this disclosure is as follows.
<1> The process of receiving the molten steel discharged from the molten steel furnace into a ladle and
Including a step of discharging the molten steel received in the ladle from the ladle and casting it.
When the molten steel discharged from the molten steel furnace is received in the ladle, it can be melted by contact with the molten steel received in the ladle, and the slag thickness calculated by the following equation (1). T is the auxiliary materials of oxide amount W satisfying than 0.02 m, and placed placed in the bottom of the ladle before受鋼start of the molten steel, the said molten steel is tapped from the molten steel furnace A method of manufacturing steel that receives steel in a ladle.
T = (W / ρ) / ((π ・ D 2 ) / 4) (1)
T: Slag thickness (m)
D: Ladle diameter (m)
ρ: Molten oxide density (= 3000 kg / m 3 )
W: Amount of auxiliary material (kg)
<2> The method for producing steel according to <1>, wherein the auxiliary raw material contains CaO, Al 2 O 3 , SiO 2, and MgO.
< 3 > The composition of the auxiliary raw material is
CaO / Al 2 O 3 : 0.8 to 4.0 (2)
5% ≤ SiO 2 ≤ 10% (3)
MgO ≤ 10% (4)
CaO + Al 2 O 3 + SiO 2 + MgO ≧ 90% (5)
The method for producing steel according to <1> or <2> , which satisfies the above.
However, the molecular symbol in the formulas (2) to (5) means the content (mass%) of the molecule.
<4> The amount W of adjuncts, wherein (1) said slag thickness T that is calculated by the formula is that amount which satisfies the 0.1m or less, according to any one of <1> to <3> Steel manufacturing method.
<5> Production of the steel according to <4>, wherein the auxiliary raw material placed in the ladle is preheated, and the molten steel is received in the ladle when the temperature of the auxiliary raw material is 800 ° C. or higher. Method.

本開示によれば、溶鋼を取鍋に出鋼する際に出鋼流によって形成される滝壷部での吸窒を効果的に抑制することのできる鋼の製造方法が提供される。 According to the present disclosure, there is provided a method for producing steel capable of effectively suppressing nitrogen absorption at a waterfall basin formed by a steel discharge flow when molten steel is discharged into a ladle.

取鍋内のスラグ厚みと吸窒量の関係を示す図である。It is a figure which shows the relationship between the slag thickness in a ladle and the amount of nitrogen absorption. 出鋼直前の合成フラックス温度と吸窒量の関係を示す図である。It is a figure which shows the relationship between the synthetic flux temperature just before steel out and the amount of nitrogen absorption.

本開示において用いる用語の意味内容について説明する。
溶鋼炉(製鋼炉)とは、転炉、AOD(Argon Oxygen Decarburization)炉、電気炉といった、溶鋼を溶製するための保持容器を指す。
出鋼とは、製鋼炉に保持された溶融金属(溶鋼)を製鋼炉から取鍋といった搬送用の容器に移し替える操作を指す。また、受鋼とは、溶鋼炉から出た溶鋼を取鍋が受けることを意味し、出鋼と受鋼は同じタイミングで行われることになる。
副原料とは、溶鋼を精錬するのに必要な鉄分以外の添加物を指す。本開示では、酸化物からなる副原料を対象とし、鉄以外の成分が含まれる酸化物からなるものを副原料とする。具体的には、生石灰、珪砂、カルシウムアルミネート系造滓剤、アルミナレンガ屑、焼成ドロマイト等が使用できる。
取鍋直径Dとは、取鍋の内径を意味する。通常、取鍋内は底部と上部(開口部)の内径が同じ作りになっているが、底部と上部の内径が異なる場合は、取鍋底部と上部での各直径(内径)の平均値とする。また、取鍋の高さ方向に垂直な取鍋内部の断面が楕円形である場合は、長径と短径との平均値を取鍋直径Dとする。
The meanings of the terms used in the present disclosure will be described.
The molten steel furnace (steelmaking furnace) refers to a holding container for melting molten steel, such as a converter, an AOD (Argon Oxygen Decarburization) furnace, and an electric furnace.
Steelmaking refers to the operation of transferring molten metal (molten steel) held in a steelmaking furnace from a steelmaking furnace to a container for transportation such as a ladle. Further, the steel receiving means that the ladle receives the molten steel discharged from the molten steel furnace, and the steel ejection and the steel receiving are performed at the same timing.
Auxiliary raw materials refer to additives other than iron required for refining molten steel. In the present disclosure, an auxiliary raw material composed of an oxide is targeted, and a material composed of an oxide containing a component other than iron is used as an auxiliary raw material. Specifically, quicklime, silica sand, calcium aluminate-based slagifying agent, alumina brick scrap, calcined dolomite and the like can be used.
The diameter D of the ladle means the inner diameter of the ladle. Normally, the inner diameters of the bottom and top (opening) are the same inside the ladle, but if the inner diameters of the bottom and top are different, the average value of each diameter (inner diameter) at the bottom and top of the ladle To do. When the cross section of the inside of the ladle perpendicular to the height direction of the ladle is elliptical, the average value of the major axis and the minor axis is defined as the pan diameter D.

本発明者は、上記本開示の課題を解決するため、溶存酸素濃度計と水模型装置を使ったガス吸収実験を行い、滝壷部での気泡巻き込み挙動とガス吸収挙動を詳細に調査した。水中には通常8ppm程度の酸素が溶存しており、溶存酸素濃度計を用いて測定できる。転炉から取鍋への出鋼を模擬する水模型装置を準備する。転炉内の溶鋼を模した水については、あらかじめArを吹き込むことにより、溶存酸素量を0.8ppmまで低下させた。水模型装置の転炉内と取鍋内の溶存酸素量を連続的に測定する(非特許文献2参照)。水模型実験における雰囲気から水への酸素吸収傾向から、実際の溶鋼の溶製における雰囲気から溶鋼への窒素吸収傾向が模擬できるものと推認される。即ち、水模型実験で取鍋内の水中の溶存酸素量が増大する条件については、出鋼時に雰囲気中の酸素を多く吸収したことを示しており、実際の転炉からの出鋼時において同じ条件であれば、溶鋼中に窒素を吸収しやすいと推定することができる。 In order to solve the above-mentioned problems of the present disclosure, the present inventor conducted a gas absorption experiment using a dissolved oxygen concentration meter and a water model device, and investigated in detail the bubble entrainment behavior and the gas absorption behavior in the waterfall basin. Oxygen of about 8 ppm is usually dissolved in water, and it can be measured using a dissolved oxygen concentration meter. Prepare a water model device that simulates steel output from a converter to a ladle. For water imitating molten steel in a converter, the amount of dissolved oxygen was reduced to 0.8 ppm by injecting Ar in advance. The amount of dissolved oxygen in the converter of the water model device and in the ladle is continuously measured (see Non-Patent Document 2). From the tendency of oxygen absorption from the atmosphere to water in the water model experiment, it is inferred that the tendency of nitrogen absorption from the atmosphere to the molten steel in the actual melting of molten steel can be simulated. That is, in the water model experiment, the condition that the amount of dissolved oxygen in the water in the ladle increases shows that a large amount of oxygen in the atmosphere was absorbed at the time of steel removal, which is the same at the time of actual steel removal from the converter. Under the conditions, it can be estimated that nitrogen is easily absorbed in the molten steel.

水模型実験においては、取鍋の水面に何も浮かべない場合と、水面上にオイルを浮かべた場合との対比試験を行った。その結果、水面上にオイルを浮かべた状態で注入流を形成した場合、滝壷では空気とともにオイルが巻き込まれ、さらに巻き込まれたオイルは気泡と接触すると、気泡表面にとどまり、そのまま浮上することを知見した。この時のガス吸収挙動を調査した結果、取鍋の水面に何も浮かべない場合には取鍋中の水の溶存酸素量が増大したのに対し、水面上にオイルを浮かべた場合については、取鍋中の水の溶存酸素量の増大が抑制されることがわかった。この実験結果からは、オイルを浮かべた状態では滝壷を形成する気泡の表面の一部をオイルが覆うことで巻き込まれた空気との反応界面積が低減し、注入中のガス吸収量が抑制されると考えられる。 In the water model experiment, a comparison test was conducted between the case where nothing floats on the water surface of the ladle and the case where oil floats on the water surface. As a result, it was found that when an injection flow is formed with the oil floating on the water surface, the oil is entrained with the air in the waterfall basin, and when the entrained oil comes into contact with the air bubbles, it stays on the air bubble surface and floats as it is. did. As a result of investigating the gas absorption behavior at this time, the amount of dissolved oxygen in the water in the ladle increased when nothing floated on the water surface of the ladle, whereas when oil floated on the water surface, the amount of dissolved oxygen increased. It was found that the increase in the amount of dissolved oxygen in the water in the ladle was suppressed. From the results of this experiment, when the oil is floating, the area of the reaction boundary with the entrained air is reduced by covering a part of the surface of the bubbles forming the waterfall basin, and the amount of gas absorbed during injection is suppressed. It is thought that.

この知見をもとにすれば、出鋼時に取鍋の溶鋼表面に流動性のよい皮膜を形成しておくことにより、滝壷部における溶鋼への窒素吸収を防止できることが予測される。そして、滓化性が良くなるように配合した副原料を取鍋に入れ置きした状態で溶鋼を取鍋に出鋼する、あるいは、溶鋼を取鍋に出鋼すると共に副原料を取鍋に投入することで、出鋼直後の高温の溶鋼で副原料を溶融させることができる。このため、出鋼直後から湯面上は溶融酸化物で覆われている状態を形成でき、その状態で出鋼が進むと、滝壷部に溶融酸化物が巻き込まれる状況を意図的に作り出し、吸窒を抑制できる。さらに、この時に滝壷部に巻き込まれる物(副原料)は溶融状態であることが望ましいが、固相が残存していたとしても、気液界面の一部を覆うことには変わりないため、吸窒抑制効果が期待できる。 Based on this knowledge, it is predicted that nitrogen absorption into the molten steel at the waterfall basin can be prevented by forming a film with good fluidity on the surface of the molten steel in the ladle at the time of steel removal. Then, the molten steel is put out in the ladle with the auxiliary raw material mixed so as to improve the slag property in the ladle, or the molten steel is put out in the ladle and the auxiliary raw material is put in the ladle. By doing so, the auxiliary raw material can be melted with the high-temperature molten steel immediately after the steel is ejected. For this reason, it is possible to form a state in which the molten metal surface is covered with molten oxide immediately after the steel is discharged, and if the steel is discharged in that state, a situation is intentionally created in which the molten oxide is involved in the waterfall basin, and the molten oxide is absorbed. Nitrogen can be suppressed. Furthermore, it is desirable that the substance (auxiliary raw material) caught in the waterfall basin at this time is in a molten state, but even if the solid phase remains, it still covers a part of the gas-liquid interface, so it absorbs. Expected to suppress nitrogen.

本開示は、上記した着想をもとに、溶鋼実験によりその効果を確認することで検討されたものであり、本発明者は、さらに、出鋼前又は出鋼時に取鍋内に入れ置き又は投入する副原料の組成、量、温度といった好ましい条件を見出すことで本開示に係る鋼の製造方法を完成させた。
すなわち、本開示に係る鋼の製造方法は、
溶鋼炉から出鋼された溶鋼を取鍋に受鋼する工程と、
前記取鍋に受鋼した前記溶鋼を前記取鍋から排出して鋳造する工程と、を含み、
前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する際、下記(1)式によって算出されるスラグ厚みTが0.02m以上を満たす量Wの酸化物からなる副原料を、前記溶鋼の受鋼開始前に前記取鍋内の底部に入れ置きし又は受鋼開始と共に前記取鍋内に投入し、前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する、鋼の製造方法である。
T=(W/ρ)/((π・D)/4) (1)
T:スラグ厚み(m)
D:取鍋直径(m)
ρ:溶融酸化物密度(=3000kg/m
W:副原料の量(kg)
The present disclosure has been studied by confirming the effect by a molten steel experiment based on the above-mentioned idea, and the present inventor further puts it in a ladle before or at the time of steel removal. The method for producing steel according to the present disclosure was completed by finding favorable conditions such as the composition, amount, and temperature of the auxiliary raw materials to be added.
That is, the method for producing steel according to the present disclosure is as follows.
The process of receiving the molten steel discharged from the molten steel furnace into a ladle and
Including a step of discharging the molten steel received in the ladle from the ladle and casting it.
When the molten steel discharged from the molten steel furnace is received in the ladle, an auxiliary raw material composed of an oxide having an amount W such that the slag thickness T calculated by the following formula (1) satisfies 0.02 m or more is used. The molten steel is placed in the bottom of the ladle before the start of receiving the molten steel or put into the ladle at the start of receiving the steel, and the molten steel discharged from the molten steel furnace is received in the ladle. This is a method for manufacturing steel.
T = (W / ρ) / ((π ・ D 2 ) / 4) (1)
T: Slag thickness (m)
D: Ladle diameter (m)
ρ: Molten oxide density (= 3000 kg / m 3 )
W: Amount of auxiliary material (kg)

従来より、出鋼時に副原料を添加する手法は数多く提案されてきた。しかしながら、そのほとんどは吸窒抑制ではなく、スラグ中の低級酸化物の改質を狙ったものであり、添加する副原料は生石灰が多いことに加え、添加時期は出鋼中もしくは出鋼が完了した後である場合が多かった。本開示の手法によれば、出鋼後のスラグ組成は従来手法と同等となるが、出鋼初期の吸窒を効果的に抑制するために副原料を添加する時期が従来よりも早く、出鋼前に一定量以上の副原料を取鍋内に入れ置きしておくか、出鋼と共に取鍋内に投入し、出鋼を開始直後に一定量以上の副原料を溶融させていることが、従来手法とは大きく異なる点である。 Conventionally, many methods of adding auxiliary raw materials at the time of steel ejection have been proposed. However, most of them are aimed at reforming lower oxides in slag rather than suppressing nitrogen absorption, and in addition to the large amount of quicklime being added as an auxiliary raw material, the addition time is during or during steel removal. It was often after that. According to the method of the present disclosure, the slag composition after steel removal is the same as that of the conventional method, but the time for adding the auxiliary raw material in order to effectively suppress the nitrogen absorption at the initial stage of steel removal is earlier than before. It is necessary to put a certain amount or more of the auxiliary material in the ladle before steel, or put it in the ladle together with the steel removal and melt the auxiliary material of a certain amount or more immediately after the start of steel removal. , It is a big difference from the conventional method.

副原料を入れ置きした吸窒抑制効果を確認するため、2ton規模の溶鋼実験を行い、その挙動を検討した。誘導炉で溶解した低窒素脱酸溶鋼2tonを、予熱した取鍋におよそ50秒で出鋼し、出鋼前後の窒素濃度を調査した。この時、溶鋼成分、温度といった諸条件は同じとし、取鍋内に成分調整した合成フラックス(酸化物)を入れ置きし、その状態で出鋼した。その際、取鍋内に入れ置きする合成フラックス組成、フラックス量、予熱温度といったパラメータの影響を調査した。この時、出鋼前後の吸窒量(以下、Δ[N])を調査し、合成フラックスを入れ置きしない条件(run1)でのΔ[N]よりも4ppm以上改善した場合、吸窒抑制効果があると判断した。以下、合成フラックス中の成分含有量は質量%を意味する。試験条件及び試験結果を表1に示す。 In order to confirm the effect of suppressing nitrogen absorption with the auxiliary raw materials, a 2-ton scale molten steel experiment was conducted and its behavior was examined. 2 tons of low nitrogen deoxidized molten steel melted in the induction furnace were put out in a preheated ladle in about 50 seconds, and the nitrogen concentration before and after the steel was put out was investigated. At this time, various conditions such as molten steel composition and temperature were assumed to be the same, and a synthetic flux (oxide) whose composition was adjusted was placed in a ladle, and steel was discharged in that state. At that time, the influence of parameters such as the synthetic flux composition, the amount of flux, and the preheating temperature placed in the ladle was investigated. At this time, the amount of nitrogen absorption before and after steel removal (hereinafter referred to as Δ [N]) is investigated, and if it is improved by 4 ppm or more from Δ [N] under the condition (run1) in which the synthetic flux is not placed, the effect of suppressing nitrogen absorption is achieved. I decided that there was. Hereinafter, the content of the component in the synthetic flux means mass%. Table 1 shows the test conditions and test results.

まず、合成フラックスを入れ置きしない条件でのΔ[N]は26ppmであった。この結果に対し、CaO=60%、Al=30%、SiO=10%の合成フラックス(CaO/Al=2.0)50kg(=ベース条件)を取鍋内に入れ置きした状態で溶鋼を出鋼したところ、Δ[N]は21ppmとなり、明確な吸窒抑制効果が認められた。出鋼の際の滝壷周囲の様子を撮影して取鍋内の状況を調査したところ、取鍋内に注入された溶鋼と接触することにより合成フラックスが溶融し、滝壷周辺に存在している固相と液相が混合されたスラグが滝壷に巻き込まれる様子が確認できた。合成フラックスの入れ置き有無を除いた条件に違いはないことから、吸窒抑制効果が得られた要因は、滝壷に巻き込まれたスラグが気泡表面の一部を覆ったことで、溶鋼と空気との反応界面積が減少したためと推定された。
一方、合成フラックスを取鍋内の底部から少し浮かせた壁面に吊り下げ、出鋼開始から15秒後に溶鋼面に添加される条件で出鋼したところ、Δ[N]は24ppmであり、明確な吸窒抑制効果は認められなかった。この場合、合成フラックスは出鋼末期になって溶融していることが確認されたが、最も吸窒量が多い出鋼前半から中盤にかけては添加した合成フラックスの溶融は見られていないことから、溶鋼と空気との反応界面積低減には至らなかったと推定される。
First, Δ [N] was 26 ppm under the condition that the synthetic flux was not placed. Based on this result, 50 kg (= base condition) of synthetic flux (CaO / Al 2 O 3 = 2.0) of CaO = 60%, Al 2 O 3 = 30%, and SiO 2 = 10% was placed in a pan. When the molten steel was ejected in the placed state, Δ [N] was 21 ppm, and a clear effect of suppressing nitrogen absorption was observed. When the situation around the basin was photographed during steel removal and the situation inside the ladle was investigated, the synthetic flux melted when it came into contact with the molten steel injected into the ladle, and the solid existing around the basin It was confirmed that the slag, which was a mixture of the phase and the liquid phase, was caught in the basin. Since there is no difference in the conditions except for the presence or absence of synthetic flux, the reason why the effect of suppressing nitrogen absorption was obtained is that the slag caught in the basin covered a part of the bubble surface, and the molten steel and air. It was presumed that the reaction boundary area of the waterfall was reduced.
On the other hand, when the synthetic flux was hung on the wall surface slightly lifted from the bottom of the ladle and the steel was discharged under the condition that it was added to the molten steel surface 15 seconds after the start of steel removal, Δ [N] was 24 ppm, which was clear. No effect of suppressing nitrogen absorption was observed. In this case, it was confirmed that the synthetic flux was melted at the end of steel ejection, but the synthetic flux added was not melted from the first half to the middle of steel ejection, which has the highest amount of nitrogen absorption. It is estimated that the reaction boundary area between molten steel and air was not reduced.

次に、ベース条件(フラックス組成一定、予熱なし)に対して、入れ置きする合成フラックス量を変更して吸窒抑制効果を調査した。その結果、図1に示すように、入れ置きする合成フラックス量Wと取鍋の大きさ(取鍋直径D)から前記(1)式によって求まる取鍋内のスラグ厚みTが0.02m未満である場合、明確な吸窒抑制効果は認められない結果となった。一方で、スラグ厚みが0.05mを超えると吸窒抑制効果は飽和する結果となった。このことから、滝壷に巻き込まれる液相もしくは固相を含む液相が一定量よりも少ない場合、十分に溶鋼と空気との反応界面積を覆うことができず、吸窒抑制効果が得られないと推定された。また、滝壷に巻き込まれる液相もしくは固相を含む液相が多すぎても、吸窒抑制効果は飽和するため、取鍋に入れ置きする合成フラックス量Wの好ましい上限があると考えられる。 Next, the effect of suppressing nitrogen absorption was investigated by changing the amount of synthetic flux to be placed under the base conditions (constant flux composition, no preheating). As a result, as shown in FIG. 1, the slag thickness T in the ladle obtained by the above equation (1) from the synthetic flux amount W to be placed and the size of the ladle (ladle diameter D) is less than 0.02 m. In some cases, no clear effect of suppressing nitrogen absorption was observed. On the other hand, when the slag thickness exceeds 0.05 m, the effect of suppressing nitrogen absorption is saturated. For this reason, when the amount of the liquid phase or the liquid phase containing the solid phase involved in the waterfall is less than a certain amount, the reaction boundary area between the molten steel and air cannot be sufficiently covered, and the effect of suppressing nitrogen absorption cannot be obtained. Was estimated. Further, even if there are too many liquid phases or liquid phases containing a solid phase involved in the waterfall, the effect of suppressing nitrogen absorption is saturated, so it is considered that there is a preferable upper limit of the amount of synthetic flux W to be placed in the ladle.

また、入れ置きする合成フラックス量を一定(50kg)として、表1に示す組成で入れ置きする合成フラックスの組成を変え、予熱なし条件での吸窒抑制効果を調査した。その結果、合成フラックス組成がCaO/Al:0.8〜4.0((2)式)、5%≦SiO≦10%((3)式)、MgO≦10%((4)式)となる条件で、安定した吸窒抑制効果が得られる結果となった。安定した吸窒抑制効果が得られた際の合成フラックス組成は、溶鋼温度近傍での液相の割合が高い条件と一致しており、液相の割合が高いほど、滝壷内での気泡表面の被覆効果が大きいと考えられる。Further, the composition of the synthetic flux to be placed was changed according to the composition shown in Table 1 with the amount of the synthetic flux to be placed to be constant (50 kg), and the effect of suppressing nitrogen absorption under the condition without preheating was investigated. As a result, the synthetic flux composition is CaO / Al 2 O 3: 0.8~4.0 ((2) formula), 5% ≦ SiO 2 ≦ 10% ((3) formula), MgO ≦ 10% (( 4 )), A stable effect of suppressing nitrogen absorption was obtained. The synthetic flux composition when a stable nitrogen absorption suppressing effect is obtained matches the condition that the ratio of the liquid phase is high near the molten steel temperature, and the higher the ratio of the liquid phase, the more the bubble surface in the basin It is considered that the covering effect is large.

さらに、ベース条件に対して、取鍋内に入れ置きした合成フラックスをバーナーで予熱し、出鋼直前の合成フラックス温度を変更して吸窒抑制効果を調査した。なお、合成フラックスの温度は、取鍋内に設置した熱電対で調査した。その結果、図2に示すように、合成フラックスの温度を800℃以上に加熱した場合、顕著な吸窒抑制効果が得られる結果となった。一方、合成フラックスの予熱温度が1150℃を超えると、吸窒抑制効果は飽和する結果となった。予熱することで、フラックスが溶融するまでの時間が短縮され、出鋼開始直後の窒素吸収が抑制されたためと考えられる。 Furthermore, for the base conditions, the synthetic flux placed in the ladle was preheated with a burner, and the synthetic flux temperature immediately before steel removal was changed to investigate the effect of suppressing nitrogen absorption. The temperature of the synthetic flux was investigated with a thermocouple installed in the ladle. As a result, as shown in FIG. 2, when the temperature of the synthetic flux was heated to 800 ° C. or higher, a remarkable effect of suppressing nitrogen absorption was obtained. On the other hand, when the preheating temperature of the synthetic flux exceeds 1150 ° C., the effect of suppressing nitrogen absorption is saturated. It is considered that the preheating shortened the time until the flux melted and suppressed the nitrogen absorption immediately after the start of steel removal.

以下、本開示に係る鋼の製造方法の実施形態をさらに詳細に説明する。
低窒素鋼を製造する場合、高炉あるいは電気炉から搬送された炭素濃度の高い溶銑を転炉などの溶鋼炉に装入し、酸素吹錬により鋼中の炭素をCOガスとして除去する。その際、溶鋼炉ではC+O=CO反応によって炉内の窒素分圧が低下することに加え、底吹きおよび上吹きによる撹拌作用とも相まって鋼中の窒素濃度は10ppm程度まで低下する。脱炭処理後の溶鋼は成分調整や脱ガスを行うため、溶鋼炉から取鍋に出鋼される。その後、成分や温度が調整された溶鋼は鋳造プロセスに供され、鋳造された後は加熱、圧延、熱処理、表面処理といった工程を経て製品として出荷される。
Hereinafter, embodiments of the steel manufacturing method according to the present disclosure will be described in more detail.
When producing low nitrogen steel, hot metal having a high carbon concentration transferred from a blast furnace or an electric furnace is charged into a molten steel furnace such as a converter, and carbon in the steel is removed as CO gas by oxygen blowing. At that time, in the molten steel furnace, the nitrogen partial pressure in the furnace is lowered by the C + O = CO reaction, and the nitrogen concentration in the steel is lowered to about 10 ppm in combination with the stirring action by the bottom blowing and the top blowing. The molten steel after decarburization is discharged from the molten steel furnace to a ladle in order to adjust the composition and degas. After that, the molten steel whose composition and temperature have been adjusted is subjected to a casting process, and after being cast, it is shipped as a product through processes such as heating, rolling, heat treatment, and surface treatment.

通常、取鍋はバーナーで予熱された上で、搬送台車で溶鋼炉の直下まで搬送され、溶鋼を受鋼する。通常、生石灰といった副原料は出鋼した後の溶鋼に添加されることが多いが、本開示に係る鋼の製造方法を適用する際には、溶鋼を受鋼するまでに一定量以上の副原料を取鍋内に入れ置きしておくか、溶鋼を受鋼すると共に一定量以上の副原料を取鍋内に投入する必要がある。好ましくは、取鍋を予熱する前、もしくは予熱中に取鍋内に副原料を投入するのが良い。
副原料の形態としては、予熱中もしくは出鋼時の上昇気流で散逸しないように粒状であることが好ましいが、予熱を行う際は通常取鍋上部を蓋で覆った状態で予熱を行う為、粉状の副原料も使用可能である。好ましくは取鍋が溶鋼炉直下まで搬送された時点で、遅くとも溶鋼炉からの溶鋼の出鋼開始(受鋼開始)と共に、取鍋内には、(1)式で示されたスラグ厚みTが0.02m以上(好ましくは0.1m以下、より好ましくは0.05m以下)となるように求めた量Wの副原料が投入されることが必要である。また、出鋼開始後は速やかに溶融させることが必要である。なお、受鋼開始と共に副原料を取鍋に投入する場合、好ましくは、溶鋼炉から取鍋に溶鋼が注入され始めてから10秒以内に、より好ましくは5秒以内に、更に好ましくは溶鋼の注入と同時に取鍋内への副原料の投入を開始する。また、受鋼開始と共に副原料を取鍋に投入する場合は、受鋼開始後、好ましくは60秒以内に、より好ましくは40秒以内に、更に好ましくは20秒以内に、スラグ厚みTが0.02m以上となる量Wの副原料の投入を完了する。
また、副原料は、受鋼開始前の取鍋内の副原料の入れ置きと受鋼開始と共に取鍋内への副原料の投入を組み合わせてもよい。すなわち、受鋼開始前に量W1の副原料を取鍋内に入れ置きしておき、さらに受鋼開始と共に量W2の副原料を取鍋内に投入することで、副原料の合計量(W1+W2)が、(1)式で示されたスラグ厚みTが0.02m以上を満たすように求めた量Wとなるようにしてもよい。
なお、受鋼開始から数分後、脱酸等の目的でAl合金等を添加する場合があるが、このような目的、タイミングで添加される成分は、(1)式で示されたスラグ厚みTが0.02m以上を満たすように求めた量Wの副原料に含まれない。
Normally, the ladle is preheated by a burner and then transported by a transport carriage to just below the molten steel furnace to receive the molten steel. Normally, auxiliary raw materials such as quicklime are often added to molten steel after steel is ejected, but when applying the steel manufacturing method according to the present disclosure, a certain amount or more of auxiliary raw materials are used before receiving the molten steel. It is necessary to put the ladle in the ladle or to receive the molten steel and put a certain amount or more of the auxiliary material into the ladle. Preferably, it is preferable to put the auxiliary raw material into the ladle before or during the preheating of the ladle.
The form of the auxiliary material is preferably granular so as not to dissipate due to the updraft during preheating or steel ejection, but when preheating is performed, the upper part of the ladle is usually covered with a lid. Powdery auxiliary materials can also be used. Preferably, when the ladle is transported to just below the molten steel furnace, the slag thickness T represented by Eq. (1) is formed in the ladle at the latest with the start of steel ejection from the molten steel furnace (start of receiving steel). It is necessary to add the auxiliary raw material in the amount W determined to be 0.02 m or more (preferably 0.1 m or less, more preferably 0.05 m or less). In addition, it is necessary to melt the steel immediately after the start of steel removal. When the auxiliary raw material is put into the ladle at the start of receiving steel, it is preferable to inject the molten steel within 10 seconds, more preferably within 5 seconds, and further preferably within 10 seconds after the molten steel starts to be injected from the molten steel furnace into the ladle. At the same time, the input of auxiliary ingredients into the ladle is started. When the auxiliary raw material is put into the ladle at the start of steel receiving, the slag thickness T is 0, preferably within 60 seconds, more preferably within 40 seconds, and even more preferably within 20 seconds after the start of steel receiving. Complete the input of the auxiliary material with an amount W of .02 m or more.
Further, the auxiliary raw material may be a combination of placing the auxiliary raw material in the ladle before the start of steel receiving and charging the auxiliary raw material into the ladle at the start of steel receiving. That is, the total amount of the auxiliary raw materials (W1 + W2) is obtained by placing the auxiliary raw material of the amount W1 in the pan before the start of steel receiving and further charging the auxiliary raw material of the amount W2 into the pan at the same time as the start of steel receiving. ) May be the amount W obtained so that the slag thickness T represented by the equation (1) satisfies 0.02 m or more.
A few minutes after the start of steel receiving, an Al alloy or the like may be added for the purpose of deoxidation, etc., and the component added at such a purpose and timing is the slag thickness shown in Eq. (1). It is not included in the auxiliary raw material of the amount W required so that T satisfies 0.02 m or more.

本開示に係る鋼の製造方法による低窒素化の効果を得るには、受鋼中は滝壷部に溶融スラグが存在していることが必要である。受鋼中とは、溶鋼炉から取鍋に溶鋼が注入され始めてから、少なくとも1分後から注入が完了するまで、好ましくは、溶鋼の注入開始30秒後から注入が完了するまでの期間を指す。溶融スラグとは、取鍋内に入れ置き又は投入した副原料が溶融し、液相もしくは固相を含む液相となっている状態を指す。本開示では、汎用の熱力学計算ソフト等を用いた計算で、液相割合が50%以上である状態を液相スラグとする。
滝壷部とは、注入流が取鍋内の溶鋼に進入する際に注入流周りの気相を巻き込んで生じる気泡の巻込みおよび上昇が生じている部分を指し、通常は注入流が取鍋内の溶鋼と接する部分の直下に生じる。出鋼中に滝壺部が溶融スラグに覆われていれば本開示による低窒素化の効果が得られる。溶鋼炉から出鋼された溶鋼を取鍋に受鋼する際、受鋼開示前又は受鋼開始と共に酸化物からなる副原料を、(1)式で示されたスラグ厚みTが0.02m以上(好ましくは0.1m以下、より好ましくは0.05m以下)を満たすように求めた量Wで取鍋内に入れ置き又は投入し、溶鋼炉から出鋼された溶鋼を取鍋に受鋼することにより、受鋼中において滝壷部に溶融スラグを存在させることができる。
In order to obtain the effect of low nitrogen by the steel manufacturing method according to the present disclosure, it is necessary that molten slag is present in the waterfall basin during the steel receiving. “Receiving steel” refers to the period from at least 1 minute after the molten steel is injected into the ladle from the molten steel furnace until the injection is completed, preferably from 30 seconds after the injection of the molten steel is started until the injection is completed. .. The molten slag refers to a state in which the auxiliary raw material placed or put in the ladle is melted to form a liquid phase or a liquid phase containing a solid phase. In the present disclosure, the liquid phase slag is a state in which the liquid phase ratio is 50% or more in the calculation using general-purpose thermodynamic calculation software or the like.
The basin part refers to the part where bubbles are entrained and risen by entraining the gas phase around the injection flow when the injection flow enters the molten steel in the ladle, and the injection flow is usually inside the ladle. It occurs just below the part in contact with the molten steel. If the waterfall basin is covered with molten slag during steel ejection, the effect of reducing nitrogen according to the present disclosure can be obtained. When the molten steel discharged from the molten steel furnace is received in a ladle, the auxiliary raw material composed of oxide is used before the disclosure of the steel reception or at the start of the steel reception, and the slag thickness T represented by the formula (1) is 0.02 m or more. (Preferably 0.1 m or less, more preferably 0.05 m or less) is placed or put into a ladle in an amount W determined to satisfy the condition, and the molten steel discharged from the molten steel furnace is received in the ladle. As a result, molten slag can be present in the ladle portion during the steel receiving.

本開示で、取鍋内に入れ置き又は投入する副原料は、酸化物からなる副原料である。従って、炭酸化物、フッ化物、炭化物などは含まれない。例えば、特許文献3には、取鍋内の雰囲気中窒素濃度を低減する目的で、炭酸カルシウムを入れ置きする発明が開示されている。それに対して本開示では、溶鋼表面の溶融スラグによって滝壷部での吸窒現象を防止することを目的とするので、炭酸カルシウムを添加することはしない。炭酸カルシウムは、分解時に吸熱反応を伴うので、溶鋼の温度を低下させる点からも好ましくない。また、蛍石などのフッ化物を添加すると生成スラグの資源化に支障を来すので、フッ化物は添加しない。さらに、脱燐や脱硫を目的としないので、カルシウムカーバイドなどの炭化物を添加することもしない。 In the present disclosure, the auxiliary raw material placed or put in the ladle is an auxiliary raw material composed of oxides. Therefore, carbon oxides, fluorides, carbides, etc. are not included. For example, Patent Document 3 discloses an invention in which calcium carbonate is placed for the purpose of reducing the nitrogen concentration in the atmosphere in the ladle. On the other hand, in the present disclosure, since the purpose of the present disclosure is to prevent the nitrogen absorption phenomenon at the waterfall basin by the molten slag on the surface of the molten steel, calcium carbonate is not added. Calcium carbonate is not preferable from the viewpoint of lowering the temperature of molten steel because it involves an endothermic reaction during decomposition. In addition, if fluoride such as fluorite is added, it will hinder the recycling of produced slag, so fluoride is not added. Furthermore, since it is not intended for dephosphorization or desulfurization, it does not add carbides such as calcium carbide.

また、取鍋内に入れ置き又は投入する、酸化物からなる副原料は、予め組成をCaO/Al:0.8〜4.0((2)式)、5%≦SiO≦10%((3)式)、MgO≦10%((4)式)の範囲に調整した上で添加することが好ましい。このような組成範囲とすることにより、副原料の溶融温度を好ましく低減することができる。MgO含有量を5%以上とするとより好ましい。なお、副原料に含まれる成分は上記したCaO、Al、SiO、MgOの他に、MnO、FeOといった酸化物成分がそれぞれ5%未満で含まれていても許容される。また、揮発分や不純物が含まれることも許容される。即ち、前記(5)式を満たすものであれば好ましい。Further, the auxiliary raw material composed of oxide, which is placed or put in the ladle, has a composition of CaO / Al 2 O 3 : 0.8 to 4.0 (formula (2)), 5% ≤ SiO 2 ≤. It is preferable to add the mixture after adjusting the range to 10% (Equation (3)) and MgO ≦ 10% (Equation (4)). By setting the composition range as such, the melting temperature of the auxiliary raw material can be preferably reduced. It is more preferable that the MgO content is 5% or more. In addition to the above-mentioned CaO, Al 2 O 3 , SiO 2 , and MgO, it is permissible for the components contained in the auxiliary raw materials to contain oxide components such as MnO and FeO in an amount of less than 5%. It is also permissible to contain volatiles and impurities. That is, it is preferable as long as it satisfies the above equation (5).

取鍋内に入れ置きした副原料は、取鍋と一緒に予熱されていることが望ましく、800℃以上に予熱されていると好適である。副原料の予熱温度は、放射温度計によって取鍋内に入れ置きした副原料の表面温度を計測することにより評価できる。 It is desirable that the auxiliary raw material placed in the ladle is preheated together with the ladle, and it is preferable that the auxiliary material is preheated to 800 ° C. or higher. The preheating temperature of the auxiliary material can be evaluated by measuring the surface temperature of the auxiliary material placed in the ladle with a radiation thermometer.

上記のように本開示に係る鋼の製造方法を用いることで、出鋼時に窒素濃度の上昇を抑制することができるので、低窒素鋼を経済的にかつ安定的に製造することができる。なお、本開示に係る鋼の製造方法によれば、出鋼時の窒素濃度の上昇を効果的に抑制することができるが、製造する鋼中の窒素濃度は限定されない。
このような本開示に係る鋼の製造方法は、炭素鋼に非常に有効であるが、炭素鋼以外のステンレス鋼、合金鋼の製造にも有効である。
By using the steel manufacturing method according to the present disclosure as described above, an increase in nitrogen concentration can be suppressed at the time of steel ejection, so that low nitrogen steel can be economically and stably manufactured. According to the method for producing steel according to the present disclosure, an increase in nitrogen concentration at the time of steel ejection can be effectively suppressed, but the nitrogen concentration in the produced steel is not limited.
Such a method for producing steel according to the present disclosure is very effective for carbon steel, but is also effective for producing stainless steel and alloy steel other than carbon steel.

以下に示す溶鋼の実施例および比較例の条件で、出鋼時の吸窒挙動評価試験を行い、吸窒抑制効果を確認した。
高炉から搬送された溶銑(炭素含有量4.5%相当)を転炉に装入し、酸素吹錬を行った。転炉吹錬後の成分は、[C]=0.06〜0.14%、[Si]=0.01〜0.05%、[Mn]=0.1〜0.4%、[P]=0.01〜0.03%、[N]=9〜12ppm、残部がFeおよび不純物である。処理量は300ton規模、取鍋直径(内径)は3.9mであり、出鋼時間はおよそ5分である。出鋼前、取鍋を予熱する前段階、もしくは、取鍋予熱後に、取鍋底部に成分調整した所定量の副原料を入れ置きし、取鍋を転炉直下まで搬送した後、溶鋼を受鋼した。あるいは、溶鋼の受鋼と共に副原料を取鍋に投入した。出鋼の際、出鋼を開始してから2分後に出鋼流に巻き込ませる形でAlを含む合金を投入した。また、出鋼開始から3〜4分後に取鍋内に副原料(酸化物)を追加投入することで、表2に示す「最終スラグ厚みt」とした。
Under the conditions of the examples and comparative examples of molten steel shown below, a nitrogen absorption behavior evaluation test was conducted at the time of steel ejection, and the effect of suppressing nitrogen absorption was confirmed.
The hot metal (equivalent to 4.5% carbon content) transported from the blast furnace was charged into the converter and oxygen was blown. The components after converter blowing are [C] = 0.06 to 0.14%, [Si] = 0.01 to 0.05%, [Mn] = 0.1 to 0.4%, [P]. ] = 0.01 to 0.03%, [N] = 9 to 12 ppm, and the balance is Fe and impurities. The processing amount is 300 ton scale, the diameter (inner diameter) of the ladle is 3.9 m, and the steel ejection time is about 5 minutes. Before steel removal, before preheating the ladle, or after preheating the ladle, place a predetermined amount of auxiliary material with adjusted components in the bottom of the ladle, transport the ladle to just below the converter, and then receive the molten steel. Steeled. Alternatively, the auxiliary raw material was put into the ladle together with the receiving steel of the molten steel. At the time of steel ejection, an alloy containing Al was charged in a form of being involved in the steel ejection flow 2 minutes after the start of steel ejection. Further, the auxiliary raw material (oxide) was additionally added into the ladle 3 to 4 minutes after the start of steel removal to obtain the “final slag thickness t” shown in Table 2.

吸窒抑制効果を確認するため、出鋼前の転炉内、出鋼後の取鍋内の溶鋼サンプルを採取し、出鋼前後の窒素濃度変化量Δ[N](ppm)を吸窒量として評価した。試験条件を表2に示す。表2の「吸窒抑制効果」の欄において、Δ[N]が17ppm超20ppm以下であった場合、吸窒抑制効果があったとして「C」とし、Δ[N]が15ppm超17ppm以下であった場合、優れた吸窒抑制効果があったと判断して「B」とした。また、Δ[N]が15ppm以下であった場合、顕著な吸窒抑制効果があったと判断して「A」とした。Δ[N]が20ppm超については、吸窒抑制効果が見られなかったとして「D」とした。 In order to confirm the effect of suppressing nitrogen absorption, molten steel samples are taken in the converter before steel removal and in the ladle after steel removal, and the amount of nitrogen concentration change Δ [N] (ppm) before and after steel removal is the amount of nitrogen absorption. Evaluated as. The test conditions are shown in Table 2. In the column of "anti-digestion effect" in Table 2, when Δ [N] is more than 17 ppm and 20 ppm or less, it is regarded as “C” as having an anti-nitrogen effect, and Δ [N] is more than 15 ppm and 17 ppm or less. If there was, it was judged that there was an excellent anti-digestion effect and was rated as "B". When Δ [N] was 15 ppm or less, it was judged that there was a remarkable effect of suppressing nitrogen absorption, and the value was set to “A”. When Δ [N] was more than 20 ppm, it was rated as “D” because the effect of suppressing nitrogen absorption was not observed.


試験No.1は取鍋内に副原料を入れ置きしない条件、試験No.2およびNo.3は取鍋内に副原料を入れ置きするものの、スラグ厚みが本開示の範囲から外れている条件で、いずれも比較例である。入れ置きする副原料が不足した試験No.2および試験No.3のΔ[N]は23〜24ppmであり、吸窒抑制効果は認められなかった。 Test No. No. 1 is a condition in which no auxiliary material is placed in the ladle, and test No. 2 and No. No. 3 is a comparative example under the condition that the slag thickness is out of the scope of the present disclosure, although the auxiliary raw material is placed in the ladle. Test No. in which the auxiliary raw material to be stored was insufficient. 2 and test No. The Δ [N] of 3 was 23 to 24 ppm, and the effect of suppressing nitrogen absorption was not observed.

試験No.4から試験No.17までは本開示の要件を満たした実施例であり、Δ[N]は20ppm以下となり、吸窒抑制効果が認められた。
試験No.10から試験No.13までは取鍋内に入れ置きする副原料の組成を好適な範囲に調整した条件であり、Δ[N]は17ppm以下となり、優れた吸窒抑制効果があったと判断した。
試験No.3,5,9および試験No.14から試験No.16までは、入れ置きした副原料の予熱温度を変化させた条件である。試験No.5と試験No.7を比較すると、副原料の予熱温度が高い試験No.5の方が吸窒抑制効果が大きく、副原料予熱温度を高くすることで、優れた吸窒抑制効果が得られることが分かる。このことは、試験No.11と試験No.14を比較しても明らかであり、試験No.14は副原料組成を本開示の好適な範囲に制御することに加え、副原料予熱温度を800℃以上とすることで、顕著な吸窒抑制効果が得られている。試験No.15、16も同様である。
試験No.18は、取鍋内に受鋼と共に副原料を投入した参考例である。Δ[N]は20ppmであり、比較例よりも低く、吸窒抑制効果が認められた。
Test No. Test No. 4 from Up to 17, the examples satisfied the requirements of the present disclosure, Δ [N] was 20 ppm or less, and the effect of suppressing nitrogen absorption was recognized.
Test No. Test No. 10 Up to 13, the conditions were such that the composition of the auxiliary raw material to be placed in the ladle was adjusted to a suitable range, and Δ [N] was 17 ppm or less, and it was judged that there was an excellent effect of suppressing nitrogen absorption.
Test No. 3, 5, 9 and test No. Test No. 14 from Up to 16 are conditions in which the preheating temperature of the placed auxiliary material is changed. Test No. 5 and test No. Comparing No. 7, the preheating temperature of the auxiliary raw material is high. It can be seen that the case of 5 has a larger effect of suppressing nitrogen absorption, and an excellent effect of suppressing nitrogen absorption can be obtained by raising the preheating temperature of the auxiliary raw material. This means that Test No. 11 and test No. It is also clear by comparing 14 and the test No. In addition to controlling the composition of the auxiliary raw material within the preferable range of the present disclosure, 14 has a remarkable effect of suppressing nitrogen absorption by setting the auxiliary raw material preheating temperature to 800 ° C. or higher. Test No. The same applies to 15 and 16.
Test No. Reference numeral 18 denotes a reference example in which the auxiliary raw material is put into the ladle together with the receiving steel. Δ [N] was 20 ppm, which was lower than that of the comparative example, and the effect of suppressing nitrogen absorption was observed.

溶鉄の出鋼時の吸窒を効果的に抑制できるため、低窒素鋼の製造方法において有益である。 It is useful in the method for producing low nitrogen steel because it can effectively suppress the absorption of nitrogen at the time of steel ejection of molten iron.

2018年6月28日に出願された日本特許出願2018−122844の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese patent application 2018-122844 filed June 28, 2018 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are referred to herein to the same extent as if individual documents, patent applications, and technical standards were specifically and individually stated. Is taken in by.

Claims (5)

溶鋼炉から出鋼された溶鋼を取鍋に受鋼する工程と、
前記取鍋に受鋼した前記溶鋼を前記取鍋から排出して鋳造する工程と、を含み、
前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する際、前記取鍋に受鋼された前記溶鋼との接触により溶融可能であり、下記(1)式によって算出されるスラグ厚みTが0.02m以上を満たす量Wの酸化物からなる副原料を、前記溶鋼の受鋼開始前に前記取鍋内の底部に入れ置きし前記溶鋼炉から出鋼された前記溶鋼を前記取鍋に受鋼する、鋼の製造方法。
T=(W/ρ)/((π・D)/4) (1)
T:スラグ厚み(m)
D:取鍋直径(m)
ρ:溶融酸化物密度(=3000kg/m
W:副原料の量(kg)
The process of receiving the molten steel discharged from the molten steel furnace into a ladle and
Including a step of discharging the molten steel received in the ladle from the ladle and casting it.
When the molten steel discharged from the molten steel furnace is received in the ladle, it can be melted by contact with the molten steel received in the ladle, and the slag thickness calculated by the following equation (1). T is the auxiliary materials of oxide amount W satisfying than 0.02 m, and placed placed in the bottom of the ladle before受鋼start of the molten steel, the said molten steel is tapped from the molten steel furnace A method of manufacturing steel that receives steel in a ladle.
T = (W / ρ) / ((π ・ D 2 ) / 4) (1)
T: Slag thickness (m)
D: Ladle diameter (m)
ρ: Molten oxide density (= 3000 kg / m 3 )
W: Amount of auxiliary material (kg)
前記副原料が、CaO、AlThe auxiliary raw materials are CaO and Al. 2 O 3 、SiO, SiO 2 及びMgOを含む、請求項1に記載の鋼の製造方法。The method for producing steel according to claim 1, which comprises and MgO. 前記副原料の組成が、
CaO/Al:0.8〜4.0 (2)
5%≦SiO≦10% (3)
MgO≦10% (4)
CaO+Al+SiO+MgO≧90% (5)
を満たしている、請求項1又は請求項2に記載の鋼の製造方法。
ただし、(2)〜(5)式中の分子記号は当該分子の含有量(質量%)を意味する。
The composition of the auxiliary raw material
CaO / Al 2 O 3 : 0.8 to 4.0 (2)
5% ≤ SiO 2 ≤ 10% (3)
MgO ≤ 10% (4)
CaO + Al 2 O 3 + SiO 2 + MgO ≧ 90% (5)
The method for producing steel according to claim 1 or 2 , wherein the method for producing steel according to claim 1 or 2 .
However, the molecular symbol in the formulas (2) to (5) means the content (mass%) of the molecule.
前記副原料の量Wが、前記(1)式によって算出される前記スラグ厚みTが0.1m以下を満たす量である、請求項1請求項3のいずれか1項に記載の鋼の製造方法。 The amount W of auxiliary materials is an amount of the slag thickness T that is calculated by the equation (1) satisfies the 0.1m or less, the production of steel according to any one of claims 1 to 3 Method. 前記取鍋内に入れ置きした前記副原料を予熱し、前記副原料の温度が800℃以上の状態で前記溶鋼を前記取鍋に受鋼する、請求項4に記載の鋼の製造方法。
The method for producing steel according to claim 4, wherein the auxiliary raw material placed in the ladle is preheated, and the molten steel is received in the ladle when the temperature of the auxiliary raw material is 800 ° C. or higher.
JP2020527600A 2018-06-28 2019-06-26 Steel manufacturing method Active JP6806288B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018122844 2018-06-28
JP2018122844 2018-06-28
PCT/JP2019/025471 WO2020004501A1 (en) 2018-06-28 2019-06-26 Steel manufacturing method

Publications (2)

Publication Number Publication Date
JPWO2020004501A1 JPWO2020004501A1 (en) 2020-09-17
JP6806288B2 true JP6806288B2 (en) 2021-01-06

Family

ID=68986636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020527600A Active JP6806288B2 (en) 2018-06-28 2019-06-26 Steel manufacturing method

Country Status (5)

Country Link
JP (1) JP6806288B2 (en)
KR (1) KR102441788B1 (en)
CN (1) CN111819296A (en)
TW (1) TWI699436B (en)
WO (1) WO2020004501A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023062905A1 (en) * 2021-10-12 2023-04-20 Jfeスチール株式会社 Method for predicting impurity concentration of molten iron, method for manufacturing molten iron, method for creating trained machine learning model, and apparatus for predicting impurity concentration of molten iron

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613426A (en) * 1979-07-10 1981-02-09 Nippon Steel Corp Treatment of molten steel
JPS59190314A (en) 1983-04-13 1984-10-29 Nippon Kokan Kk <Nkk> Melting method of low nitrogen killed steel
JPS6026611A (en) 1983-07-22 1985-02-09 Nisshin Steel Co Ltd Manufacture of extra-low nitrogen steel containing cr by refining
JPS6092417A (en) * 1983-10-26 1985-05-24 Japan Metals & Chem Co Ltd Method for refining iron-manganese alloy
JPS61166911A (en) 1985-01-16 1986-07-28 Kawasaki Steel Corp Production of low nitrogen steel
JPH02285020A (en) 1989-04-25 1990-11-22 Nkk Corp Method for restraining air involution into ladle at the time of steel-tapping from converter
JPH0718322A (en) * 1993-07-07 1995-01-20 Kawasaki Steel Corp Method for refining highly clean aluminum-killed steel
JPH0860229A (en) * 1994-08-16 1996-03-05 Nippon Steel Corp Method for refining molten metal
JPH1192811A (en) * 1997-09-12 1999-04-06 Sumitomo Metal Ind Ltd Refinement of molten metal
JP3680660B2 (en) * 1999-10-08 2005-08-10 住友金属工業株式会社 Low nitrogen steel manufacturing method
JP3774674B2 (en) * 2002-04-01 2006-05-17 新日本製鐵株式会社 Method for producing low nitrogen-containing chromium molten steel
CN101457275B (en) * 2009-01-08 2011-04-20 攀钢集团研究院有限公司 Method for controlling nitrogen content in Al deoxidization steel by converter process
JP5605337B2 (en) * 2010-09-15 2014-10-15 新日鐵住金株式会社 Hot metal desulfurization agent and desulfurization method
JP5505432B2 (en) * 2012-02-03 2014-05-28 新日鐵住金株式会社 Melting method of ultra low sulfur low nitrogen steel
CN104046719A (en) * 2014-06-27 2014-09-17 攀钢集团攀枝花钢钒有限公司 Method for controlling nitrogen content of molten steel in converter steel-making
CN105624367B (en) * 2014-12-01 2017-07-21 鞍钢股份有限公司 Refining device and method for controlling nitrogen content of molten steel
CN108474119B (en) * 2016-03-09 2020-01-14 日本制铁株式会社 Surface-treated steel sheet and method for producing surface-treated steel sheet

Also Published As

Publication number Publication date
KR20200118191A (en) 2020-10-14
KR102441788B1 (en) 2022-09-08
TW202000926A (en) 2020-01-01
CN111819296A (en) 2020-10-23
WO2020004501A1 (en) 2020-01-02
TWI699436B (en) 2020-07-21
JPWO2020004501A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP6743915B2 (en) Method for desulfurizing molten steel and desulfurizing agent
JP5573424B2 (en) Desulfurization treatment method for molten steel
JP5772339B2 (en) Reuse method of slag in ladle
TWI621713B (en) Refining method of molten steel in vacuum degassing equipment
JP5904237B2 (en) Melting method of high nitrogen steel
TWI685577B (en) Smelting method of high manganese steel
JP2021511436A (en) Method of waste in the production process of ultra-low phosphorus steel and method of production of ultra-low phosphorus steel Alternate citation of related applications The application number of this application submitted to the Priority Bureau of China on December 3, 2018 is 2018114635554. Priority is claimed based on a Chinese application whose name is &#34;Method of Elimination in the Production Process of Ultra-Low Phosphate Steel and Method of Production of Ultra-Low Phosphate Steel&#34;, the entire contents of which are incorporated herein by reference. Is done.
JP6028755B2 (en) Method for melting low-sulfur steel
WO2019172195A1 (en) Dephosphorization method for molten iron
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JP6806288B2 (en) Steel manufacturing method
JP5891826B2 (en) Desulfurization method for molten steel
JP5200380B2 (en) Desulfurization method for molten steel
JP5888194B2 (en) Desulfurization method for molten steel
JP6323688B2 (en) Desulfurization method for molten steel
JP4360270B2 (en) Method for refining molten steel
JP2022105879A (en) Refining method
KR900002710B1 (en) Rapid decarburiztion steel making process
JPH0987730A (en) Method for heat-raising and refining molten steel
JP7235070B2 (en) Method for secondary refining of molten steel and method for manufacturing steel
JP4214894B2 (en) Hot metal pretreatment method
JP4025713B2 (en) Dephosphorization method of hot metal
JP3750588B2 (en) Hot metal desiliconization method
JP2005015890A (en) Method for producing low-carbon high-manganese steel
KR100910471B1 (en) Method for Improving Cleanliness and Desulfurization Efficiency of Molten Steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200612

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200612

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R151 Written notification of patent or utility model registration

Ref document number: 6806288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151