WO2018038508A1 - Method for refining hot metal in convertor - Google Patents

Method for refining hot metal in convertor Download PDF

Info

Publication number
WO2018038508A1
WO2018038508A1 PCT/KR2017/009162 KR2017009162W WO2018038508A1 WO 2018038508 A1 WO2018038508 A1 WO 2018038508A1 KR 2017009162 W KR2017009162 W KR 2017009162W WO 2018038508 A1 WO2018038508 A1 WO 2018038508A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten iron
converter
silicon
molten
refining
Prior art date
Application number
PCT/KR2017/009162
Other languages
French (fr)
Korean (ko)
Inventor
김경환
정권희
변승용
이상열
전영덕
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2018038508A1 publication Critical patent/WO2018038508A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a molten iron refining method. More specifically, the present invention relates to a molten iron refining method capable of refining molten iron including high silicon (Si).
  • Consistent steelmaking is the process of refining molten iron produced in the blast furnace in the steelmaking process and producing cast steel through a continuous casting process.
  • molten iron is dissolved in a blast furnace to manufacture molten iron, and molten steel is manufactured through a first refining process of removing impurities in molten iron by sequentially performing desulfurization and decarburization on molten iron.
  • the molten steel is moved to the continuous casting process when the fine constituents in the molten steel are adjusted through the secondary refining process.
  • the semi-finished product is formed through a continuous casting process, and is finally manufactured through a final molding process such as rolling.
  • the converter is a facility for removing impurities in the molten iron produced in the blast furnace
  • the Tallinn converter is a facility for manufacturing ultra-high quality steel by lowering the phosphorus content in the molten iron as much as possible.
  • the decarburization furnace is a facility used to lower the concentration of carbon in the molten iron. The converter operation may be carried out in a manner in which the subsidiary material or gas is blown into the molten iron and the molten iron is stirred to promote the reaction between the subsidiary material and the gas and the molten iron.
  • a method for refining molten iron in a converter capable of refining molten iron containing high silicon is provided.
  • a method for refining molten iron in a converter excellent in molten iron slag removal effect is provided.
  • it is to provide a method for refining molten iron in the converter to prevent the slopping phenomenon during the molten iron blown, and excellent operation stability.
  • molten iron refining method in the converter that can prevent the load and damage of the equipment during refining.
  • the method for refining the molten iron in the converter is to repair the molten iron from the blast furnace in the ladle to move to a KR (Kanvara reactor) facility, by adding a desulfurizing agent to the desulfurization (S) process; Charging the desulfurized molten iron into a pretreatment converter, blowing oxygen by blowing the molten iron, and then treating the molten iron to remove silicon (Si); Tapping the desilicon-treated molten iron; And charging the demelted molten iron into a decarburization converter to process decarburization (C), wherein the molten iron repaired to the ladle includes silicon (Si): 0.6 to 8.0 wt%.
  • a sub-material including 10 to 45 kg / t-s of quicklime and 15 to 140 kg / t-s of coolant may be added to the pretreatment converter.
  • the oxygen lance height 2,300 ⁇ 2,500mm based on the molten steel surface in the pre-treatment furnace
  • the blow flow rate 25,000 ⁇ 30,000Nm3 / h conditions
  • Quantity It can blow on 10-25 Nm ⁇ 3> / ts conditions.
  • the silicon (Si) content of the desiliconized molten iron is reduced by 0.2 to 6% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter,
  • the temperature may be 1,450-1,600 ° C.
  • the tapping may be to tap the molten iron through the tapping hole formed on the outer circumferential surface of the preprocessing converter by tilting the pretreatment converter.
  • the decarburized molten iron may include 0.1 wt% to 1.0 wt% of silicon (Si), and may have a temperature of 1,300 to 1,600 ° C.
  • the molten iron repaired to the ladle may include 4.0 to 8.0% by weight of silicon (Si).
  • the molten iron refining method of the present invention When applying the molten iron refining method of the present invention, it is possible to produce molten steel by refining molten iron containing high silicon, excellent slag elimination effect of the molten iron, prevents the slapping phenomenon during molten iron drilling, operation stability Excellent, can prevent the load and damage of the equipment during refining, it can be economical.
  • FIG. 1 shows a molten iron refining method according to an embodiment of the present invention.
  • Figure 2 shows a pretreatment converter for the desilicon treatment of the present invention.
  • Figure 3 shows the tapping of the desilicon treated molten iron according to one embodiment of the present invention.
  • Figure 4 shows the molten iron refining method of the embodiment according to the present invention.
  • Figure 5 shows the molten iron refining method of the comparative example for the present invention.
  • FIG. 6 is a graph showing a silicon content change of the molten iron according to the molten iron refining process of the embodiment according to the present invention.
  • FIG. 7 is a graph showing the temperature change of the molten iron according to the molten iron refining process of the embodiment according to the present invention.
  • One aspect of the present invention relates to a method for molten iron refining in a converter.
  • 1 shows a method of molten iron refining in a converter according to an embodiment of the present invention. 1, the molten iron refining method (S10) desulfurization step (S20) desilicon step; (S30) tapping step; And (S40) decarburization step.
  • the molten iron refining method (S10) is a step of repairing the molten iron from the blast furnace in the ladle to the KR (Kanvara reactor) facility, by adding a desulfurizing agent to the desulfurization (S) process; (S20) charging the desulfurized molten iron into a pretreatment converter, blowing oxygen by blowing molten iron, and then treating the silicon with desilicon (Si); (S30) tapping the desilicon-treated molten iron; And (S40) charging the hot melted molten iron into a decarburization converter to process decarburization (C), wherein the molten iron repaired in the ladle includes silicon (Si): 0.6 to 8.0% by weight.
  • the step is a step of repairing the molten iron from the blast furnace to the ladle (ladle) to move to the KR (Kanvara reactor) facility, the desulfurizing agent is added to the desulfurization (S) treatment.
  • the molten iron produced in the blast furnace may be unloaded to a topedo car, and the molten iron may be repaired by ladle in the topedo car to be transferred to a Kanvara reactor (KR) facility.
  • KR Kanvara reactor
  • the desulfurization treatment may be performed by adding a desulfurization agent to a KR facility in which molten iron is loaded, by mechanical stirring with an impeller, floating sulfur (S) into the slag, and removing the slag.
  • the desulfurization agent may comprise quicklime and fluorspar.
  • sulfur and quicklime contained in the molten iron may be made by a reaction such as the following Chemical Formula 1.
  • the desulfurization agent may be added at a dose of quicklime (CaO): 10-16 kg / ts and fluorspar (CaF 2 ): 0.5-1.3 kg / ts.
  • quicklime 10-16 kg / ts
  • fluorspar CaF 2
  • the desulfurization treatment can be easily made.
  • the slag excretion work that floats on the upper part of the molten iron in the ladle may be performed by using a skimmer device in the KR (Kanvara Reactor). This is to remove oxidative slag such as silicon dioxide (SiO 2 ) reacted during refining operation in the pretreatment converter to satisfy the desulfurization operation conditions.
  • the impeller can be carried out by adding a desulfurizing agent after starting the molten iron stirring by lowering. After the desulfurization treatment is completed, a temperature probe and probe can be installed in the temperature measurement system.
  • a slag floating above the molten iron in the ladle is once again by using a skimmer apparatus for the purpose of preventing abdominal sulfur in the decarburization converter, which is the next process. Can be excluded.
  • the desulfurization treatment time can be operated at 18-25 minutes / Ht. Under these conditions, sufficient desulfurization treatment time can be ensured.
  • the desulfurized molten iron is repaired in a ladle and charged into a pretreatment converter, and the molten iron is blown by blowing oxygen to desilicon (Si) treatment.
  • the pretreatment converter in addition to the desilicon (Si), some delineation (P) treatment may be performed.
  • the molten iron repaired on the ladle is silicon (Si): 0.6-8.0 wt%.
  • Si silicon
  • the silicon content is less than 0.6% by weight, the reaction between oxygen and silicon is not easily performed when charged into the pretreatment converter, and it is difficult to deal with silicon, and when it exceeds 8% by weight, the phenomenon of slinging during refining may occur. As a result, the quality of the molten steel produced may be degraded.
  • the drawn molten iron may be 2 to 8 wt% of silicon (Si).
  • the drawn molten iron may be 4 wt% to 8 wt% of silicon (Si).
  • the temperature of the molten iron repaired to the ladle may be 1,200 °C ⁇ 1500 °C. Desilicon treatment can be facilitated in the temperature range.
  • the decarburization process is performed by applying the molten iron containing silicon according to the present invention, and then the desilicon process is performed, the risk of overflowing the molten iron during the operation increases, causing equipment load and damage, and the safety of the worker. Threat to the environment and adversely affect the environment.
  • a sub-raw material including 10 to 45 kg / t-s of quicklime (CaO) (per mol of steel) and 15 to 140 kg / t-s of coolant may be added to the pretreatment converter.
  • the amount of the secondary raw material is added, the molten iron and the secondary raw material may effectively react, so that the desilicon treatment efficiency may increase.
  • a subsidiary material containing 15 to 35 kg / t-s of quicklime (molten steel) and a coolant 20 to 130 kg / t-s may be added.
  • the coolant may include one or more of iron ore, sintered ore, hot briquetted iron (HBI) and briquettes.
  • the oxygen lance height 2,300 ⁇ 2,500mm based on the molten steel surface in the pre-treatment furnace
  • the blow flow rate 25,000 ⁇ 30,000Nm3 / h conditions
  • Quantity It can blow on 10-25 Nm ⁇ 3> / ts conditions.
  • the desilicon treatment can be easily made.
  • the delivery flow rate is less than 25,000 Nm 3 / h
  • the desilicon treatment time may increase more than necessary.
  • the delivery flow rate exceeds 30,000 Nm 3 / h, there is a risk of molten iron overflowing during operation.
  • Figure 2 shows a pretreatment converter for the desilicon treatment of the present invention.
  • the height H of the oxygen lance 10 is set to 2,300 to 2,500 mm based on the uppermost surface (hot water surface) of the molten iron M charged in the pretreatment converter 20.
  • the molten iron blown it can be blown under the oxygen blowing amount: 10 ⁇ 25Nm3 / t-s conditions.
  • De-silicon treatment may be easily performed at the oxygen injection amount.
  • the amount of oxygen blown in the pretreatment converter is calculated by the difference between the silicon (Si) content of the charged molten iron, the difference of the target silicon (Si) content in the desilicon treatment, and the ladle It can be derived by calculating the difference in tapping temperature rise after desilicon treatment at the repaired molten iron temperature.
  • the oxygen is blown, the molten iron temperature rises due to an exothermic reaction caused by an oxidation reaction generated in contact with silicon (Si) or the like in the molten iron.
  • the silicon (Si) content of the desiliconized molten iron is reduced by 0.2 to 6% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter
  • the temperature may be 1,450-1,600 ° C.
  • it may be reduced by 0.2 to 1% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter.
  • the desilicon-treated molten iron is silicon (Si): 0.1 to 3.5% by weight, and the temperature may be 1,450 to 1,600 ° C.
  • the desilicon-treated molten iron is silicon (Si): 0.1 to 1% by weight, and the temperature may be 1,450 to 1,600 ° C.
  • the desilicon-treated molten iron is silicon (Si): 0.2 to 0.5% by weight, and the temperature may be 1,450 to 1,600 ° C.
  • the step is to tap the desilicon-treated molten iron.
  • Figure 3 shows the tapping of the desilicon treated molten iron according to one embodiment of the present invention.
  • the tapping operation is performed by tilting the pretreatment converter 20 to transfer the molten iron M to the tapping ladle 30 through a tap hole 24 formed on an outer circumferential surface of the pretreatment converter 20. You can tap.
  • the molten iron (M) tapping through the tapping hole 24 as shown in FIG. 3 the slag (S) formed on the upper surface of the molten iron (M) may be excellent.
  • the slag remaining in the pretreatment converter may be treated by exclusion from the pot.
  • the desulfurized molten iron is charged into a decarburization converter and subjected to decarburization (C).
  • the decarburization may be carried out in a conventional manner.
  • the decarburized molten iron may include 0.1 wt% to 1.0 wt% of silicon (Si), and may have a temperature of 1,300 to 1,600 ° C.
  • the continuous casting process may be performed after controlling the fine components in the molten steel through a conventional secondary refining process.
  • High silicon molten iron was treated in the same manner as in FIG. 4.
  • quicklime (CaO): 29 kg / ts and coolant (iron ore): 123 kg / ts as an auxiliary material and an oxygen content of 17 Nm3 / ts using an oxygen lance.
  • the molten iron temperature was increased by an exothermic reaction by the oxidation reaction of silicon (Si) and carbon (C) and the like (SiO 2 and CO generation), and the silicon removal treatment was performed as shown in FIG. 4 (b).
  • the oxygen lance height was set to 2,300 to 2,500 mm based on the molten steel surface (upper surface) charged inside the pretreatment furnace, and blown under a condition of a flow rate of flow: 25,000 to 30,000 Nm 3 / h.
  • a probe was mounted on a sub-lance, which is a temperature measuring facility, and the temperature of the molten steel in the pre-treatment furnace was measured.
  • the desilicon-treated molten iron included silicon (Si): 0.5 wt% and the molten iron temperature was 1,539 ° C.
  • the preprocessing converter was tilted to tap the desilicon-treated molten iron through the tap hole formed on the outer circumferential surface of the preprocessing converter.
  • the slag remaining in the pretreatment converter was removed from the pot and treated.
  • the molten molten iron was charged into a decarburization converter, and after decarburization (C) treatment, the steel was dropped into the tapping ladle as shown in FIG.
  • the process proceeded to repair, pretreatment and decarburization, and the molten iron was changed from 3.5% by weight to 0.5% by weight of silicon (Si), and from 1,393 ° C to 1,539 ° C.
  • a molten iron containing 3.1 wt% of silicon (Si) and a molten iron temperature of 1,261 ° C. was repaired in the ladle.
  • KR Kinvara reactor
  • Oxygen lance blows up the net oxygen: 19 Nm3 / ts, and raises the molten iron temperature by exothermic reaction by oxidation reaction (SiO 2 ) and CO with silicon (Si) and carbon (C) in molten iron Desilicon treatment was carried out.
  • the oxygen lance height was set to 2,300 to 2500 mm based on the molten steel loaded into the pretreatment furnace, and blown under a condition of a flow rate of 25,000 to 30,000 Nm 3 / h.
  • a probe was mounted on a sub-lance, which is a temperature measuring facility, and the temperature of the molten steel in the pre-treatment furnace was measured.
  • the desilicon-treated molten iron included silicon (Si): 0.33 wt% and the molten iron temperature was 1,534 ° C.
  • the preprocessing converter was tilted to tap the desilicon-treated molten iron through the tap hole formed on the outer circumferential surface of the preprocessing converter.
  • the slag remaining in the pretreatment converter was removed from the pot and treated.
  • the molten iron was charged into a decarburization converter and subjected to decarburization (C).
  • the process proceeded to repair, pretreatment and decarburization, and the molten iron was changed from 3.1 wt% to 0.33 wt% of silicon (Si) and the molten iron temperature from 1,261 ° C to 1,534 ° C.
  • High silicon molten iron was treated in the same manner as in FIG. 5.
  • the molten iron containing 3.5 wt% of silicon (Si) and the molten iron temperature of 1,393 ° C was repaired in the ladle, charged into a decarburization converter as shown in FIG. 5 (a), and decarburized as shown in FIG. 5 (b).
  • the decarburization converter was tilted as shown in FIG. 5 (b) to tap through the furnace and remove slag.
  • oxygen was blown into the decarburization converter as shown in FIG. 5 (d) to blow molten iron, treated with desilicon (Si), and pulled out as shown in FIG. 5 (e).
  • FIG. 6 is a graph showing a silicon content change of the molten iron according to the molten iron refining process of Examples 1 to 2 according to the present invention.
  • 7 is a graph showing the molten iron temperature change according to the molten iron refining process of Examples 1 to 2 according to the present invention.
  • the molten iron of Examples 1 to 2 of the present invention is applied to the molten iron of high silicon (Si), which was previously impossible to be steel-making and had to be subjected to cold wire, foundry or sand treatment.
  • Si high silicon
  • the normal desilicon and decarburization process is performed, it was possible to refine the molten iron, it was found that the operation stability is excellent, the molten iron temperature can be raised stably, and the load and damage of the equipment during the refining can be prevented. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

A method for refining hot metal in a convertor is disclosed. In one embodiment, the method for refining hot metal in a convertor comprises the steps of: pouring hot metal tapped from a blast furnace into a ladle to transfer the hot metal to a kanvara reactor (KR) facility, and introducing a desulfurizing agent to remove sulfur (S); charging the desulfurized hot metal into a pretreatment converter, and removing silicon (Si) from the hot metal by blowing oxygen into the hot metal; tapping the desiliconized hot metal; and charging the tapped hot metal into a decarburizing converter to remove carbon (C). The hot metal poured into the ladle contains 0.6 to 8.0 wt% of silicon (Si).

Description

전로에서의 용선 정련 방법 Charter refining method in converter
본 발명은 용선 정련 방법에 관한 것이다. 보다 상세하게는 고실리콘(Si)을 포함하는 용선을 정련할 수 있는 용선 정련 방법에 관한 것이다.The present invention relates to a molten iron refining method. More specifically, the present invention relates to a molten iron refining method capable of refining molten iron including high silicon (Si).
일관(一貫) 제철이란, 고로에서 생산된 용선을 제강 공정에서 정련하여, 연속 주조공정을 통해 주편을 생산하는 공정이다. 구체적으로 상기 제강 공정에서는 철광석을 고로에서 용해하여 용선을 제조한 후, 용선에 탈황 및 탈탄 등의 공정을 순차적으로 수행하여 용선 내 불순물을 제거하는 1차 정련 과정을 거쳐 용강을 제조하게 된다. 불순물이 제거된 용강은 2차 정련 과정을 거쳐 용강 내의 미세 성분 조절까지 완료되면, 연속주조 공정으로 이동하게 된다. 이후 연속주조 공정을 거쳐 반제품을 성형하고, 압연 등의 최종 성형과정을 거쳐 최종적으로 얻고자 하는 형태의 제품으로 제조된다.Consistent steelmaking is the process of refining molten iron produced in the blast furnace in the steelmaking process and producing cast steel through a continuous casting process. Specifically, in the steelmaking process, molten iron is dissolved in a blast furnace to manufacture molten iron, and molten steel is manufactured through a first refining process of removing impurities in molten iron by sequentially performing desulfurization and decarburization on molten iron. After the impurities are removed, the molten steel is moved to the continuous casting process when the fine constituents in the molten steel are adjusted through the secondary refining process. After that, the semi-finished product is formed through a continuous casting process, and is finally manufactured through a final molding process such as rolling.
한편 전로는 고로에서 생산된 용선의 불순물을 제거하는 설비로, 탈린전로는 용선 중의 인 성분을 최대한 낮춰 극저린 고급강을 제조하기 위한 설비이다. 또한, 탈탄전로는 용선 내 탄소의 농도를 낮추기 위하여 사용되는 설비이다. 전로 조업은 용선에 부원료나 가스를 취입하고, 용선을 교반하여 부원료 및 가스와 용선 간 반응을 촉진하는 방식으로 수행될 수 있다.On the other hand, the converter is a facility for removing impurities in the molten iron produced in the blast furnace, the Tallinn converter is a facility for manufacturing ultra-high quality steel by lowering the phosphorus content in the molten iron as much as possible. In addition, the decarburization furnace is a facility used to lower the concentration of carbon in the molten iron. The converter operation may be carried out in a manner in which the subsidiary material or gas is blown into the molten iron and the molten iron is stirred to promote the reaction between the subsidiary material and the gas and the molten iron.
본 발명과 관련한 배경기술은 대한민국 공개특허공보 제2015-0076252호(2015.07.06. 공개, 발명의 명칭: 용선의 정련 방법)에 개시되어 있다.Background art related to the present invention is disclosed in Korean Unexamined Patent Publication No. 2015-0076252 (2015.07.06. Publication, the name of the invention: method of refining molten iron).
본 발명의 일 실시예에 의하면, 고실리콘을 함유하는 용선을 정련할 수 있는 전로에서의 용선 정련 방법을 제공하는 것이다.According to one embodiment of the present invention, there is provided a method for refining molten iron in a converter capable of refining molten iron containing high silicon.
본 발명의 일 실시예에 의하면, 용선 슬래그 배제 효과가 우수한 전로에서의 용선 정련 방법을 제공하는 것이다.According to one embodiment of the present invention, a method for refining molten iron in a converter excellent in molten iron slag removal effect is provided.
본 발명의 일 실시예에 의하면, 용선 취련시 슬로핑(slopping) 현상을 방지하며, 조업 안정성이 우수한 전로에서의 용선 정련 방법을 제공하는 것이다.According to one embodiment of the present invention, it is to provide a method for refining molten iron in the converter to prevent the slopping phenomenon during the molten iron blown, and excellent operation stability.
본 발명의 일 실시예에 의하면, 정련시 설비의 부하 및 손상을 방지할 수 있는 전로에서의 용선 정련 방법을 제공하는 것이다.According to one embodiment of the present invention, to provide a molten iron refining method in the converter that can prevent the load and damage of the equipment during refining.
본 발명의 일 실시예에 의하면, 경제성이 우수한 전로에서의 용선 정련 방법을 제공하는 것이다.According to one embodiment of the present invention, there is provided a method for refining molten iron in an converter having excellent economic efficiency.
본 발명의 하나의 관점은 전로에서의 용선 정련 방법에 관한 것이다. 한 구체예에서 상기 전로에서의 용선 정련 방법은 고로에서 출선된 용선을 래들에 수선하여 KR(Kanvara reactor) 설비로 이동시켜, 탈황제를 투입하여 탈황(S) 처리하는 단계; 상기 탈황 처리된 용선을 예비처리 전로에 장입하고, 산소를 취입하여 용선을 취련하여, 탈실리콘(Si) 처리하는 단계; 상기 탈실리콘 처리된 용선을 출탕하는 단계; 및 상기 출탕된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리하는 단계;를 포함하며, 상기 래들에 수선된 용선은 실리콘(Si): 0.6~8.0 중량%를 포함한다.One aspect of the present invention relates to a method for molten iron refining in a converter. In one embodiment, the method for refining the molten iron in the converter is to repair the molten iron from the blast furnace in the ladle to move to a KR (Kanvara reactor) facility, by adding a desulfurizing agent to the desulfurization (S) process; Charging the desulfurized molten iron into a pretreatment converter, blowing oxygen by blowing the molten iron, and then treating the molten iron to remove silicon (Si); Tapping the desilicon-treated molten iron; And charging the demelted molten iron into a decarburization converter to process decarburization (C), wherein the molten iron repaired to the ladle includes silicon (Si): 0.6 to 8.0 wt%.
한 구체예에서 상기 탈실리콘(Si) 처리시, 상기 예비처리 전로에 생석회 10~45kg/t-s 및 냉각제 15~140kg/t-s를 포함하는 부원료를 투입할 수 있다.In one embodiment, during the de-silicon (Si) treatment, a sub-material including 10 to 45 kg / t-s of quicklime and 15 to 140 kg / t-s of coolant may be added to the pretreatment converter.
한 구체예에서 상기 용선 취련시, 상기 예비처리 전로 내 용강 면을 기준으로 산소 랜스 높이: 2,300~2,500mm에서 송산 유량: 25,000~30,000N㎥/h 조건으로 취련하며, 상기 용선 취련시, 산소 취입량: 10~25N㎥/t-s 조건으로 취련할 수 있다.In one embodiment, when the molten iron is blown, the oxygen lance height: 2,300 ~ 2,500mm based on the molten steel surface in the pre-treatment furnace, the blow flow rate: 25,000 ~ 30,000Nm3 / h conditions, and when the molten iron is blown, Quantity: It can blow on 10-25 Nm <3> / ts conditions.
한 구체예에서 상기 탈실리콘 처리된 용선의 실리콘(Si) 함량은, 상기 예비처리 전로에 장입된 용선의 실리콘(Si) 함량을 기준으로 0.2~6 중량% 감소되며, 상기 탈실리콘 처리된 용선의 온도는 1,450~1,600℃일 수 있다.In one embodiment, the silicon (Si) content of the desiliconized molten iron is reduced by 0.2 to 6% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter, The temperature may be 1,450-1,600 ° C.
한 구체예에서 상기 출탕은, 상기 예비처리 전로를 경동하여, 상기 예비처리 전로의 외주면에 형성된 출강구를 통해 상기 용선을 출탕하는 것일 수 있다.In one embodiment, the tapping may be to tap the molten iron through the tapping hole formed on the outer circumferential surface of the preprocessing converter by tilting the pretreatment converter.
한 구체예에서 상기 탈탄 처리된 용선은, 실리콘(Si): 0.1~1.0 중량%를 포함하며, 온도가 1,300~1,600℃일 수 있다.In one embodiment, the decarburized molten iron may include 0.1 wt% to 1.0 wt% of silicon (Si), and may have a temperature of 1,300 to 1,600 ° C.
한 구체예에서 상기 래들에 수선된 용선은 실리콘(Si): 4.0~8.0 중량%를 포함할 수 있다.In one embodiment, the molten iron repaired to the ladle may include 4.0 to 8.0% by weight of silicon (Si).
본 발명의 용선 정련 방법을 적용시, 고실리콘을 함유하는 용선을 정련하여 용강 생산이 가능하며, 용선의 슬래그 배제 효과가 우수하고, 용선 취련시 슬로핑(slopping) 현상을 방지하며, 조업 안정성이 우수하며, 정련시 설비의 부하 및 손상을 방지할 수 있고, 경제성이 우수할 수 있다.When applying the molten iron refining method of the present invention, it is possible to produce molten steel by refining molten iron containing high silicon, excellent slag elimination effect of the molten iron, prevents the slapping phenomenon during molten iron drilling, operation stability Excellent, can prevent the load and damage of the equipment during refining, it can be economical.
도 1은 본 발명의 한 구체예에 따른 용선 정련 방법을 나타낸 것이다.1 shows a molten iron refining method according to an embodiment of the present invention.
도 2는 본 발명의 탈실리콘 처리를 위한 예비처리 전로를 나타낸 것이다.Figure 2 shows a pretreatment converter for the desilicon treatment of the present invention.
도 3은 본 발명의 한 구체예에 따른 탈실리콘 처리된 용선의 출탕을 나타낸 것이다.Figure 3 shows the tapping of the desilicon treated molten iron according to one embodiment of the present invention.
도 4는 본 발명에 따른 실시예의 용선 정련 방법을 나타낸 것이다.Figure 4 shows the molten iron refining method of the embodiment according to the present invention.
도 5는 본 발명에 대한 비교예의 용선 정련 방법을 나타낸 것이다.Figure 5 shows the molten iron refining method of the comparative example for the present invention.
도 6은 본 발명에 따른 실시예의 용선 정련 과정에 따른 용선의 실리콘 함량 변화를 나타낸 그래프이다. 6 is a graph showing a silicon content change of the molten iron according to the molten iron refining process of the embodiment according to the present invention.
도 7은 본 발명에 따른 실시예의 용선 정련 과정에 따른 용선 온도 변화를 나타낸 그래프이다.7 is a graph showing the temperature change of the molten iron according to the molten iron refining process of the embodiment according to the present invention.
이하, 본 발명을 상세히 설명한다. 이때, 본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.Hereinafter, the present invention will be described in detail. In this case, when it is determined that the detailed description of the related known technology or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.The terms to be described below are terms defined in consideration of functions in the present invention, and may be changed according to intentions or customs of users or operators, and the definitions should be made based on the contents throughout the specification for describing the present invention.
전로에서의 용선 정련 방법Charter refining method in converter
본 발명의 하나의 관점은 전로에서의 용선 정련 방법에 관한 것이다. 도 1은 본 발명의 한 구체예에 따른 전로에서의 용선 정련 방법을 나타낸 것이다. 상기 도 1을 참조하면, 상기 용선 정련 방법은 (S10) 탈황 단계 (S20) 탈실리콘 단계; (S30) 출탕 단계; 및 (S40) 탈탄 단계;를 포함한다. 좀 더 구체적으로, 상기 용선 정련 방법은 (S10) 고로에서 출선된 용선을 래들에 수선하여 KR(Kanvara reactor) 설비로 이동시켜, 탈황제를 투입하여 탈황(S) 처리하는 단계; (S20) 상기 탈황 처리된 용선을 예비처리 전로에 장입하고, 산소를 취입하여 용선을 취련하여, 탈실리콘(Si) 처리하는 단계; (S30) 상기 탈실리콘 처리된 용선을 출탕하는 단계; 및 (S40) 상기 출탕된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리하는 단계;를 포함하며, 상기 래들에 수선된 용선은 실리콘(Si): 0.6~8.0 중량%를 포함한다.One aspect of the present invention relates to a method for molten iron refining in a converter. 1 shows a method of molten iron refining in a converter according to an embodiment of the present invention. 1, the molten iron refining method (S10) desulfurization step (S20) desilicon step; (S30) tapping step; And (S40) decarburization step. More specifically, the molten iron refining method (S10) is a step of repairing the molten iron from the blast furnace in the ladle to the KR (Kanvara reactor) facility, by adding a desulfurizing agent to the desulfurization (S) process; (S20) charging the desulfurized molten iron into a pretreatment converter, blowing oxygen by blowing molten iron, and then treating the silicon with desilicon (Si); (S30) tapping the desilicon-treated molten iron; And (S40) charging the hot melted molten iron into a decarburization converter to process decarburization (C), wherein the molten iron repaired in the ladle includes silicon (Si): 0.6 to 8.0% by weight.
이하, 본 발명에 따른 용선 정련 방법을 단계별로 상세히 설명하도록 한다.Hereinafter, the molten iron refining method according to the present invention will be described in detail step by step.
(S10) 탈황 단계(S10) Desulfurization Step
상기 단계는 고로에서 출선된 용선을 래들(ladle)에 수선하여 KR(Kanvara reactor) 설비로 이동시켜, 탈황제를 투입하여 탈황(S) 처리하는 단계이다. 한 구체예에서 상기 고로에서 생산된 용선을 토페도카(torpedo car)로 출선하고, 상기 토페도카에서 래들로 상기 용선을 수선하여, KR(Kanvara reactor) 설비로 이동시킬 수 있다.The step is a step of repairing the molten iron from the blast furnace to the ladle (ladle) to move to the KR (Kanvara reactor) facility, the desulfurizing agent is added to the desulfurization (S) treatment. In an embodiment, the molten iron produced in the blast furnace may be unloaded to a topedo car, and the molten iron may be repaired by ladle in the topedo car to be transferred to a Kanvara reactor (KR) facility.
상기 탈황 처리는 용선이 장입된 KR 설비에 탈황제를 투입하고, 임펠러로 기계적 교반을 하여 유황(S)을 슬래그 중으로 부상하며, 상기 슬래그를 제거하여 이루어질 수 있다. 한 구체예에서 탈황제는 생석회 및 형석을 포함할 수 있다. 한 구체예에서 상기 용선에 함유된 황과 생석회는 하기 화학식 1과 같은 반응에 의해 이루어질 수 있다. The desulfurization treatment may be performed by adding a desulfurization agent to a KR facility in which molten iron is loaded, by mechanical stirring with an impeller, floating sulfur (S) into the slag, and removing the slag. In one embodiment the desulfurization agent may comprise quicklime and fluorspar. In one embodiment, sulfur and quicklime contained in the molten iron may be made by a reaction such as the following Chemical Formula 1.
[화학식 1][Formula 1]
CaO + S → CaS + OCaO + S → CaS + O
한 구체예에서 상기 탈황제는 생석회(CaO): 10~16kg/t-s 및 형석(CaF2): 0.5~1.3kg/t-s의 투입량으로 투입할 수 있다. 상기 조건의 탈황제를 적용시, 탈황 처리가 용이하게 이루어질 수 있다.In one embodiment, the desulfurization agent may be added at a dose of quicklime (CaO): 10-16 kg / ts and fluorspar (CaF 2 ): 0.5-1.3 kg / ts. When applying the desulfurization agent of the above conditions, the desulfurization treatment can be easily made.
한 구체예에서 상기 KR(Kanvara Reactor) 에서 먼저 스키머(Skimmer) 장치를 이용하여 래들(Ladle) 내 용선 상부에 부상되어 있는 슬래그(Slag) 배재 작업을 실시할 수 있다. 이는 탈황작업 조건을 만족하기 위해 예비처리 전로에서 정련작업시 반응한 이산화규소(SiO2)등 산화성 슬래그(Slag)를 제거하기 위한 목적이다.In one embodiment, the slag excretion work that floats on the upper part of the molten iron in the ladle may be performed by using a skimmer device in the KR (Kanvara Reactor). This is to remove oxidative slag such as silicon dioxide (SiO 2 ) reacted during refining operation in the pretreatment converter to satisfy the desulfurization operation conditions.
한 구체예에서 임펠러(Impeller)를 하강하여 용선 교반을 시작 한 후 탈황제를 투입하여 실시할 수 있다. 탈황 처리 완료 후, 측온 설비에 프로브(Probe)를 장 착하여 온도 측정 및 샘플링을 실시할 수 있다.In one embodiment, the impeller (Impeller) can be carried out by adding a desulfurizing agent after starting the molten iron stirring by lowering. After the desulfurization treatment is completed, a temperature probe and probe can be installed in the temperature measurement system.
한 구체예에서 상기 탈황 처리 후, 다음 공정인 탈탄 전로에서의 복황을 방지할 목적으로 스키머(Skimmer) 장치를 이용하여 상기 래들(Ladle) 내 용선 상부에 부상되어 있는 슬래그(Slag)를 한 번 더 배재할 수 있다.In one embodiment, after the desulfurization treatment, a slag floating above the molten iron in the ladle is once again by using a skimmer apparatus for the purpose of preventing abdominal sulfur in the decarburization converter, which is the next process. Can be excluded.
한 구체예에서 상기 탈황 처리 시간은 18~25분/Ht로 작업할 수 있다. 상기 조건에서 충분한 탈황 처리 시간을 확보할 수 있다.In one embodiment, the desulfurization treatment time can be operated at 18-25 minutes / Ht. Under these conditions, sufficient desulfurization treatment time can be ensured.
(S20) (S20) 탈실리콘De-silicon 단계 step
상기 단계는 탈황처리된 용선을 래들(ladle)에 수선하여 예비처리 전로에 장입하고, 산소를 취입하여 용선을 취련하여, 탈실리콘(Si) 처리하는 단계이다. 상기 예비처리 전로에서는 탈실리콘(Si)과 함께, 일부 탈린(P) 처리가 이루어질 수 있다. In this step, the desulfurized molten iron is repaired in a ladle and charged into a pretreatment converter, and the molten iron is blown by blowing oxygen to desilicon (Si) treatment. In the pretreatment converter, in addition to the desilicon (Si), some delineation (P) treatment may be performed.
고로 조업 중, 풍구를 통하여 노내로 유입된 바람이, 장입물을 균일하게 통과하지 못하고 편류를 일으키며 고로 노정까지 일시에 도달하는 취발 현상 등이 발생하는 경우, 고로 노황의 불안정으로 인해 용선의 성분이 비정상적으로 생산된다. 특히, 상기 용선 중 실리콘(Si) 함량이 높아지게 된다.During the operation of the blast furnace, if the wind flowing into the furnace through the tuyere does not pass through the charges uniformly, it causes drift and reaches the top of the blast furnace. Abnormally produced. In particular, the content of silicon (Si) in the molten iron is increased.
한 구체예에서 상기 래들에 수선된 용선은 실리콘(Si): 0.6~8.0 중량% 이다. 상기 실리콘 함량이 0.6 중량% 미만인 경우 예비처리 전로에 장입시 산소와 실리콘 사이의 반응이 용이하게 이루어지지 않아 탈실리콘 처리가 어려우며, 8 중량%를 초과하는 경우, 정련시 슬로핑 현상이 발생할 수 있으며, 제조되는 용강의 품질이 저하될 수 있다. 예를 들면 상기 출선된 용선은 실리콘(Si): 2~8 중량%일 수 있다. 다른 예를 들면 상기 출선된 용선은 실리콘(Si): 4~8 중량%일 수 있다.In one embodiment, the molten iron repaired on the ladle is silicon (Si): 0.6-8.0 wt%. When the silicon content is less than 0.6% by weight, the reaction between oxygen and silicon is not easily performed when charged into the pretreatment converter, and it is difficult to deal with silicon, and when it exceeds 8% by weight, the phenomenon of slinging during refining may occur. As a result, the quality of the molten steel produced may be degraded. For example, the drawn molten iron may be 2 to 8 wt% of silicon (Si). For example, the drawn molten iron may be 4 wt% to 8 wt% of silicon (Si).
한 구체예에서 상기 래들에 수선된 용선의 온도는 1,200℃~1,500℃일 수 있다. 상기 온도 범위에서 탈실리콘 처리가 용이할 수 있다.In one embodiment the temperature of the molten iron repaired to the ladle may be 1,200 ℃ ~ 1500 ℃. Desilicon treatment can be facilitated in the temperature range.
본 발명에 따른 실리콘을 함유하는 용선을 적용하여 탈탄공정을 수행한 다음 탈실리콘 공정을 수행하는 경우, 조업 중 용선이 넘치는 슬로핑 발생 위험이 증가하여, 설비 부하 및 손상을 유발하며, 작업자의 안전을 위협하고, 환경적으로 악영향을 초래하게 된다.When the decarburization process is performed by applying the molten iron containing silicon according to the present invention, and then the desilicon process is performed, the risk of overflowing the molten iron during the operation increases, causing equipment load and damage, and the safety of the worker. Threat to the environment and adversely affect the environment.
한 구체예에서 상기 탈실리콘(Si) 처리시, 상기 예비처리 전로에 생석회(CaO) 10~45kg/t-s(용강 톤당), 및 냉각제 15~140kg/t-s를 포함하는 부원료를 투입할 수 있다. 상기 함량의 부원료 투입시, 상기 용선과 부원료가 효과적으로 반응하여, 탈실리콘 처리 효율이 증가할 수 있다. 예를 들면, 상기 탈실리콘 처리시 생석회 15~35kg/t-s(용강 톤), 및 냉각제 20~130kg/t-s를 포함하는 부원료를 투입할 수 있다. 한 구체예에서 상기 냉각제로는 철광석, 소결광, 고온브리켓철(Hot Briquetted Iron, HBI) 및 단광 중 하나 이상을 포함할 수 있다.In one embodiment, during the de-silicon (Si) treatment, a sub-raw material including 10 to 45 kg / t-s of quicklime (CaO) (per mol of steel) and 15 to 140 kg / t-s of coolant may be added to the pretreatment converter. When the amount of the secondary raw material is added, the molten iron and the secondary raw material may effectively react, so that the desilicon treatment efficiency may increase. For example, during the desilicon treatment, a subsidiary material containing 15 to 35 kg / t-s of quicklime (molten steel) and a coolant 20 to 130 kg / t-s may be added. In one embodiment, the coolant may include one or more of iron ore, sintered ore, hot briquetted iron (HBI) and briquettes.
한 구체예에서 상기 용선 취련시, 상기 예비처리 전로 내 용강 면을 기준으로 산소 랜스 높이: 2,300~2,500mm에서 송산 유량: 25,000~30,000N㎥/h 조건으로 취련하며, 상기 용선 취련시, 산소 취입량: 10~25N㎥/t-s 조건으로 취련할 수 있다. 상기 취련 조건에서, 탈실리콘 처리가 용이하게 이루어질 수 있다. 일 예로서, 송산 유량이 25,000 N㎥/h 미만일 경우, 탈실리콘 처리 시간이 필요이상으로 증가할 수 있다. 이에 반해, 송산 유량이 30,000N㎥/h 을 초과할 경우, 조업 중 용선이 넘치는 슬로핑 발생 위험이 있다.In one embodiment, when the molten iron is blown, the oxygen lance height: 2,300 ~ 2,500mm based on the molten steel surface in the pre-treatment furnace, the blow flow rate: 25,000 ~ 30,000Nm3 / h conditions, and when the molten iron is blown, Quantity: It can blow on 10-25 Nm <3> / ts conditions. In the blowing condition, the desilicon treatment can be easily made. As an example, when the delivery flow rate is less than 25,000 Nm 3 / h, the desilicon treatment time may increase more than necessary. On the other hand, when the delivery flow rate exceeds 30,000 Nm 3 / h, there is a risk of molten iron overflowing during operation.
도 2는 본 발명의 탈실리콘 처리를 위한 예비처리 전로를 나타낸 것이다. 상기 도 2를 참조하면, 상기 용선 취련시, 예비처리 전로(20)에 장입된 용선(M)의 최상면(탕면)을 기준으로 산소 랜스(10)의 높이(H)를 2,300~2,500mm로 설정할 수 있다. 상기 조건에서, 취련이 용이하게 이루어질 수 있다.Figure 2 shows a pretreatment converter for the desilicon treatment of the present invention. Referring to FIG. 2, when the molten iron is blown, the height H of the oxygen lance 10 is set to 2,300 to 2,500 mm based on the uppermost surface (hot water surface) of the molten iron M charged in the pretreatment converter 20. Can be. In the above conditions, blowing can be easily performed.
한 구체예에서 상기 용선 취련시, 산소 취입량: 10~25N㎥/t-s 조건으로 취련할 수 있다. 상기 산소 취입량에서 탈실리콘 처리가 용이하게 이루어질 수 있다.In one embodiment, the molten iron blown, it can be blown under the oxygen blowing amount: 10 ~ 25Nm3 / t-s conditions. De-silicon treatment may be easily performed at the oxygen injection amount.
한 구체예에서, 상기 예비처리 전로에서의 산소 취입량은 상기 장입된 용선의 실리콘(Si) 함량에서, 상기 탈실리콘 처리시 목표로 하는 실리콘(Si) 함량의 차이만큼의 계산량과, 상기 래들에 수선된 용선 온도에서 탈실리콘 처리 이후 출탕 온도 상승량 차이를 계산하여 도출될 수 있다. 상기 산소 취입시, 용선 중 실리콘(Si) 등과 접촉하여 발생하는, 산화 반응에 의한 발열 반응으로 용선 온도가 상승하게 된다.In one embodiment, the amount of oxygen blown in the pretreatment converter is calculated by the difference between the silicon (Si) content of the charged molten iron, the difference of the target silicon (Si) content in the desilicon treatment, and the ladle It can be derived by calculating the difference in tapping temperature rise after desilicon treatment at the repaired molten iron temperature. When the oxygen is blown, the molten iron temperature rises due to an exothermic reaction caused by an oxidation reaction generated in contact with silicon (Si) or the like in the molten iron.
한 구체예에서 상기 탈실리콘 처리된 용선의 실리콘(Si) 함량은, 상기 예비처리 전로에 장입된 용선의 실리콘(Si) 함량을 기준으로 0.2~6 중량% 감소되며, 상기 탈실리콘 처리된 용선의 온도는 1,450~1,600℃일 수 있다. 예를 들면, 상기 예비처리 전로에 장입된 용선의 실리콘(Si) 함량을 기준으로 0.2~1 중량% 감소될 수 있다. In one embodiment, the silicon (Si) content of the desiliconized molten iron is reduced by 0.2 to 6% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter, The temperature may be 1,450-1,600 ° C. For example, it may be reduced by 0.2 to 1% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter.
한 구체예에서 상기 탈실리콘 처리된 용선은 실리콘(Si): 0.1~3.5 중량% 이며, 온도는 1,450~1,600℃일 수 있다. 상기 조건에서 상기 탈실리콘 처리된 용선을 탈탄전로에서 취련시, 용선 중 인(P) 성분의 제어를 안정적으로 할 수 있으며, 슬로핑 현상을 방지할 수 있어, 탈탄 처리가 용이하게 이루어질 수 있다. 예를 들면 상기 탈실리콘 처리된 용선은 실리콘(Si): 0.1~1 중량% 이며, 온도는 1,450~1,600℃일 수 있다. 다른 예를 들면 상기 탈실리콘 처리된 용선은 실리콘(Si): 0.2~0.5 중량% 이며, 온도는 1,450~1,600℃일 수 있다.In one embodiment, the desilicon-treated molten iron is silicon (Si): 0.1 to 3.5% by weight, and the temperature may be 1,450 to 1,600 ° C. Under the above conditions, when the desilicon-treated molten iron is blown in a decarburization converter, it is possible to stably control the phosphorus (P) component in the molten iron and to prevent a slopeing phenomenon, thereby making it easier to decarburize. . For example, the desilicon-treated molten iron is silicon (Si): 0.1 to 1% by weight, and the temperature may be 1,450 to 1,600 ° C. In another example, the desilicon-treated molten iron is silicon (Si): 0.2 to 0.5% by weight, and the temperature may be 1,450 to 1,600 ° C.
(S30) (S30) 출탕Tapping 단계 step
상기 단계는 상기 탈실리콘 처리된 용선을 출탕하는 단계이다. 도 3은 본 발명의 한 구체예에 따른 탈실리콘 처리된 용선의 출탕을 나타낸 것이다. 상기 도 3을 참조하면, 상기 출탕은, 예비처리 전로(20)를 경동하여, 예비처리 전로(20)의 외주면에 형성된 출강구(24)를 통해 용선(M)을 출탕용 래들(30)에 출탕할 수 있다. 상기 도 3과 같이 출강구(24)를 통하여 용선(M) 출탕시, 용선(M)의 상부면에 형성된 슬래그(S)의 배제 효과가 우수할 수 있다. 한 구체예에서 상기 예비처리 전로에 잔류된 슬래그는, 포트(Pot)에 배제하여 처리될 수 있다.The step is to tap the desilicon-treated molten iron. Figure 3 shows the tapping of the desilicon treated molten iron according to one embodiment of the present invention. Referring to FIG. 3, the tapping operation is performed by tilting the pretreatment converter 20 to transfer the molten iron M to the tapping ladle 30 through a tap hole 24 formed on an outer circumferential surface of the pretreatment converter 20. You can tap. When the molten iron (M) tapping through the tapping hole 24 as shown in FIG. 3, the slag (S) formed on the upper surface of the molten iron (M) may be excellent. In one embodiment, the slag remaining in the pretreatment converter may be treated by exclusion from the pot.
(S40) (S40) 탈탄Decarburization 단계 step
상기 단계는 상기 탈황 처리된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리하는 단계이다. 상기 탈탄은 통상적인 방법으로 수행될 수 있다.In the step, the desulfurized molten iron is charged into a decarburization converter and subjected to decarburization (C). The decarburization may be carried out in a conventional manner.
한 구체예에서 상기 탈탄 처리된 용선은, 실리콘(Si): 0.1~1.0 중량%를 포함하며, 온도가 1,300~1,600℃일 수 있다. 상기 조건으로 처리시, 통상적인 2차 정련 과정을 거쳐 용강 내의 미세 성분 조절 후, 연속주조 공정이 이루어질 수 있다.In one embodiment, the decarburized molten iron may include 0.1 wt% to 1.0 wt% of silicon (Si), and may have a temperature of 1,300 to 1,600 ° C. In the treatment under the above conditions, the continuous casting process may be performed after controlling the fine components in the molten steel through a conventional secondary refining process.
본 발명에 따른 용선 처리 방법(reversed converter process, RCP)을 적용시, 기존 제강이 불가능하여 냉선, 주물선 또는 사처리를 실시해야만 했던 고실리콘(Si)의 용선을 정련하여 용강을 제조할 수 있으며, 용선 취련시 슬로핑(slopping) 현상을 방지하여 환경 오염을 방지하며, 조업 안정성이 우수하고, 용선 온도를 안정적으로 상승시킬 수 있으며, 정련시 설비의 부하 및 손상을 방지할 수 있고, 예비처리 전로에서 슬래그 배제 효율이 우수하고, 조업 비용을 절감하는 효과가 우수하여 경제성이 우수할 수 있다.When applying the reversed converter process (RCP) according to the present invention, it is possible to manufacture molten steel by refining molten iron of high silicon (Si), which had to be subjected to cold wire, casting ship, or sand treatment, because existing steelmaking was impossible. In the case of molten iron, it prevents the sloping phenomenon to prevent environmental pollution, and it has excellent operation stability, can raise the molten iron temperature stably, and can prevent the load and damage of equipment during refining, and pretreatment The slag removal efficiency in the converter is excellent, and the economic efficiency can be excellent because of the excellent effect of reducing the operating cost.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
실시예 및 비교예Examples and Comparative Examples
실시예 1Example 1
도 4와 같은 방법으로 고 규소 용선을 처리하였다. 실리콘(Si): 3.5 중량%를 포함하며, 용선온도: 1,393℃인 용선을 래들에 수선하고, 도시되지는 않았지만, KR(Kanvara reactor) 설비로 이동하여 탈황 처리를 거친 다음, 도 4(a)와 같이 예비처리 전로에 상기 탈황된 용선을 장입하고, 부원료로 생석회(CaO): 29kg/t-s 및 냉각제(철광석): 123kg/t-s를 투입하고, 산소 랜스를 이용하여 순산소량: 17 N㎥/t-s로 취입하여, 용선 중 실리콘(Si) 및 탄소(C) 등과의 산화반응(SiO2 및 CO 발생)에 의한 발열반응으로 용선온도를 상승하여 도 4(b)와 같이 탈실리콘 처리를 수행하였다. High silicon molten iron was treated in the same manner as in FIG. 4. Silicon (Si): 3.5% by weight, molten iron with a molten iron temperature of 1,393 ° C. was repaired in the ladle, and although not shown, moved to a KR (Kanvara reactor) facility and subjected to desulfurization, followed by FIG. 4A. Charge the desulfurized molten iron into the pretreatment furnace as described above, and add quicklime (CaO): 29 kg / ts and coolant (iron ore): 123 kg / ts as an auxiliary material, and an oxygen content of 17 Nm3 / ts using an oxygen lance. Blown into the molten iron, the molten iron temperature was increased by an exothermic reaction by the oxidation reaction of silicon (Si) and carbon (C) and the like (SiO 2 and CO generation), and the silicon removal treatment was performed as shown in FIG. 4 (b).
상기 탈실리콘 처리시, 예비처리 전로 내부에 장입된 용강 면(상부면) 기준으로 산소 랜스 높이를 2,300~2,500mm로 설정하였으며, 송산유량: 25,000~30,000N㎥/h 조건으로 취련하였다. 상기 산소를 취련하여, 탈실리콘 처리한 이후, 측온설비인 서브랜스(Sub-lance)에 프로브(Probe)를 장착하여, 예비처리 전로 내 용강의 온도를 측정하였다. 상기 탈실리콘 처리된 용선은, 실리콘(Si): 0.5 중량%를 포함하며, 용선온도: 1,539℃ 이었다.During the de-silicon treatment, the oxygen lance height was set to 2,300 to 2,500 mm based on the molten steel surface (upper surface) charged inside the pretreatment furnace, and blown under a condition of a flow rate of flow: 25,000 to 30,000 Nm 3 / h. After the oxygen was blown and de-siliconized, a probe was mounted on a sub-lance, which is a temperature measuring facility, and the temperature of the molten steel in the pre-treatment furnace was measured. The desilicon-treated molten iron included silicon (Si): 0.5 wt% and the molten iron temperature was 1,539 ° C.
이후, 도 4(c)와 같이, 예비처리전로를 경동하여, 상기 예비처리 전로의 외주면에 형성된 출강구를 통해, 상기 탈실리콘 처리된 용선을 출탕하였다. 상기 예비처리전로에 잔류하는 슬래그는, 포트에 배제하여 처리하였다. 이후, 도 4(d)와 같이, 상기 출탕된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리 후, 도 4(e)와 같이 출강용 래들에 출강하였다. Thereafter, as shown in FIG. 4C, the preprocessing converter was tilted to tap the desilicon-treated molten iron through the tap hole formed on the outer circumferential surface of the preprocessing converter. The slag remaining in the pretreatment converter was removed from the pot and treated. Thereafter, as shown in FIG. 4 (d), the molten molten iron was charged into a decarburization converter, and after decarburization (C) treatment, the steel was dropped into the tapping ladle as shown in FIG.
제강공장 내 공정과 성분 및 온도변화에 대해 정리하면 하기와 같다.The process, composition and temperature change in the steel mill are summarized as follows.
공정은 수선, 예비처리전로 및 탈탄전로로 진행되었으며, 용선은 실리콘(Si): 3.5 중량%에서 0.5 중량%, 및 용선온도: 1,393℃에서 1,539℃로 변화되었다.The process proceeded to repair, pretreatment and decarburization, and the molten iron was changed from 3.5% by weight to 0.5% by weight of silicon (Si), and from 1,393 ° C to 1,539 ° C.
실시예 2Example 2
실리콘(Si): 3.1 중량%를 포함하며, 용선온도: 1,261℃인 용선을 래들에 수선하였다. KR(Kanvara reactor) 설비로 이동하여 탈황 처리를 거친 다음, 예비처리 전로에 상기 탈황 처리된 용선을 장입하고, 부원료로 생석회(CaO): 29kg/t-s 및 냉각제(철광석): 87kg/t-s를 투입하고, 산소 랜스를 이용하여 순산소량: 19 N㎥/t-s로 취입하여, 용선 중 실리콘(Si) 및 탄소(C) 등과의 산화반응(SiO2) 및 CO 발생)에 의한 발열반응으로 용선온도를 상승하여 탈실리콘 처리를 수행하였다. A molten iron containing 3.1 wt% of silicon (Si) and a molten iron temperature of 1,261 ° C. was repaired in the ladle. After going to the KR (Kanvara reactor) facility and desulfurizing, charge the desulfurized molten iron into the pre-treatment converter, add quicklime (CaO): 29 kg / ts and coolant (iron ore): 87 kg / ts as feedstock. , Oxygen lance blows up the net oxygen: 19 Nm3 / ts, and raises the molten iron temperature by exothermic reaction by oxidation reaction (SiO 2 ) and CO with silicon (Si) and carbon (C) in molten iron Desilicon treatment was carried out.
상기 탈실리콘 처리시, 예비처리 전로 내부에 장입된 용강 면 기준으로 산소 랜스 높이를 2,300~2,500mm로 설정하였으며, 송산유량: 25,000~30,000N㎥/h 조건으로 취련하였다. 상기 산소를 취련하여, 탈실리콘 처리한 이후, 측온설비인 서브랜스(Sub-lance)에 프로브(Probe)를 장착하여, 예비처리 전로 내 용강의 온도를 측정하였다. 상기 탈실리콘 처리된 용선은, 실리콘(Si): 0.33 중량%를 포함하며, 용선온도: 1,534℃ 이었다.During the de-silicon treatment, the oxygen lance height was set to 2,300 to 2500 mm based on the molten steel loaded into the pretreatment furnace, and blown under a condition of a flow rate of 25,000 to 30,000 Nm 3 / h. After the oxygen was blown and de-siliconized, a probe was mounted on a sub-lance, which is a temperature measuring facility, and the temperature of the molten steel in the pre-treatment furnace was measured. The desilicon-treated molten iron included silicon (Si): 0.33 wt% and the molten iron temperature was 1,534 ° C.
이후, 예비처리전로를 경동하여, 상기 예비처리 전로의 외주면에 형성된 출강구를 통해, 상기 탈실리콘 처리된 용선을 출탕하였다. 상기 예비처리전로에 잔류하는 슬래그는, 포트에 배제하여 처리하였다. 이후, 상기 출탕된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리하였다.Thereafter, the preprocessing converter was tilted to tap the desilicon-treated molten iron through the tap hole formed on the outer circumferential surface of the preprocessing converter. The slag remaining in the pretreatment converter was removed from the pot and treated. Thereafter, the molten iron was charged into a decarburization converter and subjected to decarburization (C).
제강공장 내 공정과 성분 및 온도변화에 대해 정리하면 하기와 같다.The process, composition and temperature change in the steel mill are summarized as follows.
공정은 수선, 예비처리전로 및 탈탄전로로 진행되었으며, 용선은 실리콘(Si): 3.1 중량%에서 0.33 중량%, 및 용선온도: 1,261℃에서 1,534℃로 변화되었다.The process proceeded to repair, pretreatment and decarburization, and the molten iron was changed from 3.1 wt% to 0.33 wt% of silicon (Si) and the molten iron temperature from 1,261 ° C to 1,534 ° C.
비교예Comparative example
도 5와 같은 방법으로 고 규소 용선을 처리하였다. 실리콘(Si): 3.5 중량%를 포함하며, 용선온도: 1,393℃인 용선을 래들에 수선하고 도 5(a)와 같이 탈탄 전로에 장입하여, 도 5(b)와 같이 탈탄 처리를 실시하였다. 그 다음에, 도 5(b)와 같이탈탄 전로를 경동하여, 노구를 통해 출탕하고 슬래그를 배제하였다. 그 다음에, 도 5(d)와 같이 상기 탈탄 전로에 산소를 취입하여 용선을 취련하여, 탈실리콘(Si) 처리하고 도 5(e)와 같이 출강하였다.High silicon molten iron was treated in the same manner as in FIG. 5. The molten iron containing 3.5 wt% of silicon (Si) and the molten iron temperature of 1,393 ° C was repaired in the ladle, charged into a decarburization converter as shown in FIG. 5 (a), and decarburized as shown in FIG. 5 (b). Then, the decarburization converter was tilted as shown in FIG. 5 (b) to tap through the furnace and remove slag. Subsequently, oxygen was blown into the decarburization converter as shown in FIG. 5 (d) to blow molten iron, treated with desilicon (Si), and pulled out as shown in FIG. 5 (e).
이때, 상기 슬래그의 완전한 배제가 이루어지지 않아, 상기 탈탄 전로 내 잔류 슬래그 량이 많았으며, 고 실리콘 용선으로 인해, 상기 탈탄 전로의 노구로 용선이 넘치는 슬로핑 현상이 발생하였다.At this time, the complete rejection of the slag was not made, the amount of residual slag in the decarburization converter was large, and due to the high silicon molten iron, the molten iron overflowed into the furnace port of the decarburization converter.
도 6은 본 발명에 따른 실시예 1~2의 용선 정련 과정에 따른 용선의 실리콘 함량 변화를 나타낸 그래프이다. 도 7은 본 발명에 따른 실시예 1~2의 용선 정련 과정에 따른 용선 온도 변화를 나타낸 그래프이다.6 is a graph showing a silicon content change of the molten iron according to the molten iron refining process of Examples 1 to 2 according to the present invention. 7 is a graph showing the molten iron temperature change according to the molten iron refining process of Examples 1 to 2 according to the present invention.
상기 도 6 및 도 7의 결과를 참조하면, 본 발명의 실시예 1~2의 용선은, 기존 제강이 불가능하여 냉선, 주물선 또는 사처리를 실시해야만 했던 고실리콘(Si)의 용선을 적용하여도, 정상적인 탈실리콘 및 탈탄 공정이 이루어져, 용선의 정련이 가능하였으며, 조업 안정성이 우수하고, 용선 온도를 안정적으로 상승시킬 수 있으며, 정련시 설비의 부하 및 손상을 방지할 수 있음을 알 수 있었다.Referring to the results of FIGS. 6 and 7, the molten iron of Examples 1 to 2 of the present invention is applied to the molten iron of high silicon (Si), which was previously impossible to be steel-making and had to be subjected to cold wire, foundry or sand treatment. In addition, the normal desilicon and decarburization process is performed, it was possible to refine the molten iron, it was found that the operation stability is excellent, the molten iron temperature can be raised stably, and the load and damage of the equipment during the refining can be prevented. .
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (7)

  1. 고로에서 출선된 용선을 래들에 수선하여 KR(Kanvara reactor) 설비로 이동시켜, 탈황제를 투입하여 탈황(S) 처리하는 단계; Repairing the molten iron from the blast furnace in the ladle and moving to a KR (Kanvara reactor) facility, and adding a desulfurization agent to desulfurization (S);
    상기 탈황 처리된 용선을 예비처리 전로에 장입하고, 산소를 취입하여 용선을 취련하여, 탈실리콘(Si) 처리하는 단계;Charging the desulfurized molten iron into a pretreatment converter, blowing oxygen by blowing the molten iron, and then treating the molten iron to remove silicon (Si);
    상기 탈실리콘 처리된 용선을 출탕하는 단계; 및Tapping the desilicon-treated molten iron; And
    상기 출탕된 용선을 탈탄 전로에 장입하여 탈탄(C) 처리하는 단계;를 포함하며,And charging the molten molten iron into the decarburization converter to perform decarburization (C).
    상기 래들에 수선된 용선은 실리콘(Si): 0.6~8.0 중량%를 포함하는 것을 특징으로 하는 전로에서의 용선 정련 방법.The molten iron repaired on the ladle comprises silicon (Si): 0.6 ~ 8.0% by weight.
  2. 제1항에 있어서,The method of claim 1,
    상기 탈실리콘(Si) 처리시, 상기 예비처리 전로에 생석회 10~45kg/t-s 및 냉각제 15~140kg/t-s를 포함하는 부원료를 투입하는 것을 특징으로 하는 전로에서의 용선 정련 방법.In the de-silicon (Si) treatment, molten iron refining method in the converter characterized in that the auxiliary raw material containing 10 ~ 45kg / t-s and quickener 15 ~ 140kg / t-s in the pretreatment converter.
  3. 제1항에 있어서,The method of claim 1,
    상기 용선 취련시, 상기 예비처리 전로 내 용강 면을 기준으로 산소 랜스 높이: 2,300~2,500mm에서 송산 유량: 25,000~30,000N㎥/h 조건으로 취련하며,When the molten iron is blown, it is blown under an oxygen lance height of 2,300 to 2,500 mm based on the molten steel surface of the pretreatment converter at a delivery flow rate of 25,000 to 30,000 Nm3 / h.
    상기 용선 취련시, 산소 취입량: 10~25N㎥/t-s 조건으로 취련하는 것을 특징으로 하는 전로에서의 용선 정련 방법.The molten iron refinement method in the converter, characterized in that the blown under the molten oxygen blown: 10 ~ 25Nm 3 / t-s conditions.
  4. 제1항에 있어서,The method of claim 1,
    상기 탈실리콘 처리된 용선의 실리콘(Si) 함량은, 상기 예비처리 전로에 장입된 용선의 실리콘(Si) 함량을 기준으로 0.2~6 중량% 감소되며, The silicon (Si) content of the desilicon-treated molten iron is reduced by 0.2 to 6% by weight based on the silicon (Si) content of the molten iron charged into the pretreatment converter.
    상기 탈실리콘 처리된 용선의 온도는 1,450~1,600℃인 것을 특징으로 하는 전로에서의 용선 정련 방법.The molten iron refining method of the converter characterized in that the temperature of the desilicon-treated molten iron is 1,450 ~ 1,600 ℃.
  5. 제1항에 있어서,The method of claim 1,
    상기 출탕은, 상기 예비처리 전로를 경동하여, 상기 예비처리 전로의 외주면에 형성된 출강구를 통해 상기 용선을 출탕하는 것을 특징으로 하는 전로에서의 용선 정련 방법.And said tapping taps said preliminary converter to tap the molten iron through a tap hole formed on an outer circumferential surface of said preliminary converter.
  6. 제1항에 있어서,The method of claim 1,
    상기 탈탄 처리된 용선은, 실리콘(Si): 0.1~1.0 중량%를 포함하며, 온도가 1,300~1,600℃인 것을 특징으로 하는 전로에서의 용선 정련 방법.The decarburized molten iron, the silicon (Si): 0.1 to 1.0% by weight, the molten iron refining method in the converter characterized in that the temperature is 1,300 ~ 1,600 ℃.
  7. 제1항에 있어서,The method of claim 1,
    상기 래들에 수선된 용선은 실리콘(Si): 4.0~8.0 중량%를 포함하는 것을 특징으로 하는 전로에서의 용선 정련 방법.The molten iron repaired in the ladle is silicon (Si): 4.0 to 8.0% by weight of the molten iron in the converter.
PCT/KR2017/009162 2016-08-23 2017-08-22 Method for refining hot metal in convertor WO2018038508A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160106902 2016-08-23
KR10-2016-0106902 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018038508A1 true WO2018038508A1 (en) 2018-03-01

Family

ID=61245087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009162 WO2018038508A1 (en) 2016-08-23 2017-08-22 Method for refining hot metal in convertor

Country Status (1)

Country Link
WO (1) WO2018038508A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980014324A (en) * 1996-08-09 1998-05-25 김종진 Pre-processing method of charcoal using converter
KR20070059747A (en) * 2005-12-07 2007-06-12 주식회사 포스코 Method for refining molten steel in converter
JP2011106031A (en) * 2000-09-14 2011-06-02 Jfe Steel Corp Refining agent and refining method
KR20120122841A (en) * 2011-04-28 2012-11-07 현대제철 주식회사 Refining method for hot metal containing high-silicon concentration
WO2014068933A1 (en) * 2012-10-30 2014-05-08 Jfeスチール株式会社 Hot metal refining method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980014324A (en) * 1996-08-09 1998-05-25 김종진 Pre-processing method of charcoal using converter
JP2011106031A (en) * 2000-09-14 2011-06-02 Jfe Steel Corp Refining agent and refining method
KR20070059747A (en) * 2005-12-07 2007-06-12 주식회사 포스코 Method for refining molten steel in converter
KR20120122841A (en) * 2011-04-28 2012-11-07 현대제철 주식회사 Refining method for hot metal containing high-silicon concentration
WO2014068933A1 (en) * 2012-10-30 2014-05-08 Jfeスチール株式会社 Hot metal refining method

Similar Documents

Publication Publication Date Title
CN110205436B (en) Smelting method for producing IF steel in full-flow low-oxygen level
WO2018016909A1 (en) Method for refining molten metal in converter
CN113832289A (en) Method for improving converter double-slag once-reversing dephosphorization rate
JPH05140627A (en) Steelmaking method in converter
WO2018038508A1 (en) Method for refining hot metal in convertor
JP4790489B2 (en) Converter steelmaking
WO2016018050A1 (en) Slag ball, and molten iron dephosphorizing method and converter blow-refining method using same
CN112322822A (en) Converter single slag smelting method for low-silicon high-phosphorus molten iron
WO2018026066A1 (en) Molten metal treatment apparatus and treatment method
KR101206950B1 (en) Method for Pre-Treating Pig Iron and Method for Treating Pig Iron
WO2018048161A1 (en) Method for manufacturing steel
CN111635973B (en) Method for removing titanium from molten iron of converter
Aleksashin et al. Creation and growth of oxygen-converter steelmaking
CN112481439B (en) Smelting process of converter low-phosphorus steel
CN110218839B (en) Deep desulfurization method in bearing steel smelting process
KR101930746B1 (en) Method for refining hot metal
CN110885911A (en) Process for pretreating, desiliconizing and dephosphorizing KR molten iron
JP2006241561A (en) Method for preventing development of dust from transporting vessel for molten iron
CN115558735B (en) Smelting method of pure iron
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
WO2024106086A1 (en) Method for smelting steel
JP3684445B2 (en) Manufacturing method of high purity high Ni steel
JP3988578B2 (en) Reuse method of desulfurization slag
KR20150125079A (en) Method for refining ultra low carbon steel
JP2842248B2 (en) Hot metal desulfurization method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843928

Country of ref document: EP

Kind code of ref document: A1